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Abstract
Residual correlations and covariances provide effect sizes of the misfit of covariance structure
models. In a simulation study, we found that accurate CIs for standardized residual covariances
are obtained even in small samples (N = 100), regardless of model size, degree of model
misspecification, and data distribution. Standardized residual covariances also provide
information about the source of misfit in poorly fitting models. From this viewpoint, they may be
considered an alternative to modification indices. We compared the empirical Type I errors and
power rates of standardized residual covariances and modification indices and found that both

procedures provide nearly identical rates across the simulation conditions investigated.
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Effect sizes of model misfit in structural equation models:
Standardized residual covariances and residual correlations

Structural equation modeling (SEM) is a general set of methods that can be applied to fit
multivariate data arising from discrete or continuous outcomes. In this paper, we focus on
models for continuous outcomes. Furthermore, for ease of exposition we focus on models with
unconstrained means, that is, on covariance structure models. Given the multivariate nature of
covariance structure models, assessing the fit of these models (i.e., the discrepancy between the
data generating mechanism and the fitted model) is also a multivariate problem.

Residual covariances (i.e., the difference between the sample covariances and the
covariances expected under the fitted model) provide a natural estimate of the fit of covariance
structure models: the larger (in absolute value) the residual covariance, the worse the fit.
However, the magnitude of a covariance is difficult to interpret and, as a result, residual
covariances are ill suited as effect sizes of the misfit of a model. To overcome this problem, we
can divide the residual covariances by their sample standard deviations leading to the
standardized residual covariance. However, standardized residual covariances need not be in an
interval from (-1, 1). From this point of view, residual correlations may be preferable to
standardized residual covariances.

Population standardized residual covariances (or alternatively, residual correlations)
provide standardized effect sizes of the (multivariate) misfit of a structural equations model.
Confidence intervals for these population effect sizes can be used to gauge the precision with
which they are estimated. Alternatively, z statistics may be performed to test the hypothesis that
these population parameters are zero (or equal to some alternative, arbitrary, small value). These

z statistics are simply the ratio of the estimated statistic, say a residual correlation, to its standard
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error. Given that so many z tests are examined simultaneously, one should control the error rate
for multiple testing. The most convenient way to do so is by using a Bonferroni adjustment of the
significance level using the total number of nonredundant covariances or correlations. Of course,
a more precise estimate of the overall magnitude of model misfit can be obtained by combining
the standardized residual covariances (or residual correlations) into an overall statistic, such as
the standardized root mean squared residual (SRMR) or the correlation root mean square residual
(CRMR). These overall effect sizes of the misfit can be interpreted (roughly) as the model's
average standardized residual covariance and residual correlation, respectively. Of course, in
applications we wish to estimate the population SRMR or CRMR and construct a confidence
interval for it (Maydeu-Olivares, 2017).

Yet, it is only meaningful to examine the overall size of model misfit when there is little
variability of the standardized residual covariances (or residual correlations) around the sample
SRMR (or CRMR). Thus, it is important to inspect the largest values (in absolute value) of the
statistically significant standardized residual covariances (or residual correlations). Although it
has been repeatedly advised to examine the full matrix of residual covariances or correlations
(see for instance, McDonald and Ho, (2002) —or at least the most extreme values within the
matrix- this examination is seldom performed in applications. Also, SEM programs typically
provide information on the statistical significance (i.e., z statistics) of (unstandardized) residual
covariances or they provide standardized residual covariances, but not both. Yet, both should to
be examined. If a residual covariance is statistically significant, we wish to examine its
standardized counterpart, so that we can judge qualitatively the size of the misfit. Conversely, if

a residual correlation suggests that the misfit is unacceptably large, we wish to examine its
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confidence interval (particularly if sample size is small) to ensure that the magnitude of the
observed residual cannot be attributed to chance.

In addition to provide an effect size of the model misfit, standardized residual covariances
and residual correlations may be used to assess the source of misfit in poorly fitting models. To
be useful to this aim, it is important to organize the observed variables in consonance with the
fitted model. For instance, if the substantive model under consideration is a two factor model
with indicators x1 to x4 and y1 to ys, respectively, the covariance matrix should match this model-
induced ordering of the indicators. No pattern between these residuals should be apparent; rather,
the residuals should be well scattered. However, unlike score tests (known as modification
indices in the SEM literature, Sorbom, 1989), standardized residual covariances do not
immediately suggest how to modify the model to obtain a better fit. As a result, standardized
residual covariances have not received as much attention as modification indices and little is
known about their small sample behavior, as well as the behavior of their standard errors. In this
article, we aim at filling this gap by performing a small simulation study to investigate the small
sample behavior of standardized residual covariances (and of residual correlations) and their
standard errors. In particular, we examine coverage rates for standardized residual covariances
and residual correlations for different degrees of model misspecification and non-normality. In
addition, we compare the empirical Type I errors and power rates of standardized residual
covariances and modification indices.

The remainder of this article is organized as follows: First, we review statistical theory
regarding confidence intervals for standardized residual covariances and residual correlations
both under normality assumptions and under the asymptotically distribution free assumptions set

forth by Browne (1982, 1984). Next, we report the results of our small simulation study. Then,
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we present an applied example to illustrate the use of standardized residual covariances vs.
modification indices. We conclude with a general discussion and some recommendations for
applied users.
Statistical theory for standardized residual covariances
Let p denote the number of observed variables being modeled, N denote sample size, and

let ¢ denote a £ = p(p +1)/2 vector of population covariances. We consider a covariance
structure 6, =G(0) where 0 is a ¢ < ¢ vector of parameters to be estimated from the data. The

two best known procedures for estimating the model parameters involve minimizing the

discrepancy functions

[N

F=(s-0,) W(s-o,) , (1)
and

F,, =12 |~ In|8|+ tr(SZ)) - p , ()
with respect to 0. In (2), S and Zo denote the sample and model-implied population covariance

A P
matrices, respectively, whereas in (1), s is a #-vector of sample covariances and W—W , a fixed
matrix. In covariance structure analysis, maximum likelihood (ML) parameter estimates under

normality assumptions are frequently obtained by minimizing (2). In contrast, (1) defines a class

of functions. Different choices of the weight matrix W lead to different estimators such as
unweighted least squares (ULS), diagonally weighted least squares (DWLS), or the
asymptotically distribution free (ADF) weighted least squares (WLS) proposed by Browne

(1982, 1984).



STANDARDIZED RESIDUAL COVARIANCES 7

Under the null hypothesis, for any member of the class of estimators (1), as well as for
the ML estimator (for details see Browne & Arminger, 1995), the covariance matrix of the

estimated parameters is
acov(®)=N"' (A'WA)" AWI'WA(A'WA)™" . (3)

In(3) A= ﬁcas_éle) and N T is the asymptotic covariance matrix of the sample covariances, s, i.e.,

acov(s)=N"T . 4)
I" can be computed under normality assumptions (I'nr) or under ADF assumptions (I'4pr) (e.g.,

non-normality). For asymptotically optimal (AO) estimators, that is, for estimators with

minimum variance within this class of estimators, (3) simplifies to
acov(®)=N" (AT 'A)" . (5)

Under normality assumptions, the AO estimators are the (NT, normal theory) generalized least
squares (GLS) estimator and the ML estimator. Under ADF assumptions, the AO estimator is the

WLS estimator.
We now turn to the residual covariances (and variances) e, =s — &, where 6 = G(é) , with
typical element s, — G, . For any for the estimators considered in this paper, their asymptotic

covariance matrix is
acov(e,)=N"' (1-A(A'WA) " AW|T(1-A(AWA)” AW)' . (6)

Using I'vr or Tapr in (6), one obtains standard errors for the residual covariances under normality
or robust to non-normality using the square root of the diagonal elements of (6). For AO

estimators, (6) simplifies to
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acov(e,)=N"' (r ~-A (AT*A)’1 A’) =acov(s) — Aacov(0)A’ . (7)

Note that if ML estimation is used with robust standard errors, equation (6) should be used, not
(7), as the ML estimator is not asymptotically optimal under ADF assumptions.
Standardized residual covariances and residual correlations

Residual covariances cannot be substantively interpreted as their magnitude depends on

the units of the variables. To overcome this problem, we can divide the residual covariances by

S

Slj Glj . .
———— or in matrix form

SiiAlS i

their sample standard deviations leading to the standardized residual

s i~

e, =G "% =G"*(s-6), where G = diag(vecs(s s ')) and s, denotes a p vector of sample

variances. Instead of using standardized residual covariances, we could use the 7 — p residual

, S; G,
correlations

—— =71, —,. In matrix form they are written as
S..S C.0 .

i jj i i

~-1/2 A2 A A N s A &'
e, =G 's-G, "6=r—-p,where G, = dlag(vecs(ciloﬁ )) .

Asymptotic standard errors for the standardized residuals can be obtained (Ogasawara,

2001) as the square root of the diagonal elements of
acov(es)iG*”2 acov(e, )G™"? , (8)
where G = diag(vecs(ciicﬁ')) ,and acov(e, ) is given by (6). For AO estimators only, we may

use (7) instead of (6). Similarly, asymptotic standard errors for the residual correlations can be

obtained as the square root of the diagonal elements of

acov(e,) iFacov(eu )F , 9)
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where F = % (Maydeu-Olivares, 2017).
S

s=c
Confidence intervals and Wald (z) statistics
Letting o denote the population covariances, under parameter drift assumptions, the
standardized residual covariances and residual correlations are asymptotically normally
distributed with mean equal to their population counterparts
g, =G "*(c-0,), and ¢, =G "’6-G,"’c,, (10)
and covariance matrices given by (8) and (9). As a result, in large samples, the (100 — )%

confidence interval for ¢ (that is, & or &), can be obtained using
Pr(¢-z,,ASE(8) <e<é+2,,ASE(®))=1-a, (11)

where € = e denotes the estimate of the effect size (e.g., the sample standardized residual
covariance) and ASE denotes its asymptotic standard error. Similarly, we can test whether a
population standardized residual covariance or residual correlation equals some cut-off criteria ¢
(usual zero) using

A

_ E—¢C
ASE(8)

(12)

z

Note that the z statistics for standardized residual covariances must equal the z statistics

g — JJvar(€,)
v and ASE(8,) =Y i)
SiiS jj \SiS i

=z, . Similarly, in well-fitting models, the variances estimated under

for unstandardized residual covariances. This is because €, =

A

U

Therefore, z, = —"—
ASE(E,)

the model will be close to the sample variances, or G, ~s, . In such cases G ~G,"? , and the
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residual correlations e, = G™?s — G,"?6 will be very similar to the standardized residual

covariances e, =G ’s— G "’6 =G "*(s — 6) and their z statistics will be very similar as well.

A Monte-Carlo comparison of standardized residual covariances,
correlation residuals, and modification indices

To investigate the coverage rates of standardized residual covariances and residual
correlations, we performed a small simulation study with 16 conditions. The conditions were
obtained by crossing

a) sample size (small, N = 100; large, N = 1000),

b) model size (small, p = 10 observed variables; large, p = 30),

¢) model misspecification (correctly specified, and misspecified)

d) distribution of the data (normal, non-normal).

For each condition 1000 replications were obtained.

More specifically, we generated multivariate normal data with mean zero and a
covariance structure conforming to an independent clusters two factor model with factor loadings
equal to 0.7 and uniqueness equal to 0.51 for all variables. The data was then discretized into 7
categories coded 0 to 6 where the thresholds were selected so that the observed data had the
desired skewness and kurtosis. A one factor model was fitted in all cases using ML estimation
using the Lavaan package in R (Rosseel, 2012). Standard errors were computed under normality
assumptions, and also under ADF assumptions (see Satorra & Bentler, 1994).

The misspecified model was obtained by setting the correlation between the factors to p =
0.8 when generating the data. The correctly specified model was obtained by setting the
correlation to p = 1. The threshold values used for all variables in the normal and non-normal

condition are provided in Table 1. These thresholds yield a population skewness of 0 and
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(excess) kurtosis of 0 for the normal condition, and of -2 and 3, respectively, for the non-normal
conditions. Table 1 also contains the population Root Mean Square Error of Approximation
(RMSEA: Browne & Cudeck, 1993), population Standardized Root Mean squared Residual
(SRMR) and Correlation Root Mean squared Residual (CRMR). The computation of these
population quantities is described in Maydeu-Olivares (2017). The computation of the population
skewness and kurtosis for discretized normal variables is described in Maydeu-Olivares,

Coffman and Hartmann (2007).

Insert Table 1 about here

We see in Table 1 that the population RMSEA values for misspecified models range from
0.046 to 0.075; population SRMR values range from 0.039 to 0.042, and population CRMR
values range from 0.043 to 0.046. Note that these population values are smaller for non-normal
data than for normal data.

We provide in Table 2 the empirical Type I error rates (for correctly specified models)
and empirical power rates (for misspecified models) of z statistics (12) for testing whether the
population standardized residual covariances and residual correlations equal zero (both under
normality and ADF assumptions). We also provide in this table the empirical Type errors and
power rates for modification indices for comparison.

Now, the fitted model is a one factor model, £(0) =AA'+® , where A denotes the p

vector of factor loadings and ® denotes the p X p covariance matrix among the unique errors in
the factor model. For this choice of fitted model, only modification indices for the off-diagonal

elements of ® are computed. For each model, there are # — ¢ modification indices, t — q z
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statistics for residual correlations; we used only the 7 — g z statistics for residual covariances (we
excluded the tests for residual variances). For each replication and choice of test statistic, we
computed the minimum, maximum and median p-value across the 7 — g tests of the population
parameter being zero. Table 2 provides the average of these minimum, maximum and medians
across the 1000 replications of each condition. For correctly specified models (p = 1), rejection
rates should be as close as possible to the nominal rate (0.05); for incorrectly specified models (p
= 0.8), rejection rates should be as large as possible.

We see in Table 2 that rejection rates for modification indices, standardized residual
covariances and residual correlations are very similar. When the statistics are computed
assuming normality and the data is actually non-normal, all three statistics lack power to detect
that the model is misspecified (p values are too large). In all other conditions, rejection rates are
right on target across all conditions, even at the smallest sample size (N = 100) and largest model
(p = 30) considered.

In examining rejection rates for the misspecified model, results obtained under normality
assumptions when the data is non-normal should be ignored, as empirical Type I errors are
incorrect. Inspecting the other conditions, we see that a) power is very similar across the three
statistics considered (modification indices, z statistics for residual covariances, and z statistics for
residual correlations), b) power logically increases for increasing sample size, c) power does not
increase for increasing model size, and d) power does not increase when data is normally
distributed and normality is assumed. Since there appears to be no gain in assuming normality,
combining the Type I and power results we conclude that it is preferable to use ADF

assumptions.
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Insert Tables 2 and 3 about here

Table 3 provides 95% coverage rates for the standardized residual covariances and
residual correlations. Population values ranged from 0.041 to 0.051 (in absolute value) in both
cases. Consistent with the results presented for the test statistics, we see in this Table that the
coverage rates are rather accurate, across all conditions of model size, normality, sample size,
and model misspecification. The exception is confidence intervals computed under normality
assumptions when the data is non-normal. In this case, confidence intervals are too narrow:
median coverage rate is 0.86 for 95% intervals.

An example: Modeling the LOT

The Life Orientation Test (LOT: Scheier & Carver, 1985) consists of eight items
designed to measure generalized outcome expectancies plus four filler items. The response scale
for the items is graded, consisting of five points (0,..., 4). Four of the items are positively
worded, while the remaining items are negatively worded.

The LOT was designed to measure a single construct. However, several factor analytic
studies (e.g., Chang, D’Zurilla, & Maydeu-Olivares, 1994; Chang & McBride-Chang, 1996;
Marshall, Wortman, Kusulas, Hervig, & Vickers, 1992; Robinson-Whelen, Kim, MacCallum, &
Kiecolt-Glaser, 1997; Scheier & Carver, 1985) have revealed that a one-factor model does not fit
well. Instead, a correlated two-factor model in which all positively worded items load on one
factor and all negatively worded items load on another factor provides a substantially better fit to
the data (but see Maydeu-Olivares & Coffman, 2006).

Here, we fitted a one factor model by ML to data gathered from 389 respondents by

Chang et al. (1994). The model does not fit well. Under normality assumptions the 90%



STANDARDIZED RESIDUAL COVARIANCES 14

confidence interval (CI) for the RMSEA is (.15; .19); for the SRMR it is (.08;.12), and for the
CRMR it is (.09, .12). These data is quite normal: Excess kurtosis ranges from -0.72 to 0.01;
skewness ranges from -0.57 to 0.71. As a result CIs for the RMSEA, SRMR and CRMR
computed under ADF assumptions equal those computed under normality to three decimals. The
CI for the RMSEA robust to non-normality was computed using the mean adjusted RMSEA as
described in Brosseau-Liard, Savalei and Li (2012).

Next, we can examine the standardized residual covariances or residual correlations to
gauge the extent of the misfit. In this example residual covariances and residual correlations (and
their z statistics) are equal up to two decimals. As a result, only standardized residual
covariances are reported and they are shown in Table 4. Residual variances in this example are
zero and they have not been printed in this table. In addition, we have ordered the LOT items as
{1,4,5,11, 3, 8,9, 12}. The first four items are positively worded (they reflect optimism), and
the last four are negatively worded (they reflect pessimism). We see in this Table that residuals
among the negatively worded items are small. Residuals are also small between positively and
negatively worded items. Yet, they are large among the positively worded items. Thus, after
suitably reordering the items according to a substantive theory with two factors (optimism and
pessimism), the pattern we observe in this table is the typical pattern we would observe if a two
factor model is the data generating model but a one factor model is fitted.

In inspecting standardized residual covariances it is important to take into account their
sampling variability. One way to do so is to indicate, as we have done in Table 4, which of these
effect sizes are statistically significant. More specifically, we have boldfaced in this table the

standardized residual covariances that are statistically significant at the oo = 0.05 level using a

Bonferroni correction. That is, since there are ¢ = 28 residual covariances, we used o = 0.05/28 =
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0.0018. Of course, a more precise procedure, such as the Benjamini-Hochberg procedure (see
Thissen, Steinberg, & Kuang, 2002) could have been used.

Alternatively, confidence intervals for the standardized residual covariances can be
constructed. We display in Table 5 90% confidence intervals for these population parameters. Do
modification indices provide a similar picture in this application? To address this question, we
provide in Table 6 the modification indices for this model both under normality and non-
normality assumptions. Comparing Tables 4 and 6 we see that modification indices and
standardized residual covariances provide very much the same picture for these data, both under
normality and under ADF assumptions. Under normality, both sets of statistics suggests that
there is there is some misfit associated to item 9, in addition to the block misfit due to the
misspecification of the latent trait dimensionality. Standardized residual covariances immediately
convey the magnitude of the misfit: it is not large. Furthermore, these statistics fail to be
significant when the precision with which they are estimated is computed under ADF

assumptions.

Insert Tables 4 to 6 about here

Discussion and conclusions
Bivariate standardized effect sizes (standardized residual covariances, and residual
correlations) may be a helpful tool to detect the source of mispecified covariance structure
models. In factor analysis applications, after suitably ordering the observed variables, we look
for blocks of residuals as an indication of mispecified latent trait dimensionality, as well as for

rows of residuals as an indication of mispecified secondary loadings. Factor analysis is often
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used in test construction. Within this context it is often of interest to remove poor fitting
indicators. To this aim, we find helpful printing the average of the absolute value of the residual
correlations (or standardized residual covariances) for each item (Maydeu-Olivares, 2015). It is
also possible to use residuals to detect the source of misfit in path analysis models, but see
Costner and Schoenberg (1978). Admittedly, when the assumptions underlying the use of
modification indices are met (misfit caused by a few omitted paths), one should expect
modification indices to be more helpful than residuals in suggesting ways to improve the fit of
the model. Otherwise, as the example presented here illustrates, modification indices and
residuals provide similar information.

Standardized residual covariances (or residual correlations) also provide effect sizes of
the misfit of the model. This is important, as in models involving a large number of variables one
often needs to settle for approximate models due to time constraints. Also, when large sample
sizes are used, well-fitting models may be rejected due to high power. In both cases, these
standardized effect sizes need to be examined to gauge qualitatively the extent of the misfit. The
use of overall effect sizes of the model’s misfit of such as the SRMR should not be used in the
presence of large standardized residual covariances. Of course, modification indices can also be
used to gauge the effect size of the misfit (via the use of expected parameter change, see Saris,
Satorra, & van der Veld, 2009). We have shown in this paper that modification indices and
residuals show similar Type I and II errors. However, often we find the use of standardized
residual covariances more convenient than modification indices and expected parameter changes
to convey the magnitude of a model’s misfit.

In closing, we have demonstrated that, under the conditions investigated, standardized

residual covariances and residual correlations display a similar behavior. However, the
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conditions investigated here involved scale invariant models. Further research involving models

that are not scale invariant is needed in helping choose between both sets of statistics.
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Table 1

Population thresholds, skewness, kurtosis, RMSEA, SRMR, and CRMR

p P Item thresholds Kur. Skew. | RMSEA | SRMR | CRMR
10 0.8 | -1.64,-1.08,-.52,.52,1.08, 1.64 0 0 0.075 | 0.041 | 0.046
10 0.8 ]-2.33,-1.88,-1.55,-1.17,-.84,-.55 | 3.2 -2.0 | 0.063 | 0.039 | 0.043
30 0.8 -1.64,-1.08,-.52,.52,1.08, 1.64 0 0 0.054 | 0.044 | 0.046
30 0.8 |-2.33,-1.88,-1.55,-1.17,-.84,-55| 3.2 -2.0 | 0.046 | 0.042 | 0.043
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Note: RMSEA = Root Mean Square Error of Approximation, SRMR = Standardized Root Mean

squared Residual, CRMR = Correlation Root Mean squared Residual (CRMR). For correctly
specified models (p = 1) the same threholds were used, leading to the same values of kurtosis

and skewness. In this case, however, the population RMSEA, SRMR, and CRMR are all zero.
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Table 2

Empirical rejection rates at a = 0.05 for modification indices, standardized residual covariances, and residual correlations

22

Modification Indices

Standardized Residual Covariances

Residual Correlations

p N p Kur. Skew. NT ADF NT ADF NT ADF

min max med | min max med | min max med | min max med | min max med | min max med
10 100 1 0 0 0.04 0.07 0.05]0.04 0.07 0.05]0.04 0.07 0.05]0.04 0.08 0.06|0.04 007 0.05]|0.04 0.08 0.06
10 100 1 32 -2 0.13 0.18 0.15]0.04 0.08 0.06|0.12 0.17 0.14]0.04 0.08 0.06 0.12 0.17 0.14|0.04 0.08 0.06
10 1000 1 0 0 0.04 0.07 0.05]0.04 0.07 0.05]0.04 0.07 0.05]{0.04 0.07 0.05|0.04 0.07 0.05]0.04 0.07 0.05
10 1000 1 3.2 -2 0.13 0.17 0.15]0.03 0.06 0.05]0.13 0.17 0.15]0.04 0.07 0.05({0.13 0.17 0.15/0.04 0.07 0.05
30 100 1 0 0 0.03 0.08 0.05]0.03 0.08 0.05|0.03 0.07 0.05]0.03 0.08 0.060.03 0.07 0.05]|0.03 0.08 0.06
30 100 1 3.2 -2 0.12 0.18 0.15/0.03 0.08 0.06|0.11 0.17 0.14]0.04 0.09 0.06|0.11 0.17 0.14|0.04 0.09 0.06
30 1000 1 0 0 0.03 0.07 0.05]0.03 0.07 0.05]0.03 0.07 0.05]0.03 0.07 0.05|0.03 0.07 0.05]0.03 0.07 0.05
30 1000 1 3.2 -2 0.12 0.18 0.15/0.03 0.07 0.05]0.12 0.18 0.14]0.03 0.07 0.05({0.12 0.18 0.14|0.03 0.07 0.05
10 100 08 0 0 0.1 0.19 0.13| 0.1 0.19 0.13|0.11 0.15 0.13]0.12 0.17 0.14(0.11 0.15 0.13]|0.12 0.17 0.14
10 100 0.8 3.2 -2 0.14 026 0.180.04 0.14 0.08|0.14 023 0.180.06 0.13 0.1 ]0.14 023 0.180.06 0.13 0.1
10 1000 0.8 0 0 0.67 0.89 0.7210.66 0.88 0.71|0.68 0.88 0.73 0.68 0.88 0.72|0.68 0.88 0.73]0.68 0.88 0.72
10 1000 0.8 3.2 -2 0.5 0.7 055]031 052 035|051 069 056|034 047 04]051 0.69 056|034 047 04
30 100 08 O 0 0.1 0.17 0.13| 0.1 0.17 0.13| 0.1 0.15 0.12| 0.1 0.17 0.13| 0.1 0.15 0.12| 0.1 0.17 0.13
30 100 0.8 3.2 -2 0.14 023 0.1910.05 0.12 0.08|0.14 0.22 0.18]0.05 0.14 0.090.14 022 0.18|0.05 0.14 0.09
30 1000 0.8 O 0 0.66 0.79 0.7210.66 0.79 0.72]0.66 0.79 0.72 0.66 0.78 0.72|0.66 0.79 0.72]0.66 0.78 0.72
30 1000 0.8 3.2 -2 048 0.61 055/029 042 036049 0.6 054031 04 036(049 06 054|031 04 0.36

Notes: p = number of observed variables; N = Sample Size; p = population inter-factor correlation; Kur.= excess kurtosis; Skew.= skewness; NT =

normality assumptions; ADF = asymptotically distribution free assumptions; med = median;
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Table 3

95% coverage rates for standardized residual covariances and residual correlations

Standardized Residual Covariances Residual Correlations

p N p Kur. Skew. NT ADF NT ADF

min max med | min max med | min max med | min max med
10 100 1 0 0 093 096 0951092 096 094|093 096 095|092 0.96 094
10 100 1 3.2 -2 0.83 0.88 086|092 096 094|083 0.88 0.86]092 0.96 094
10 1000 1 0 0 093 096 095,093 096 095|093 096 0.95]093 0.96 0095
10 1000 1 3.2 -2 0.83 0.87 085,093 096 095|083 087 0.85]093 0.96 0095
30 100 1 0 0 093 097 0951092 097 095|093 097 095|092 0.97 0095
30 100 1 3.2 -2 0.83 0.89 086|091 096 094|083 0.89 0.86]091 0.96 094
30 1000 1 0 0 093 097 0951093 097 095|093 097 095|093 0.97 0095
30 1000 1 3.2 -2 0.82 0.88 0.86/0.93 097 095|082 0.88 0.86|093 0.97 0095
10 100 08 O 0 093 096 0951093 096 094|093 096 095|093 0.96 094
10 100 0.8 3.2 -2 083 09 0861091 096 094|083 0.9 086|091 0.96 094
10 1000 0.8 O 0 092 097 0951092 096 095092 097 095|092 0.96 0095
10 1000 0.8 3.2 -2 0.83 0.89 086093 096 095|083 0.89 0.86|093 0.96 0095
30 100 08 O 0 093 097 0951092 097 094|093 097 095]092 0.97 094
30 100 0.8 32 -2 0.83 091 0871092 096 094|083 091 0.87]092 0.96 094
30 1000 0.8 O 0 093 097 095,093 097 095|093 097 095|093 0.97 0095
30 1000 0.8 3.2 -2 082 09 086093 097 095|082 0.9 0.86]093 0.97 0095
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Notes: p =number of observed variables; N = Sample Size; p = population inter-factor correlation; Kur.= excess kurtosis; Skew.= skewness; NT =

normality assumptions; ADF = asymptotically distribution free assumptions
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Table 4

Results for a one factor model applied to the Life Orientation Test (LOT) data: standardized

residual covariances

Item | 1 4 5 11 3 8 9 12

1 031 0.25 0.13 -0.08 -0.05 -0.07 -0.05
4 0.31 029 0.19 -0.08 -0.04 -0.11 0.01
5 0.25 0.29 0.08 -0.03 -0.06 -0.07 -0.02
11 | 0.13 0.19 0.08 -0.08 -0.06 -0.02 0.05
3 |-0.08 -0.08 -0.03 -0.08 0.01 0.03 0.04
8 |-0.05 -0.04 -0.06 -0.06 0.01 0.05 -0.01
9 |-0.07 -0.11 -0.07 -0.02 0.03 0.05 0.00
12 [-0.05 0.01 -0.02 0.05 0.04 -0.01 0.00
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Note: We have boldfaced the standardized residual covariances that are statistically significant at

the 5% level after applying a Bonferroni correction. Above the diagonal we have boldfaced

statistics significant under asymptotically distribution free (ADF) assumptions; below the

diagonal, statistics significant under normality (NT) assumptions.
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Table 5
Results for a one factor model applied to the Life Orientation Test (LOT) data: 90% confidence

intervals for standardized residual covariances

Item 1 4 5 11 3 8 9 12
1 0.19:0.43  0.14;0.37 0.00;0.26 -0.18;0.02 -0.11;0.01 -0.14;0.00 -0.14;0.05
4 | 0.19;0.44 0.16;043  0.06;0.31 -0.17;0.01 -0.11;0.03 -0.17;-0.04 -0.08:0.10
5 | 013,038 0.17;0.41 -0.05;0.20 -0.14;0.08 -0.12;0.01  -0.15;0.00 -0.12;0.08
11 | 0.00:026  0.06;031  -0.04;0.20 -0.19;0.03 -0.12;-0.01 -0.10;0.06 -0.05;0.14
3 | -0.18,0.02 -0.17;0.01 -0.12;0.07 -0.18;0.02 -0.05;0.07  -0.04;0.10 -0.06;0.14
8§ | -0.10;0.01 -0.09;0.01 -0.11;-0.01 -0.12;0.00 -0.04;0.06 0.00;0.10  -0.06;0.04
9 |-0.14-0.01 -0.16;-0.05 -0.13;-0.01 -0.10;0.05 -0.02;0.09 0.02;0.08 -0.06;0.06
12 | -0.14;0.04 -0.07;0.10 -0.10;0.07 -0.05;0.15 -0.04;0.12 -0.05;0.03  -0.05;0.05

Note: above the diagonal, under ADF assumptions; below the diagonal, under normality

assumptions.
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Table 6

Results for a one factor model applied to the Life Orientation Test (LOT) data: Modification

indices for covariances among error terms

Item 1 4 5 11 3 8 9 12

1 52.38 32.94 6.97 4.49 4.40 7.83 1.78
4 66.06 52.10 17.17 5.06 3.82 20.49 A1
5 41.54 65.71 2.76 .63 7.38 8.53 25
11 8.80 21.66 3.49 3.85 7.00 78 1.64
3 5.67 6.38 .80 4.86 24 2.74 1.71
8 5.55 4.82 9.31 8.83 .30 29.75 24
9 9.88 25.84 10.76 .98 3.46 37.52 .05
12 2.24 14 32 2.07 2.16 31 .06

Note: Statistics computed under asymptotically distribution free (ADF) assumptions above the

diagonal, under normality assumptions (NT) below the diagonal. We have boldfaced the

statistics that are significant at the 5% level after applying a Bonferroni correction.




