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Abstract 

Residual correlations and covariances provide effect sizes of the misfit of covariance structure 

models. In a simulation study, we found that accurate CIs for standardized residual covariances 

are obtained even in small samples (N = 100), regardless of model size, degree of model 

misspecification, and data distribution. Standardized residual covariances also provide 

information about the source of misfit in poorly fitting models. From this viewpoint, they may be 

considered an alternative to modification indices. We compared the empirical Type I errors and 

power rates of standardized residual covariances and modification indices and found that both 

procedures provide nearly identical rates across the simulation conditions investigated.  
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Effect sizes of model misfit in structural equation models: 

Standardized residual covariances and residual correlations 

Structural equation modeling (SEM) is a general set of methods that can be applied to fit 

multivariate data arising from discrete or continuous outcomes. In this paper, we focus on 

models for continuous outcomes. Furthermore, for ease of exposition we focus on models with 

unconstrained means, that is, on covariance structure models. Given the multivariate nature of 

covariance structure models, assessing the fit of these models (i.e., the discrepancy between the 

data generating mechanism and the fitted model) is also a multivariate problem.  

Residual covariances (i.e., the difference between the sample covariances and the 

covariances expected under the fitted model) provide a natural estimate of the fit of covariance 

structure models: the larger (in absolute value) the residual covariance, the worse the fit. 

However, the magnitude of a covariance is difficult to interpret and, as a result, residual 

covariances are ill suited as effect sizes of the misfit of a model. To overcome this problem, we 

can divide the residual covariances by their sample standard deviations leading to the 

standardized residual covariance. However, standardized residual covariances need not be in an 

interval from (-1, 1). From this point of view, residual correlations may be preferable to 

standardized residual covariances. 

Population standardized residual covariances (or alternatively, residual correlations) 

provide standardized effect sizes of the (multivariate) misfit of a structural equations model. 

Confidence intervals for these population effect sizes can be used to gauge the precision with 

which they are estimated. Alternatively, z statistics may be performed to test the hypothesis that 

these population parameters are zero (or equal to some alternative, arbitrary, small value). These 

z statistics are simply the ratio of the estimated statistic, say a residual correlation, to its standard 
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error.  Given that so many z tests are examined simultaneously, one should control the error rate 

for multiple testing. The most convenient way to do so is by using a Bonferroni adjustment of the 

significance level using the total number of nonredundant covariances or correlations. Of course, 

a more precise estimate of the overall magnitude of model misfit can be obtained by combining 

the standardized residual covariances (or residual correlations) into an overall statistic, such as 

the standardized root mean squared residual (SRMR) or the correlation root mean square residual 

(CRMR). These overall effect sizes of the misfit can be interpreted (roughly) as the model's 

average standardized residual covariance and residual correlation, respectively. Of course, in 

applications we wish to estimate the population SRMR or CRMR and construct a confidence 

interval for it (Maydeu-Olivares, 2017). 

Yet, it is only meaningful to examine the overall size of model misfit when there is little 

variability of the standardized residual covariances (or residual correlations) around the sample 

SRMR (or CRMR). Thus, it is important to inspect the largest values (in absolute value) of the 

statistically significant standardized residual covariances (or residual correlations). Although it 

has been repeatedly advised to examine the full matrix of residual covariances or correlations 

(see for instance, McDonald and Ho, (2002) –or at least the most extreme values within the 

matrix- this examination is seldom performed in applications. Also, SEM programs typically 

provide information on the statistical significance (i.e., z statistics) of (unstandardized) residual 

covariances or they provide standardized residual covariances, but not both. Yet, both should to 

be examined. If a residual covariance is statistically significant, we wish to examine its 

standardized counterpart, so that we can judge qualitatively the size of the misfit. Conversely, if 

a residual correlation suggests that the misfit is unacceptably large, we wish to examine its 
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confidence interval (particularly if sample size is small) to ensure that the magnitude of the 

observed residual cannot be attributed to chance.  

In addition to provide an effect size of the model misfit, standardized residual covariances 

and residual correlations may be used to assess the source of misfit in poorly fitting models. To 

be useful to this aim, it is important to organize the observed variables in consonance with the 

fitted model. For instance, if the substantive model under consideration is a two factor model 

with indicators x1 to x4 and y1 to y4, respectively, the covariance matrix should match this model-

induced ordering of the indicators. No pattern between these residuals should be apparent; rather, 

the residuals should be well scattered. However, unlike score tests (known as modification 

indices in the SEM literature, Sörbom, 1989), standardized residual covariances do not 

immediately suggest how to modify the model to obtain a better fit. As a result, standardized 

residual covariances have not received as much attention as modification indices and little is 

known about their small sample behavior, as well as the behavior of their standard errors. In this 

article, we aim at filling this gap by performing a small simulation study to investigate the small 

sample behavior of standardized residual covariances (and of residual correlations) and their 

standard errors. In particular, we examine coverage rates for standardized residual covariances 

and residual correlations for different degrees of model misspecification and non-normality. In 

addition, we compare the empirical Type I errors and power rates of standardized residual 

covariances and modification indices.  

The remainder of this article is organized as follows: First, we review statistical theory 

regarding confidence intervals for standardized residual covariances and residual correlations 

both under normality assumptions and under the asymptotically distribution free assumptions set 

forth by Browne (1982, 1984). Next, we report the results of our small simulation study. Then, 
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we present an applied example to illustrate the use of standardized residual covariances vs. 

modification indices. We conclude with a general discussion and some recommendations for 

applied users.  

Statistical theory for standardized residual covariances 

Let p denote the number of observed variables being modeled, N denote sample size, and 

let  denote a ( 1) / 2 t p p  vector of population covariances. We consider a covariance 

structure 0 ( )   where  is a q  t vector of parameters to be estimated from the data. The 

two best known procedures for estimating the model parameters involve minimizing the 

discrepancy functions 

    0 0
ˆ   F s W s  , (1) 

and 

  1
0 0ln ln tr    MLF pS S  , (2) 

with respect to . In (2), S and 0 denote the sample and model-implied population covariance 

matrices, respectively, whereas in (1), s is a t-vector of sample covariances and ˆ 
p

W W , a fixed 

matrix. In covariance structure analysis, maximum likelihood (ML) parameter estimates under 

normality assumptions are frequently obtained by minimizing (2). In contrast, (1) defines a class 

of functions. Different choices of the weight matrix Ŵ  lead to different estimators such as 

unweighted least squares (ULS), diagonally weighted least squares (DWLS), or the 

asymptotically distribution free (ADF) weighted least squares (WLS) proposed by Browne 

(1982, 1984).  
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 Under the null hypothesis, for any member of the class of estimators (1), as well as for 

the ML estimator (for details see Browne & Arminger, 1995), the covariance matrix of the 

estimated parameters is 

    1 11ˆacov( )
a

N
     W W W W         . (3) 

In (3) 
( )




 



 and N  is the asymptotic covariance matrix of the sample covariances, s, i.e.,  

 1acov( ) N s   . (4) 

 can be computed under normality assumptions (NT) or under ADF assumptions (ADF) (e.g., 

non-normality). For asymptotically optimal (AO) estimators, that is, for estimators with 

minimum variance within this class of estimators, (3) simplifies to 

   11 1ˆacov( )
a

N
      . (5) 

Under normality assumptions, the AO estimators are the (NT, normal theory) generalized least 

squares (GLS) estimator and the ML estimator. Under ADF assumptions, the AO estimator is the 

WLS estimator.  

 We now turn to the residual covariances (and variances) ̂ ue s , where ˆˆ ( )   , with 

typical element ˆij iijjs   . For any for the estimators considered in this paper, their asymptotic 

covariance matrix is  

      1 11acov( )
a

u N
       e I W W I W W          . (6) 

Using NT or ADF in (6), one obtains standard errors for the residual covariances under normality 

or robust to non-normality using the square root of the diagonal elements of (6). For AO 

estimators, (6) simplifies to  
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   11 1 ˆacov( ) acov( ) acov( )
a

u N
      e s          . (7) 

Note that if ML estimation is used with robust standard errors, equation (6) should be used, not 

(7), as the ML estimator is not asymptotically optimal under ADF assumptions.  

Standardized residual covariances and residual correlations 

 Residual covariances cannot be substantively interpreted as their magnitude depends on 

the units of the variables. To overcome this problem, we can divide the residual covariances by 

their sample standard deviations leading to the standardized residual 
ˆij ij

ii jj

s

s s

 
, or in matrix form 

1/2 1/2ˆ ˆ ˆ( )s u
   e G e G s  , where  ˆ diag vecs( ) ii iiG s s  and iis denotes a p vector of sample 

variances. Instead of using standardized residual covariances, we could use the t – p residual 

correlations 
ˆ

ˆ
ˆ ˆ

ij ij
ij ij

ii jj ii jj

s
r

s s


  

 
. In matrix form they are written as

1/ 2 1/ 2
0

ˆ ˆ ˆˆr      e G s G r , where  0
ˆ ˆ ˆdiag vecs( )   ii iiG .  

 Asymptotic standard errors for the standardized residuals can be obtained (Ogasawara, 

2001) as the square root of the diagonal elements of  

 1/2 1/2acov( ) acov( )
a

s u
 e G e G  , (8) 

where  diag vecs( )ii ii
G   , and acov( )ue  is given by (6). For AO estimators only, we may 

use (7)  instead of (6). Similarly, asymptotic standard errors for the residual correlations can be 

obtained as the square root of the diagonal elements of  

 acov( ) acov( )
a

s ue F e F  , (9) 
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where 
ˆ( )



 


 s

r
F

s 


(Maydeu-Olivares, 2017). 

Confidence intervals and Wald (z) statistics 

 Letting  denote the population covariances, under parameter drift assumptions, the 

standardized residual covariances and residual correlations are asymptotically normally 

distributed with mean equal to their population counterparts  

 1/2
0( )s

 G   ,  and 1/2 1/2
0 0r

  G G   ,  (10) 

and covariance matrices given by (8) and (9). As a result, in large samples, the (100 – )% 

confidence interval for  (that is, s or r), can be obtained using  

   ˆ ˆ ˆ ˆPr ASE( ) ASE( ) 1z z             , (11) 

where ˆ e   denotes the estimate of the effect size (e.g., the sample standardized residual 

covariance) and ASE denotes its asymptotic standard error. Similarly, we can test whether a 

population standardized residual covariance or residual correlation equals some cut-off criteria c 

(usual zero) using  

 
ˆ

ˆASE( )

c
z

 



 . (12) 

 Note that the z statistics for standardized residual covariances must equal the z statistics 

for unstandardized residual covariances. This is because 
ˆ

ˆ u
s

ii jjs s


   and 

ˆvar( )
ˆASE( ) u

s

ii jjs s


  . 

Therefore, 
ˆ

ˆASE( )
u

s u

u

z z


 


. Similarly, in well-fitting models, the variances estimated under 

the model will be close to the sample variances, or ˆ ii ii s  . In such cases 1/2 1/2
0

ˆ ˆ G G  , and the 
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residual correlations 1/2 1/2
0

ˆ ˆ ˆr
  e G s G   will be very similar to the standardized residual 

covariances 1/2 1/2 1/2ˆ ˆ ˆˆ ˆ( )s
     e G s G G s   and their z statistics will be very similar as well.  

A Monte-Carlo comparison of standardized residual covariances,  

correlation residuals, and modification indices 

To investigate the coverage rates of standardized residual covariances and residual 

correlations, we performed a small simulation study with 16 conditions. The conditions were 

obtained by crossing 

a) sample size (small, N = 100; large, N = 1000), 

b) model size (small, p = 10 observed variables; large, p = 30),  

c) model misspecification (correctly specified, and misspecified) 

d) distribution of the data (normal, non-normal). 

For each condition 1000 replications were obtained.   

 More specifically, we generated multivariate normal data with mean zero and a 

covariance structure conforming to an independent clusters two factor model with factor loadings 

equal to 0.7 and uniqueness equal to 0.51 for all variables. The data was then discretized into 7 

categories coded 0 to 6 where the thresholds were selected so that the observed data had the 

desired skewness and kurtosis. A one factor model was fitted in all cases using ML estimation 

using the Lavaan package in R (Rosseel, 2012). Standard errors were computed under normality 

assumptions, and also under ADF assumptions (see Satorra & Bentler, 1994).  

 The misspecified model was obtained by setting the correlation between the factors to  = 

0.8 when generating the data. The correctly specified model was obtained by setting the 

correlation to  = 1. The threshold values used for all variables in the normal and non-normal 

condition are provided in Table 1. These thresholds yield a population skewness of 0 and 
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(excess) kurtosis of 0 for the normal condition, and of -2 and 3, respectively, for the non-normal 

conditions. Table 1 also contains the population Root Mean Square Error of Approximation 

(RMSEA: Browne & Cudeck, 1993), population Standardized Root Mean squared Residual 

(SRMR) and Correlation Root Mean squared Residual (CRMR). The computation of these 

population quantities is described in Maydeu-Olivares (2017). The computation of the population 

skewness and kurtosis for discretized normal variables is described in Maydeu-Olivares, 

Coffman and Hartmann (2007). 

------------------------------------- 

Insert Table 1 about here 

------------------------------------- 

 We see in Table 1 that the population RMSEA values for misspecified models range from 

0.046 to 0.075; population SRMR values range from 0.039 to 0.042, and population CRMR 

values range from 0.043 to 0.046. Note that these population values are smaller for non-normal 

data than for normal data.  

 We provide in Table 2 the empirical Type I error rates (for correctly specified models) 

and empirical power rates (for misspecified models) of z statistics (12) for testing whether the 

population standardized residual covariances and residual correlations equal zero (both under 

normality and ADF assumptions). We also provide in this table the empirical Type errors and 

power rates for modification indices for comparison.  

 Now, the fitted model is a one factor model, ( )       , where  denotes the p 

vector of factor loadings and  denotes the p × p covariance matrix among the unique errors in 

the factor model. For this choice of fitted model, only modification indices for the off-diagonal 

elements of  are computed. For each model, there are t – q modification indices, t – q z 
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statistics for residual correlations; we used only the t – q z statistics for residual covariances (we 

excluded the tests for residual variances). For each replication and choice of test statistic, we 

computed the minimum, maximum and median p-value across the t – q tests of the population 

parameter being zero. Table 2 provides the average of these minimum, maximum and medians 

across the 1000 replications of each condition.  For correctly specified models ( = 1), rejection 

rates should be as close as possible to the nominal rate (0.05); for incorrectly specified models ( 

= 0.8), rejection rates should be as large as possible. 

 We see in Table 2 that rejection rates for modification indices, standardized residual 

covariances and residual correlations are very similar. When the statistics are computed 

assuming normality and the data is actually non-normal, all three statistics lack power to detect 

that the model is misspecified (p values are too large). In all other conditions, rejection rates are 

right on target across all conditions, even at the smallest sample size (N = 100) and largest model 

(p = 30) considered.  

 In examining rejection rates for the misspecified model, results obtained under normality 

assumptions when the data is non-normal should be ignored, as empirical Type I errors are 

incorrect. Inspecting the other conditions, we see that a) power is very similar across the three 

statistics considered (modification indices, z statistics for residual covariances, and z statistics for 

residual correlations), b) power logically increases for increasing sample size, c) power does not 

increase for increasing model size, and d) power does not increase when data is normally 

distributed and normality is assumed. Since there appears to be no gain in assuming normality, 

combining the Type I and power results we conclude that it is preferable to use ADF 

assumptions.  

------------------------------------- 
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Insert Tables 2 and 3 about here 

------------------------------------- 

 Table 3 provides 95% coverage rates for the standardized residual covariances and 

residual correlations. Population values ranged from 0.041 to 0.051 (in absolute value) in both 

cases. Consistent with the results presented for the test statistics, we see in this Table that the 

coverage rates are rather accurate, across all conditions of model size, normality, sample size, 

and model misspecification. The exception is confidence intervals computed under normality 

assumptions when the data is non-normal. In this case, confidence intervals are too narrow: 

median coverage rate is 0.86 for 95% intervals.  

An example: Modeling the LOT 

 The Life Orientation Test  (LOT: Scheier & Carver, 1985) consists of eight items 

designed to measure generalized outcome expectancies plus four filler items.  The response scale 

for the items is graded, consisting of five points (0,…, 4).  Four of the items are positively 

worded, while the remaining items are negatively worded. 

The LOT was designed to measure a single construct. However, several factor analytic 

studies (e.g., Chang, D’Zurilla, & Maydeu-Olivares, 1994; Chang & McBride-Chang, 1996; 

Marshall, Wortman, Kusulas, Hervig, & Vickers, 1992; Robinson-Whelen, Kim, MacCallum, & 

Kiecolt-Glaser, 1997; Scheier & Carver, 1985) have revealed that a one-factor model does not fit 

well. Instead, a correlated two-factor model in which all positively worded items load on one 

factor and all negatively worded items load on another factor provides a substantially better fit to 

the data (but see Maydeu-Olivares & Coffman, 2006).  

 Here, we fitted a one factor model by ML to data gathered from 389 respondents by 

Chang et al. (1994). The model does not fit well. Under normality assumptions the 90% 
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confidence interval (CI) for the RMSEA is (.15; .19); for the SRMR it is (.08;.12), and for the 

CRMR it is (.09, .12). These data is quite normal: Excess kurtosis ranges from -0.72 to 0.01; 

skewness ranges from -0.57 to 0.71. As a result CIs for the RMSEA, SRMR and CRMR 

computed under ADF assumptions equal those computed under normality to three decimals. The 

CI for the RMSEA robust to non-normality was computed using the mean adjusted RMSEA as 

described in Brosseau-Liard, Savalei and Li (2012).  

Next, we can examine the standardized residual covariances or residual correlations to 

gauge the extent of the misfit. In this example residual covariances and residual correlations (and 

their z statistics) are equal up to two decimals. As a result, only standardized residual 

covariances are reported and they are shown in Table 4. Residual variances in this example are 

zero and they have not been printed in this table. In addition, we have ordered the LOT items as 

{1, 4, 5, 11, 3, 8, 9, 12}. The first four items are positively worded (they reflect optimism), and 

the last four are negatively worded (they reflect pessimism). We see in this Table that residuals 

among the negatively worded items are small. Residuals are also small between positively and 

negatively worded items. Yet, they are large among the positively worded items. Thus, after 

suitably reordering the items according to a substantive theory with two factors (optimism and 

pessimism), the pattern we observe in this table is the typical pattern we would observe if a two 

factor model is the data generating model but a one factor model is fitted.  

In inspecting standardized residual covariances it is important to take into account their 

sampling variability. One way to do so is to indicate, as we have done in Table 4, which of these 

effect sizes are statistically significant. More specifically, we have boldfaced in this table the 

standardized residual covariances that are statistically significant at the  = 0.05 level using a 

Bonferroni correction. That is, since there are t = 28 residual covariances, we used  = 0.05/28 = 
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0.0018. Of course, a more precise procedure, such as the Benjamini-Hochberg procedure (see 

Thissen, Steinberg, & Kuang, 2002) could have been used. 

Alternatively, confidence intervals for the standardized residual covariances can be 

constructed. We display in Table 5 90% confidence intervals for these population parameters. Do 

modification indices provide a similar picture in this application? To address this question, we 

provide in Table 6 the modification indices for this model both under normality and non-

normality assumptions. Comparing Tables 4 and 6 we see that modification indices and 

standardized residual covariances provide very much the same picture for these data, both under 

normality and under ADF assumptions. Under normality, both sets of statistics suggests that 

there is there is some misfit associated to item 9, in addition to the block misfit due to the 

misspecification of the latent trait dimensionality. Standardized residual covariances immediately 

convey the magnitude of the misfit: it is not large. Furthermore, these statistics fail to be 

significant when the precision with which they are estimated is computed under ADF 

assumptions. 

-------------------------------------------- 

Insert Tables 4 to 6 about here 

-------------------------------------------- 

Discussion and conclusions 

Bivariate standardized effect sizes (standardized residual covariances, and residual 

correlations) may be a helpful tool to detect the source of mispecified covariance structure 

models. In factor analysis applications, after suitably ordering the observed variables, we look 

for blocks of residuals as an indication of mispecified latent trait dimensionality, as well as for 

rows of residuals as an indication of mispecified secondary loadings. Factor analysis is often 
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used in test construction. Within this context it is often of interest to remove poor fitting 

indicators. To this aim, we find helpful printing the average of the absolute value of the residual 

correlations (or standardized residual covariances) for each item (Maydeu-Olivares, 2015). It is 

also possible to use residuals to detect the source of misfit in path analysis models, but see 

Costner and Schoenberg (1978). Admittedly, when the assumptions underlying the use of 

modification indices are met (misfit caused by a few omitted paths), one should expect 

modification indices to be more helpful than residuals in suggesting ways to improve the fit of 

the model. Otherwise, as the example presented here illustrates, modification indices and 

residuals provide similar information. 

Standardized residual covariances (or residual correlations) also provide effect sizes of 

the misfit of the model. This is important, as in models involving a large number of variables one 

often needs to settle for approximate models due to time constraints. Also, when large sample 

sizes are used, well-fitting models may be rejected due to high power. In both cases, these 

standardized effect sizes need to be examined to gauge qualitatively the extent of the misfit. The 

use of overall effect sizes of the model’s misfit of such as the SRMR should not be used in the 

presence of large standardized residual covariances. Of course, modification indices can also be 

used to gauge the effect size of the misfit (via the use of expected parameter change, see Saris, 

Satorra, & van der Veld, 2009). We have shown in this paper that modification indices and 

residuals show similar Type I and II errors. However, often we find the use of standardized 

residual covariances more convenient than modification indices and expected parameter changes 

to convey the magnitude of a model’s misfit.  

In closing, we have demonstrated that, under the conditions investigated, standardized 

residual covariances and residual correlations display a similar behavior. However, the 
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conditions investigated here involved scale invariant models. Further research involving models 

that are not scale invariant is needed in helping choose between both sets of statistics.  
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Table 1 

Population thresholds, skewness, kurtosis, RMSEA, SRMR, and CRMR 

  

p  Item thresholds Kur. Skew. RMSEA SRMR CRMR

10 0.8 -1.64, -1.08, -.52, .52, 1.08, 1.64 0 0 0.075 0.041 0.046 

10 0.8 -2.33, -1.88, -1.55, -1.17, -.84, -.55 3.2 -2.0 0.063 0.039 0.043 

30 0.8 -1.64, -1.08, -.52, .52, 1.08, 1.64 0 0 0.054 0.044 0.046 

30 0.8 -2.33, -1.88, -1.55, -1.17, -.84, -.55 3.2 -2.0 0.046 0.042 0.043 

 

 

 

Note: RMSEA = Root Mean Square Error of Approximation, SRMR = Standardized Root Mean 

squared Residual, CRMR = Correlation Root Mean squared Residual (CRMR). For correctly 

specified models ( = 1) the same threholds were used, leading to the same values of kurtosis 

and skewness. In this case, however, the population RMSEA, SRMR, and CRMR are all zero. 
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Table 2 

Empirical rejection rates at  = 0.05 for modification indices, standardized residual covariances, and residual correlations  

 

p N  Kur. Skew. 
Modification Indices Standardized Residual Covariances Residual Correlations 

NT ADF NT ADF NT ADF 
min max med min max med min max med min max med min max med min max med 

10 100 1 0 0 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.08 0.06 0.04 0.07 0.05 0.04 0.08 0.06 
10 100 1 3.2 -2 0.13 0.18 0.15 0.04 0.08 0.06 0.12 0.17 0.14 0.04 0.08 0.06 0.12 0.17 0.14 0.04 0.08 0.06 
10 1000 1 0 0 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 0.04 0.07 0.05 
10 1000 1 3.2 -2 0.13 0.17 0.15 0.03 0.06 0.05 0.13 0.17 0.15 0.04 0.07 0.05 0.13 0.17 0.15 0.04 0.07 0.05 
30 100 1 0 0 0.03 0.08 0.05 0.03 0.08 0.05 0.03 0.07 0.05 0.03 0.08 0.06 0.03 0.07 0.05 0.03 0.08 0.06 
30 100 1 3.2 -2 0.12 0.18 0.15 0.03 0.08 0.06 0.11 0.17 0.14 0.04 0.09 0.06 0.11 0.17 0.14 0.04 0.09 0.06 
30 1000 1 0 0 0.03 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 0.03 0.07 0.05 
30 1000 1 3.2 -2 0.12 0.18 0.15 0.03 0.07 0.05 0.12 0.18 0.14 0.03 0.07 0.05 0.12 0.18 0.14 0.03 0.07 0.05 
10 100 0.8 0 0 0.1 0.19 0.13 0.1 0.19 0.13 0.11 0.15 0.13 0.12 0.17 0.14 0.11 0.15 0.13 0.12 0.17 0.14 
10 100 0.8 3.2 -2 0.14 0.26 0.18 0.04 0.14 0.08 0.14 0.23 0.18 0.06 0.13 0.1 0.14 0.23 0.18 0.06 0.13 0.1 
10 1000 0.8 0 0 0.67 0.89 0.72 0.66 0.88 0.71 0.68 0.88 0.73 0.68 0.88 0.72 0.68 0.88 0.73 0.68 0.88 0.72 
10 1000 0.8 3.2 -2 0.5 0.7 0.55 0.31 0.52 0.35 0.51 0.69 0.56 0.34 0.47 0.4 0.51 0.69 0.56 0.34 0.47 0.4 
30 100 0.8 0 0 0.1 0.17 0.13 0.1 0.17 0.13 0.1 0.15 0.12 0.1 0.17 0.13 0.1 0.15 0.12 0.1 0.17 0.13 
30 100 0.8 3.2 -2 0.14 0.23 0.19 0.05 0.12 0.08 0.14 0.22 0.18 0.05 0.14 0.09 0.14 0.22 0.18 0.05 0.14 0.09 
30 1000 0.8 0 0 0.66 0.79 0.72 0.66 0.79 0.72 0.66 0.79 0.72 0.66 0.78 0.72 0.66 0.79 0.72 0.66 0.78 0.72 
30 1000 0.8 3.2 -2 0.48 0.61 0.55 0.29 0.42 0.36 0.49 0.6 0.54 0.31 0.4 0.36 0.49 0.6 0.54 0.31 0.4 0.36 
 

 

Notes: p = number of observed variables; N = Sample Size;  = population inter-factor correlation; Kur.= excess kurtosis; Skew.= skewness; NT = 

normality assumptions; ADF = asymptotically distribution free assumptions; med = median; 
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Table 3 

95% coverage rates for standardized residual covariances and residual correlations 

 

p N  Kur. Skew.
Standardized Residual Covariances Residual Correlations 

NT ADF NT ADF 
min max med min max med min max med min max med

10 100 1 0 0 0.93 0.96 0.95 0.92 0.96 0.94 0.93 0.96 0.95 0.92 0.96 0.94
10 100 1 3.2 -2 0.83 0.88 0.86 0.92 0.96 0.94 0.83 0.88 0.86 0.92 0.96 0.94
10 1000 1 0 0 0.93 0.96 0.95 0.93 0.96 0.95 0.93 0.96 0.95 0.93 0.96 0.95
10 1000 1 3.2 -2 0.83 0.87 0.85 0.93 0.96 0.95 0.83 0.87 0.85 0.93 0.96 0.95
30 100 1 0 0 0.93 0.97 0.95 0.92 0.97 0.95 0.93 0.97 0.95 0.92 0.97 0.95
30 100 1 3.2 -2 0.83 0.89 0.86 0.91 0.96 0.94 0.83 0.89 0.86 0.91 0.96 0.94
30 1000 1 0 0 0.93 0.97 0.95 0.93 0.97 0.95 0.93 0.97 0.95 0.93 0.97 0.95
30 1000 1 3.2 -2 0.82 0.88 0.86 0.93 0.97 0.95 0.82 0.88 0.86 0.93 0.97 0.95
10 100 0.8 0 0 0.93 0.96 0.95 0.93 0.96 0.94 0.93 0.96 0.95 0.93 0.96 0.94
10 100 0.8 3.2 -2 0.83 0.9 0.86 0.91 0.96 0.94 0.83 0.9 0.86 0.91 0.96 0.94
10 1000 0.8 0 0 0.92 0.97 0.95 0.92 0.96 0.95 0.92 0.97 0.95 0.92 0.96 0.95
10 1000 0.8 3.2 -2 0.83 0.89 0.86 0.93 0.96 0.95 0.83 0.89 0.86 0.93 0.96 0.95
30 100 0.8 0 0 0.93 0.97 0.95 0.92 0.97 0.94 0.93 0.97 0.95 0.92 0.97 0.94
30 100 0.8 3.2 -2 0.83 0.91 0.87 0.92 0.96 0.94 0.83 0.91 0.87 0.92 0.96 0.94
30 1000 0.8 0 0 0.93 0.97 0.95 0.93 0.97 0.95 0.93 0.97 0.95 0.93 0.97 0.95
30 1000 0.8 3.2 -2 0.82 0.9 0.86 0.93 0.97 0.95 0.82 0.9 0.86 0.93 0.97 0.95

 

 

Notes: p = number of observed variables; N = Sample Size;  = population inter-factor correlation; Kur.= excess kurtosis; Skew.= skewness; NT = 

normality assumptions; ADF = asymptotically distribution free assumptions
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Table 4 

Results for a one factor model applied to the Life Orientation Test (LOT) data:  standardized 

residual covariances 

 

 

Item 1 4 5 11 3 8 9 12 
1  0.31 0.25 0.13 -0.08 -0.05 -0.07 -0.05 
4 0.31  0.29 0.19 -0.08 -0.04 -0.11 0.01 
5 0.25 0.29  0.08 -0.03 -0.06 -0.07 -0.02 
11 0.13 0.19 0.08  -0.08 -0.06 -0.02 0.05 
3 -0.08 -0.08 -0.03 -0.08  0.01 0.03 0.04 
8 -0.05 -0.04 -0.06 -0.06 0.01  0.05 -0.01 
9 -0.07 -0.11 -0.07 -0.02 0.03 0.05  0.00 
12 -0.05 0.01 -0.02 0.05 0.04 -0.01 0.00  

 

 

 

Note: We have boldfaced the standardized residual covariances that are statistically significant at 

the 5% level after applying a Bonferroni correction. Above the diagonal we have boldfaced 

statistics significant under asymptotically distribution free (ADF) assumptions; below the 

diagonal, statistics significant under normality (NT) assumptions.  
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Table 5 

Results for a one factor model applied to the Life Orientation Test (LOT) data:  90% confidence 

intervals for standardized residual covariances 

 

 

Item 1 4 5 11 3 8 9 12 
1  0.19;0.43 0.14;0.37 0.00;0.26 -0.18;0.02 -0.11;0.01 -0.14;0.00 -0.14;0.05

4 0.19;0.44  0.16;0.43 0.06;0.31 -0.17;0.01 -0.11;0.03 -0.17;-0.04 -0.08;0.10

5 0.13;0.38 0.17;0.41  -0.05;0.20 -0.14;0.08 -0.12;0.01 -0.15;0.00 -0.12;0.08

11 0.00;0.26 0.06;0.31 -0.04;0.20  -0.19;0.03 -0.12;-0.01 -0.10;0.06 -0.05;0.14

3 -0.18,0.02 -0.17;0.01 -0.12;0.07 -0.18;0.02  -0.05;0.07 -0.04;0.10 -0.06;0.14

8 -0.10;0.01 -0.09;0.01 -0.11;-0.01 -0.12;0.00 -0.04;0.06  0.00;0.10 -0.06;0.04

9 -0.14,-0.01 -0.16;-0.05 -0.13;-0.01 -0.10;0.05 -0.02;0.09 0.02;0.08  -0.06;0.06

12 -0.14;0.04 -0.07;0.10 -0.10;0.07 -0.05;0.15 -0.04;0.12 -0.05;0.03 -0.05;0.05  
 

 

 

Note: above the diagonal, under ADF assumptions; below the diagonal, under normality 

assumptions.  
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Table 6 

Results for a one factor model applied to the Life Orientation Test (LOT) data: Modification 

indices for covariances among error terms 

 

 

 

Item 1 4 5 11 3 8 9 12 
1  52.38 32.94 6.97 4.49 4.40 7.83 1.78 
4 66.06  52.10 17.17 5.06 3.82 20.49 .11 
5 41.54 65.71  2.76 .63 7.38 8.53 .25 
11 8.80 21.66 3.49  3.85 7.00 .78 1.64 
3 5.67 6.38 .80 4.86  .24 2.74 1.71 
8 5.55 4.82 9.31 8.83 .30  29.75 .24 
9 9.88 25.84 10.76 .98 3.46 37.52  .05 
12 2.24 .14 .32 2.07 2.16 .31 .06  

 

 

 

 

 

 

 

 

Note: Statistics computed under asymptotically distribution free (ADF) assumptions above the 

diagonal, under normality assumptions (NT) below the diagonal. We have boldfaced the 

statistics that are significant at the 5% level after applying a Bonferroni correction.  

 

 


