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MAASS FORM TWISTED SHINTANI L-FUNCTIONS

BOB HOUGH

(Communicated by Ken Ono)

Abstract. The Maass form twisted Shintani L-functions are introduced, and
some of their analytic properties are studied. These functions contain data
regarding the distribution of shapes of cubic rings.

1. Introduction

The space of binary cubic forms over a commutative ring R

(1.1) VR “
�
fpx, yq “ ax3 ` bx2y ` cxy2 ` dy3 : a, b, c, d P R

(

has a rich algebraic structure. GL2pRq acts by changing coordinates:

(1.2) g ¨ fpx, yq “ fppx, yqgtq.

Over C, this makes VC an example of a prehomogeneous vector space. Over R, VR

splits into a pair of open GL2pRq orbits, having positive and negative discriminant,
and a singular set having discriminant zero. The non-singular forms have finite
stabilizer, so that these are naturally identified with finite quotients of GL2pRq.
Over Z, one considers in addition to the lattice L “ VZ, the dual lattice

(1.3) L̂ “ tf P L : 3|b, cu .

For a fixed non-zero m P Z those integral forms from L and L̂ of discriminant
m each split into finitely many orbits, the number of which is the class number,

denoted hpmq and ĥpmq, respectively. The space of integral binary cubic forms
taken modulo GL2pZq-equivalence has extra significance, as it is in discriminant-
preserving bijection with cubic rings taken up to isomorphism [3], [4], [2].

Shintani [12] introduced zeta functions enumerating the class numbers hpmq,

ĥpmq. These Dirichlet series, initially defined only in the half-plane ts P C : �psq ą
1u, have meromorphic continuation to all of C and satisfy a functional equation
relating s to 1´ s. Shintani determined the poles and residues, and hence obtained
strong results on the average behavior of hpmq.
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4162 BOB HOUGH

Having fixed a base point, a class of integral forms f̃ of non-zero discriminant
is identified with a point in GL2pZqzGL2pRq, and it is natural to ask for the dis-
tribution of these points on average. We call the point gf P GL2pZqzGL2pRq the
‘shape’ of the form f , a name which becomes more natural in the case that f is
associated to an order of a cubic field, in which case gf describes the shape of the
corresponding lattice in its natural embedding. The distribution of these shapes was
studied by Terr [14], who proved the asymptotic uniform distribution of the shape
of cubic orders and fields when ordered by discriminant; see also [5]. In related
work, the author proved the quantitative equidistribution of 3-torsion ideal classes
in imaginary quadratic fields [6] and the corresponding equidistribution statements
for quartic and quintic fields have been demonstrated by Bhargava and Harron [1].

The purpose of this note is to give a strong estimate for the equidistribution of
binary cubic forms with respect to the cuspidal spectrum of SL2pRq{ SL2pZq, by
modifying the method of Shintani. Let φ be a non-constant automorphic cusp form
on

(1.4) X “ SO2pRqz SL2pRq{ SL2pZq,

which is an eigenfunction of the Hecke algebra, and extend φ to GL2pRq by pro-
jecting by a diagonal matrix. Fix base forms x0

˘ of discriminant ˘1, and for each

m ‰ 0 choose representatives tgi,mu
hpmq
i“1

, tĝi,mu
ĥpmq
i“1

such that
!
gi,m ¨ x0

sgnpmq

)hpmq

i“1
,

!
ĝi,m ¨ x0

sgnpmq

)ĥpmq

i“1
are representatives for the classes of integral forms of dis-

criminant m. Denote Γpi,mq, Γ̂pi,mq the stability groups of gi,m ¨ x0
sgnpmq, resp.

ĝi,m ¨ x0
sgnpmq in Γ “ SL2pZq. Introduce ‘φ-twisted Shintani L -functions’ defined

for �psq ą 4 by absolutely convergent Dirichlet series

L˘pL, s;φq “
ÿ

˘mě1

1

|m|s

hpmqÿ

i“1

φ
`
g´1
i,m

˘

|Γpi,mq|
,(1.5)

L˘pL̂, s;φq “
ÿ

˘mě1

1

|m|s

ĥpmqÿ

i“1

φ
`
ĝ´1
i,m

˘
ˇ̌
ˇΓ̂pi,mq

ˇ̌
ˇ
.

It is shown that these series may be factored from an orbital integral as in [12]. The
trick which permits introducing φ is due to Selberg [11], exploiting the mean-value
property of harmonic functions.

The twisted L -functions appear less natural than the case φ “ 1 of [12]. For
instance, we are not aware that a functional equation is satisfied, and suspect that
none exists. We are, however, able to demonstrate the holomorphic continuation
past the region of absolute convergence, which is sufficient to prove equidistribution
statements.

Theorem 1.1. Let φ be a Maass Hecke-eigen cusp form on X . The φ-twisted

Shintani L -functions extend to holomorphic functions in the half-plane �psq ą 1
8
.

Remark 1.2. Theorem 1.1 exhibits substantial orthogonality of the shapes of binary
cubic forms to the Maass spectrum. In particular, for ψ P C8

c pR`q, the proof of
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MAASS FORM TWISTED SHINTANI L-FUNCTIONS 4163

Theorem 1.1 permits the estimate

(1.6)
ÿ

˘mě1

ψ

ˆ
|m|

X

˙ hpmqÿ

i“1

φ
`
g´1
i,m

˘

|Γpi,mq|
!ε,ψ X

1

8
`ε

with the same estimate for dual forms. By comparison, the number of forms counted
is order X. The best estimate in (1.6) obtainable from [14] is of order X

15

16 , while
[1] proves the qualitative statement opXq.

Remark 1.3. Recall that a cusp form φ of SO2pRqz SL2pRq{ SL2pZq satisfies an
exponential decay condition in the cusp. Our argument applies with appropriate
modifications also to the Eisenstein spectrum, and to automorphic forms that trans-
form on the left by a fixed character of SO2pRq. See [8] for a general description
of automorphic forms on SL2pRq{ SL2pZq. We omit the details here, but intend to
give detailed equidistribution statements in a future paper treating cubic fields.

Related work. We discovered the twisted L -functions during work on the AIM
Square on alternative proofs of the Davenport-Heilbronn theorems. See work of
Sato [9], [10] for some related objects.

2. Background

Set G “ GL2pRq, G1 “ SL2pRq, G` “ tg P G : det g ą 0u, Γ “ SL2pZq,

Γ8 “ Γ X

ˆ
˘1 0
˚ ˘1

˙
and standard subgroups1

K “

"
kθ “

ˆ
cpθq spθq

´spθq cpθq

˙
: θ P R{Z

*
,(2.1)

A “

"
at “

ˆ
t 0
0 1

t

˙
: t P Rą0

*
,

N “

"
nu “

ˆ
1 0
u 1

˙
: u P R

*
.

Haar measure is normalized on G1 by setting, for f P L1pG1q,
ż

G1

fpgqdg “

ż

R{Z

ż

R`

ż

R

fpkθatnuqdθ
dt

t3
du(2.2)

and, for f P L1pGq,

(2.3)

ż

G`

fpgqdg “

ż

R`

ż

G1

f

ˆˆ
� 0
0 �

˙
g

˙
dg

d�

�
.

2.1. Automorphic forms. For consistency with Shintani we work on L2pKzG1{Γq,
with the lattice quotient on the right. This differs from many modern authors. See
[15] for a summary of the results discussed here, and note the normalization y “ t2.

A convenient basis for L2pKzG1{Γq consists in joint eigenfunctions of the Lapla-
cian and the Hecke operators. These automorphic forms split into discrete and
continuous spectrum. The discrete spectrum has an L2 basis of Hecke-eigen Maass
forms while the continuous spectrum is spanned by the real analytic Eisenstein
series.

1cpθq “ cosp2πθq, spθq “ sinp2πθq.
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4164 BOB HOUGH

Let φpgq be a Hecke-eigen Maass form with Laplace eigenvalue λ “ sp1 ´ sq,
s “ 1

2
` itφ. The Maass forms split into even and odd forms. An even Maass form

φ has a Fourier development in the parabolic direction

(2.4) φpgq “ 2t
8ÿ

n“1

ρφpnqKs´ 1

2

`
2πnt2

˘
cosp2πnuq

whereas an odd form replaces cosp¨q with sinp¨q in the Fourier expansion. We use
the Mellin transformsż 8

0

Kνpxqxs´1dx “ 2s´2Γ

ˆ
s ` ν

2

˙
Γ

ˆ
s ´ ν

2

˙
, �s ą |�ν|,(2.5)

ż 8

0

cospxqxs´1dx “ Γpsq cos
´πs

2

¯
, 0 ă �s ă 1.

We assume the Maass forms considered are even, although the argument applies
to odd forms without change. Let the Maass forms be Hecke-normalized, that is,
ρφp1q “ 1. This means that the Fourier coefficients satisfy the Hecke relations

(2.6) ρφpmqρφpnq “
ÿ

d| GCDpm,nq

ρφ

´mn

d2

¯
,

from which it follows that there exists constant C ą 1 such that for all primes p

and n ě 1,

(2.7) |ρφppnq| ď pCp1 ` |ρφppq|qq
n
.

The sup bound

(2.8) |ρφpnq| ! n
7

64
`ε

was proven in [7] while the L2-bound

(2.9)
ÿ

nďX

|ρφpnq|2 ! X

follows from the Rankin-Selberg theory.
We follow Shintani’s convention regarding the real analytic Eisenstein series,

which puts the symmetry line for these forms at �pzq “ 0. Define

(2.10) Epz, gq “
ÿ

γPΓ{Γ8

tpgγqz`1

the real analytic Eisenstein series with complex parameter z. This satisfies a func-
tional equation

(2.11) ξpz ` 1qEpz, gq “ ξp1 ´ zqEp´z, gq; ξpzq “ π´ z
2Γ

´z

2

¯
ζpzq,

and has a Fourier development in z ‰ 0 given by

Epz, gq “ tz`1 ` t1´z ξpzq

ξpz ` 1q
(2.12)

`
4t

ξpz ` 1q

8ÿ

m“1

η z
2

pmqK z
2

p2πmt2q cosp2πmuq,

η z
2

pmq “
ÿ

ab“m

´a

b

¯ z
2

.
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MAASS FORM TWISTED SHINTANI L-FUNCTIONS 4165

Say that f P CpKzG1{Γq is of polynomial growth if f is bounded by a polynomial
in θ, u, t, similarly, is Schwarz class if it decays when multiplied by any polynomial
in θ, u, t. The Maass forms are Schwarz class, while the Eisenstein series has poly-
nomial growth. After subtracting the constant term in the Fourier expansion, the
resulting modified Eisenstein series again is Schwarz class.

Due to convergence issues resulting from the constant term it is convenient to
work with a truncated Eisenstein series. Let Ψ denote the space of entire functions
such that for all ψ P Ψ, for all ´8 ă C1 ă C2 ă 8, for all N ą 0,

(2.13) sup
C1ă�pwqăC2

`
1 ` p�wq2

˘N
|ψpwq| ă 8.

For ψ P Ψ and �pwq ą 1 define the incomplete Eisenstein series at ψ by choosing
1 ă c ă �pwq and setting

(2.14) E pψ,w; gq “

¿

�pzq“c

ψpzq
Epz, gq

w ´ z
dz.

2.2. Binary cubic forms. G acts naturally on the space

(2.15) VR “
�
ax3 ` bx2y ` cxy2 ` dy3 : pa, b, c, dq P R

4
(

of binary cubic forms via, for f P VR and g P G,

(2.16) g ¨ fpx, yq “ fppx, yq ¨ gtq.

The discriminant D, which is a homogeneous polynomial of degree four on VR, is
a relative invariant: Dpg ¨ fq “ χpgqDpfq where χpgq “ detpgq6. One identifies the
dual space of VR with R4 via alternating pairing

(2.17) xx, yy “ x4y1 ´
1

3
x3y2 `

1

3
x2y3 ´ x1y4.

Let τ be the map VR Ñ VR carrying each basis vector to its dual basis vector;
the discriminant D̂ on the dual space is normalized such that τ is discriminant-
preserving. There is an involution ι on G given by

(2.18) gι “

ˆ
0 ´1
1 0

˙
pg´1qt

ˆ
0 1

´1 0

˙
.

This satisfies, for all g P G, x P VR, y P V̂R,

(2.19) xx, yy “ xg ¨ x, gι ¨ yy.

The set of forms of zero discriminant are called the singular set, S. The non-
singular forms split into spaces V` and V´ of positive and negative discriminant.
The space V` is a single G` orbit with representative x` “ p0, 1,´1, 0q and stability
group

(2.20) Ix`
“

"
I,

ˆ
0 1

´1 ´1

˙
,

ˆ
´1 ´1
1 0

˙*
.

Set x0
` “ λ`x`, rescaled to have discriminant 1. V´ is also a single G` orbit with

representative x´ “ p0, 1, 0, 1q with trivial stabilizer. x0
´ “ λ´x´ is also rescaled

to have discriminant 1.
Set w1 “ p0, 0, 1, 0q, w2 “ p0, 0, 0, 1q. The singular set is the disjoint union

(2.21) S “ t0u \ G1 ¨ w1 \ G1 ¨ w2.
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4166 BOB HOUGH

The stability group for the action of G1 on w1 is trivial Iw1
“ t1u, while on w2 it

is Iw2
“ N.

Over Z write L and L̂ for the lattices of integral forms and their dual, and write
L0 and L̂0 for those integral forms, resp. dual forms, of discriminant zero. L0 and
L̂0 are the disjoint unions

(2.22) L0 “ t0u \ L0pIq \ L0pIIq, L̂0 “ t0u \ L0pIq \ L̂0pIIq,

with

L0pIq “
8ğ

m“1

ğ

Γ{ΓXN

γ ¨ p0, 0, 0,mq,(2.23)

L0pIIq “
8ğ

m“1

m´1ğ

n“0

ğ

γPΓ

γ ¨ p0, 0,m, nq,

L̂0pIIq “
8ğ

m“1

3m´1ğ

n“0

ğ

γPΓ

γ ¨ p0, 0, 3m,nq.

Given Schwarz function f P S pVRq one has the Fourier transforms

f̂pxq “

ż

VR

fpyqepxx, yyqdy, fpxq “
1

9

ż

VR

f̂pyqepxx, yyqdy.(2.24)

For � P Rą0 write f	pxq “ fp�xq. Say that f is left-K-invariant if, for all x P VR,

for all k P K, fpk ¨ xq “ fpxq. One easily checks that f and f̂ are simultaneously
left-K-invariant. Say that f is right-K-invariant if, for both choices of ˘, for all
g P G`, for all k P K, fpgk ¨ x˘q “ fpg ¨ x˘q. Let φ be a Maass form and let f be
right-K-invariant. Identify f	

`
g ¨ x0

˘

˘
as functions f	,˘ on G1{Ix˘

. Interpret, for

h P G1,

(2.25)

ż

G1

f	
`
g ¨ x0

sgn m

˘
φ pghq dg

as group convolution on G1, written f̌	,˘ ˚ φphq. The result obtained is left-K-
invariant. Since the Laplacian and Hecke operators commute with translation, it
follows by multiplicity 1 that f̌	,˘ ˚ φ “ λpf	,˘, φqφ is a scalar multiple times φ.

3. Dirichlet series

Let φ P CpKzG1{Γq be a Hecke-eigen Maass form and extend φ to G by pro-
jecting onto G1. Note that this means that φpgq “ φpgιq since g and gι differ
by a scalar. Let f P S pVRq. Adapting Shintani’s construction, introduce orbital
integrals

Zpf, L; s, φq “

ż

G`{Γ

χpgqsφ pgq
ÿ

xPLzL0

fpg ¨ xqdg,(3.1)

Zpf, L̂; s, φq “

ż

G`{Γ

χpgqsφ pgq
ÿ

xPL̂zL̂0

fpg ¨ xqdg.

Lemma 3.1. Let f P S pVRq be right-K-invariant. Let φ be a Maass form satisfy-

ing, for � ą 0,

(3.2) f̌	,˘ ˚ φ “ λpf	,˘, φqφ.
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For �psq sufficiently large, the orbital integrals Zpf, L; s, φq, Zpf, L̂; s, φq satisfy

Zpf, L; s, φq “L`pL, s;φq

ż 8

0

λpf	,`, φq�12s´1d�(3.3)

` L´pL, s;φq

ż 8

0

λpf	,´, φq�12s´1d�

Zpf, L̂; s, φq “L`pL̂, s;φq

ż 8

0

λpf	,`, φq�12s´1d�

` L´pL̂, s;φq

ż 8

0

λpf	,´, φq�12s´1d�.

Proof. One finds for �psq sufficiently large

Zpf, L; s, φq “

ż

G`{Γ

ÿ

m‰0

hpmqÿ

i“1

χpgqsφ pgq

|Γpi,mq|

ÿ

γPΓ

fpgγgi,m ¨ x0
sgn mqdg(3.4)

“
ÿ

m‰0

1

|m|s

hpmqÿ

i“1

�12s´1

|Γpi,mq|

ż 8

0

ż

G1

f	
`
g ¨ x0

sgn m

˘
φ

`
gg´1

i,m

˘
dgd�

“
ÿ

m‰0

1

|m|s

hpmqÿ

i“1

φ
`
g´1
i,m

˘

|Γpi,mq|

ż 8

0

λpf	,sgn m, φq�12s
d�

�

“ L`pL, s;φq

ż 8

0

λpf	,`, φq�12s
d�

�
` L´pL, s;φq

ż 8

0

λpf	,´, φq�12s
d�

�
.

The proof for the dual L -functions is the same. �

Following Shintani, introduce

Z`pf, L; s, φq “

ż

G`{Γ,χpgqě1

χpgqsφpgq
ÿ

xPLzL0

fpg ¨ xqdg,(3.5)

Z`pf, L̂; s, φq “

ż

G`{Γ,χpgqě1

χpgqsφpgq
ÿ

xPL̂zL̂0

fpg ¨ xqdg.

These functions converge absolutely and are entire.
The following proposition is the analogue of [12, Proposition 2.14].

Proposition 3.2. For �psq ą 4,

Zpf, L; s, φq “ Z`pf, L; s, φq ` Z`pf̂ , L̂; 1 ´ s, φq

´

ż
G`{Γ,
χpgqă1

χpgqsφpgq

$
&
%

ÿ

xPL0

fpg ¨ xq ´ χpgq´1
ÿ

xPL̂0

f̂pgι ¨ xq

,
.
- dg,(3.6)

Zpf, L̂; s, φq “ Z`pf, L̂; s, φq `
1

9
Z`pf̂ , L; 1 ´ s, φq

´

ż
G`{Γ,
χpgqă1

χpgqsφpgq

$
&
%

ÿ

xPL̂0

fpg ¨ xq ´
1

9
χpgq´1

ÿ

xPL0

f̂pgι ¨ xq

,
.
- dg.(3.7)
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4168 BOB HOUGH

Proof. Write

Zpf, L; s, φq(3.8)

“

ż

G`{Γ

χpgqsφpgq
ÿ

xPL

fpg ¨ xqdg ´

ż

G`{Γ

χpgqsφpgq
ÿ

xPL0

fpg ¨ xqdg.

Split the first integral at detpgq ě 1. In the integral with detpgq ă 1 perform Poisson

summation in the sum over L, using that Fgpxq “ fpg ¨xq has F̂gpyq “ 1
χpgq f̂pgι ¨yq.

The proof for L̂ is similar. �

The objective now is to give the holomorphic continuation of (3.6) and (3.7). This
closely follows the evaluation of Shintani leading up to the Corollary to Proposition
2.16 of [12].

Given f P S pVRq which is left-K-invariant, introduce distributions, for z, z1, z2 P
C and u P R,

Σ1pf, z1, z2q “

ż 8

0

ż 8

0

pfp0, 0, t, uq ` fp0, 0, t,´uqqtz1´1uz2´1dtdu,(3.9)

Σ2pf, zq “

ż 8

0

fp0, 0, 0, uquz´1du,

Σ3pf, z, uq “

ż 8

0

fp0, 0, t, uqtz´1dt.

Following Shintani, for g P G1{Γ define

JLpfqpgq “
ÿ

xPL0

fpg ¨ xq, JL̂pfqpgq “
ÿ

xPL̂0

fpg ¨ xq.(3.10)

It follows from [12, Lemma 2.10] that for f P S pVRq, for φ of at most polynomial

growth, φpgqJLpfqpgq and φpgqJL̂pf̂qpgq have at most polynomial growth, while

(3.11) φpgq
´
JLpfqpgq ´ JL̂pf̂qpgq

¯

is a Schwarz class function on G1{Γ.
The starting point is the formula (see e.g. [12, p. 174])

ψp1q

ξp2q

ż

G1{Γ

´
JLpfqpgq ´ JL̂pf̂qpgq

¯
φpgqdg(3.12)

“ lim
wÓ1

pw ´ 1q

ż

G1{Γ

´
JLpfqpgq ´ JL̂pf̂qpgq

¯
φpgqE pψ,w; gqdg.

We have the following evaluation of integrals.

Lemma 3.3. Let φ be a Maass form. Then

ż

G1{Γ

E pψ,w; gqφpgqdg “ 0.(3.13)
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MAASS FORM TWISTED SHINTANI L-FUNCTIONS 4169

Proof. Let 1 ă c ă �pwq. Opening E pψ,w; gq as a contour integral, then unfolding
the Eisenstein series, one obtains

(3.14)

ż

G1{Γ

E pψ,w; gqφpgqdg “
1

2

ż

G1{ΓXN

¨
˚̋

¿

�pzq“c

tpgq1`z

w ´ z
ψpzqdz

˛
‹‚φpgqdg.

This integral now vanishes by integrating in the parabolic direction, since the Maass
form has no constant term. �

Let ψ1, ψ2 be two holomorphic functions in the half-plane �pwq ą 4. Say these
functions are equivalent ψ1 „ ψ2 if pψ1 ´ ψ2q may be meromorphically continued
to �pwq ą 0 and is holomorphic in a neighborhood of w “ 1. Equivalent functions
are interchangeable in the integrand of (3.12).

Let φ P CpKzG1{Γq. Set

Θ
p1q
ψ pw;φq “

ż

G1{Γ

E pψ,w; gqφpgq
ÿ

xPL0pIq

fpg ¨ xqdg,(3.15)

Θ
p2q
ψ pw;φq “

ż

G1{Γ

E pψ,w; gqφpgq
ÿ

xPL0pIIq

fpg ¨ xqdg,

Θ̂
p2q
ψ pw;φq “

ż

G1{Γ

E pψ,w; gqφpgq
ÿ

xPL̂0pIIq

fpg ¨ xqdg.

Also, write φcptq for its constant term, found by integrating away the parabolic
direction.

Lemma 3.4. Let f P S pVRq be left-K-invariant. Given Maass form φ,

Θ
p1q
ψ pw;φq „ 0.(3.16)

Proof. Let �pwq ą 2. Write

Θ
p1q
ψ pw;φq “

ż

G1{Γ

8ÿ

m“1

ÿ

Γ{ΓXN

fpgγ ¨ p0, 0, 0,mqqE pψ,w; gqφpgqdg.(3.17)

Introduce the Dirichlet series

(3.18) Fφpu; zq “
ÿ

ně1

η z
2

pnqρφpnq

nu
,
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which converges absolutely in �puq ´ |�pzq|
2

ą 1. After unfolding the sum over
Γ{ΓXN and integrating in the compact and parabolic directions, this becomes (see
[12, p. 178], middle display, for the first evaluation)

Θ
p1q
ψ pw;φq “

8ÿ

m“1

ż 8

0

fp0, 0, 0, t´3mq

¨
˚̋

¿

�pzq“2

pEpz; ¨qφqc ptq

w ´ z
ψpzqdz

˛
‹‚dt

t3
(3.19)

“ 4
8ÿ

m“1

ż 8

0

fp0, 0, 0, t´3mq

ˆ

¨
˚̋

¿

�pzq“2

´ř
ně1 η z

2
pnqρφpnqK z

2
p2πnt2qKs´ 1

2

p2πnt2q
¯

ξpz ` 1qpw ´ zq
ψpzqdz

˛
‹‚dt

t

“ 4

£

�pu,zq
“p3,2q

Σ2pf, uq

ż 8

0

8ÿ

m“1

8ÿ

n“1

η z
2

pnqρφpnq

ξpz ` 1qpw ´ zq

ˆ

ˆ
t3

m

˙u

K z
2

p2πnt2qKs´ 1

2

p2πnt2qψpzq
dt

t
dzdu

“ 4

£

�pu,zq
“p3,2q

ż 8

0

Σ2pf, uqζpuqFφ

`
3u
2
; z

˘

ξpz ` 1qpw ´ zq
ψpzqt3uK z

2
p2πt2qKs´ 1

2

p2πt2q
dt

t
dzdu.

Shift the z contour to �pzq “ 0 to verify that Θ
p1q
ψ pw;φq is holomorphic in �pwq ą

0. �

Introduce

(3.20) Gφpxq “
8ÿ

	,m“1

ρφp�mq

�1`xm1`3x
.

Form Ĝφ by dilating the sum over m by 3.

Lemma 3.5. Given Maass form φ, Gφpxq is holomorphic in the half-plane �pxq ą
´1
4
.

Proof. Let Lpps, φq “
ř

ně0

ρφppnq
pns be the local factor in the L-function Lps, φq “ś

p Lpps, φq in �psq ą 1. For �pxq ą ´1
4
, write the local factor at prime p in Gφpxq

as

Gφ,ppxq “Lpp1 ` x, φqLpp1 ` 3x, φq(3.21)

ˆ

ˆ
1 `

ρφpp2q ´ ρφppq2

p2`4x
` O

ˆ
p1 ` |ρφppq|q3

p3`7x

˙˙
.

It follows that Gφpxq “ Lp1 ` x, φqLp1 ` 3x, φqHφpxq where Hφ is given by an
absolutely convergent Euler product in x ą ´1

4
. �
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The Archimedean counterpart to Gφ is

Wφpw1, w2q “
2w2´3

π
1`w1`w2

2

Γ p1 ´ w2q cos
´π

2
p1 ´ w2q

¯
(3.22)

ˆ Γ

ˆ
´1 ` w1 ` 3w2 ` 2itφ

4

˙
Γ

ˆ
´1 ` w1 ` 3w2 ´ 2itφ

4

˙

which is holomorphic in tw1, w2 : �pw1 ` 3w2q ą 1,�pw2q ă 1u.

Lemma 3.6. Let f P S pVRq be left-K-invariant. Given Maass form φ,

Θ
p2q
ψ pw;φq „

ψp1q

ξp2qpw ´ 1q

£

�pw1,w2q“p1, 1
2

q

Σ1pf, w1, w2q(3.23)

ˆ Wφpw1, w2qGφ

ˆ
w1 ` w2 ´ 1

2

˙
dw1dw2.

To obtain the corresponding terms for Θ̂
p2q
ψ pw; ¨q replace G with Ĝ.

Proof. Calculate (see [12, p. 179], next to last display)

Θ
p2q
ψ pw;φq

(3.24)

“

ż

G1{Γ

E pψ,w; gqφpgq
8ÿ

m“1

8ÿ

n“´8

ÿ

γPΓ{ΓXN

fpgγ ¨ p0, 0,m, nqqdg

“

ż 8

0

ż 1

0

8ÿ

m“1

8ÿ

n“´8

fpat ¨ p0, 0,m, n ` muqq

¿

�pzq“5

Epz, gqφpgq

w ´ z
ψpzqdzdu

dt

t3
.

In the Eisenstein series, separate the constant term, writing Ẽpz, gq “ Epz, gq ´

Epz, gqc. The contribution of the non-constant part of Ẽpz, gqφpgq is holomorphic
in �pwq ą 0 by tracing [12, p. 180], top.

The contribution of pẼpz, gqφpgqqc is given by

4

ξpz ` 1q

ż 8

0

ż 8

´8

¿

�pzq“5

8ÿ

m“1

fp0, 0, t´1m,uq
ψpzq

w ´ z
(3.25)

ˆ

˜
8ÿ

n“1

ρφpnqη z
2

pnqK z
2

p2πnt2qKs´ 1

2

p2πnt2q

¸
dzdut2dt

“
2

ξpz ` 1q

ż 8

0

ż 8

´8

£

�pz,z1q
“p5,5q

Σ3pf, z1, uq
ζpz1qFφp 3`z1

2
; zq

p2πq
3`z1

2

ψpzq

w ´ z

ˆ K z
2

ptqKs´ 1

2

ptqt
3`z1

2 dz1dzdu
dt

t
.

Shift the z contour to �pzq “ 0 to verify that this is holomorphic in �pwq ą 0.
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From the constant term of Epz, gq, only the term ξpzq
ξpz`1q t

1´z contributes, and

from this term one picks up a pole at z “ 1. Following Shintani, this yields

Θ
p2q
ψ pw;φq „

2ψp1q

ξp2qpw ´ 1q

ż 8

0

ż 8

´8

8ÿ

	,m“1

ρφp�mq(3.26)

ˆ Ks´ 1

2

p2π�mt2qfp0, 0, t´1m,uq cosp2π�t3uqdutdt.

Split the integral over u by writing fp0, 0, ˚, uq “ f`p0, 0, ˚, uq for u ą 0 and
fp0, 0, ˚, uq “ f´p0, 0, ˚,´uq for u ă 0. Now open f by taking Mellin transforms in
both variables,

Θ
p2q
ψ pw;φq „

2ψp1q

ξp2qpw ´ 1q

ż 8

0

ż 8

0

£

�pw1,w2q
“p1, 1

2
q

Σ1pf, w1, w2q
8ÿ

	,m“1

ρφp�mq

mw1

(3.27)

ˆ Ks´ 1

2

p2π�mt2q cosp2π�t3uqu´w2t1`w1dw1dw2dudt.

Replace u :“ 2π�t3u, then t :“ 2π�mt2 to obtain

Θ
p2q
ψ pw;φq „

ψp1q

ξp2qpw ´ 1q

£

�pw1,w2q
“p1, 1

2
q

Σ1pf, w1, w2q
Gφ

`
w1`w2´1

2

˘

p2πq
1`w1`w2

2

(3.28)

ˆ

ż 8

0

ż 8

0

Ks´ 1

2

ptq cospuq
du

uw2

dt

t
3´w1´3w2

2

dw1dw2

„
ψp1q

ξp2qpw ´ 1q

ˆ

£

�pw1,w2q
“p1, 1

2
q

Σ1pf, w1, w2qWφpw1, w2qGφ

ˆ
w1 ` w2 ´ 1

2

˙
dw1dw2.

�

Putting together the above lemmas we conclude
ż

G1{Γ

´
JLpfq ´ JL̂pf̂q

¯
φpgqdg(3.29)

“

£

�pw1,w2q
“p1, 1

2
q

Σ1pf, w1, w2qWφpw1, w2qGφ

ˆ
w1 ` w2 ´ 1

2

˙
dw1dw2

´ terms replacing f,G with f̂ , Ĝ.

We now holomorphically extend the orbital integrals. Note that

Σ1pft, w1, w2q “ t´w1´w2Σ1pf, w1, w2q.(3.30)

Proof of Theorem 1.1. Choose f which is bi-K-invariant, and arrange f such that
the integrals

ş8

0
λpf	,˘, φq�12s d	

	
are entire. Since Z` is entire, it suffices to consider
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the integral

´

ż

G`{Γ,χpgqď1

χpgqsφpgq

$
&
%

ÿ

xPL0

fpg ¨ xq ´ χ´1pgq
ÿ

xPL̂0

f̂pgιxq

,
.
- dg(3.31)

“ ´

ż 1

0

t12s
ż

G1{Γ

φpg1q

$
&
%

ÿ

xPL0

ft3pg1 ¨ xq ´
ÿ

xPL̂0

xft3pg1 ¨ xq

,
.
- dg1

dt

t
.

The contribution from f may be expressed

´

ż 1

0

£

�pw1,w2q“p1, 1
2

q

t12s´3w1´3w2Σ1pf, w1, w2q(3.32)

ˆ Wφpw1, w2qGφ

ˆ
w1 ` w2 ´ 1

2

˙
dw1dw2

dt

t
.

Shift the w1 contour left to �pw1q “ ε. This expression is holomorphic in �psq ą
1
8

` ε. The contribution from f̂ may be expressed (see [12, p. 182])
ż 1

0

£

�pw1,w2q“p1, 1
2

q

t12s´12`3w1`3w2Σ1pf̂ , w1, w2q(3.33)

ˆ Wφpw1, w2qĜφ

ˆ
w1 ` w2 ´ 1

2

˙
dw1dw2

dt

t
.

In this integral, integration with respect to w1 may be pushed right as far as we
like, so that the integral itself is holomorphic. �
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