PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 145, Number 10, October 2017, Pages 4161-4174
http://dx.doi.org/10.1090/proc/13563

Article electronically published on April 6, 2017

MAASS FORM TWISTED SHINTANI £-FUNCTIONS
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ABSTRACT. The Maass form twisted Shintani £-functions are introduced, and
some of their analytic properties are studied. These functions contain data
regarding the distribution of shapes of cubic rings.

1. INTRODUCTION

The space of binary cubic forms over a commutative ring Z

(1.1) Vo = {f(x,y) = ax® 4+ bay + cxy® + dy?  a,b, ¢, d € %}
has a rich algebraic structure. GLo(Z) acts by changing coordinates:
(1.2) g9 f(@,y) = f((=,9)9").

Over C, this makes V¢ an example of a prehomogeneous vector space. Over R, Vg
splits into a pair of open GLa(R) orbits, having positive and negative discriminant,
and a singular set having discriminant zero. The non-singular forms have finite
stabilizer, so that these are naturally identified with finite quotients of GL2(R).
Over Z, one considers in addition to the lattice L = V7, the dual lattice

(1.3) L={feL:3bc}.

For a fixed non-zero m € Z those integral forms from L and L of discriminant
m each split into finitely many orbits, the number of which is the class number,
denoted h(m) and h(m), respectively. The space of integral binary cubic forms
taken modulo GLj(Z)-equivalence has extra significance, as it is in discriminant-
preserving bijection with cubic rings taken up to isomorphism [3], [4], [2].

Shintani [12] introduced zeta functions enumerating the class numbers h(m),
h(m). These Dirichlet series, initially defined only in the half-plane {s € C : R(s) >
1}, have meromorphic continuation to all of C and satisfy a functional equation
relating s to 1 — s. Shintani determined the poles and residues, and hence obtained
strong results on the average behavior of h(m).
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4162 BOB HOUGH

Having fixed a base point, a class of integral forms f of non-zero discriminant
is identified with a point in GL2(Z)\ GL2(R), and it is natural to ask for the dis-
tribution of these points on average. We call the point gy € GL2(Z)\ GL2(R) the
‘shape’ of the form f, a name which becomes more natural in the case that f is
associated to an order of a cubic field, in which case g¢ describes the shape of the
corresponding lattice in its natural embedding. The distribution of these shapes was
studied by Terr [14], who proved the asymptotic uniform distribution of the shape
of cubic orders and fields when ordered by discriminant; see also [5]. In related
work, the author proved the quantitative equidistribution of 3-torsion ideal classes
in imaginary quadratic fields [6] and the corresponding equidistribution statements
for quartic and quintic fields have been demonstrated by Bhargava and Harron [1].

The purpose of this note is to give a strong estimate for the equidistribution of
binary cubic forms with respect to the cuspidal spectrum of SLy(R)/SLy(Z), by
modifying the method of Shintani. Let ¢ be a non-constant automorphic cusp form
on

(1.4) 2" = S04(R)\ SL(R)/ SLa (2),
which is an eigenfunction of the Hecke algebra, and extend ¢ to GLg(R) by pro-
jecting by a diagonal matrix. Fix base forms x‘i of discriminant +1, and for each

. h(m) (~ h(m) h(m)
m # 0 choose representatives {gim},_; »{Gi,m};~; such that {gi,m : azggn(m)}_ ,

h(m)
{Qi,m -xggn(m)} are representatives for the classes of integral forms of dis-
i=1

criminant m. Denote I'(i,m), f(i,m) the stability groups of g; , - xggn(m), resp.
P 0
Giom * T

sen(m) 0 I = SLo(Z). Introduce ‘¢-twisted Shintani £Z-functions’ defined
for R(s) > 4 by absolutely convergent Dirichlet series

1 h(m) (b(gz 72)

1.5 ZLi(L,s;¢) = —
(15) =59 = D) ok 2 T m)
m)
)

h(m)
Zi(Losid)= Y on 5 ¢E”

+m=>=1 | r 1, m ‘

It is shown that these series may be factored from an orbital integral as in [12]. The
trick which permits introducing ¢ is due to Selberg [11], exploiting the mean-value
property of harmonic functions.

The twisted Z-functions appear less natural than the case ¢ = 1 of [12]. For
instance, we are not aware that a functional equation is satisfied, and suspect that
none exists. We are, however, able to demonstrate the holomorphic continuation
past the region of absolute convergence, which is sufficient to prove equidistribution
statements.

Theorem 1.1. Let ¢ be a Maass Hecke-eigen cusp form on Z . The ¢-twisted
Shintani £ -functions extend to holomorphic functions in the half-plane R(s) > %

Remark 1.2. Theorem 1.1 exhibits substantial orthogonality of the shapes of binary
cubic forms to the Maass spectrum. In particular, for ¢p € CP(R™), the proof of
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MAASS FORM TWISTED SHINTANI £-FUNCTIONS 4163

Theorem 1.1 permits the estimate

h(m)
Im| (gz m) 1
(1.6) Z 1/)( Z T Koy X
e = TG m)|
with the same estimate for dual forms. By comparison, the number of forms counted
is order X. The best estimate in (1.6) obtainable from [14] is of order X %, while
[1] proves the qualitative statement o(X).

Remark 1.3. Recall that a cusp form ¢ of SO2(R)\SL2(R)/SL2(Z) satisfies an
exponential decay condition in the cusp. Our argument applies with appropriate
modifications also to the Eisenstein spectrum, and to automorphic forms that trans-
form on the left by a fixed character of SO2(R). See [8] for a general description
of automorphic forms on SLy(R)/SL3(Z). We omit the details here, but intend to
give detailed equidistribution statements in a future paper treating cubic fields.

Related work. We discovered the twisted .Z-functions during work on the AIM
Square on alternative proofs of the Davenport-Heilbronn theorems. See work of
Sato [9], [10] for some related objects.

2. BACKGROUND

Set G = GL3(R), G' = SLy(R), G = {g € G : detg > 0}, I' = SLy(Z),

J’_
I'n=In <_*1 —81) and standard subgroups'

(2.1) K = {kg = (Csfg) ‘ZEZD fe R/Z},

aefom (i 9) eemal
t

Haar measure is normalized on G* by setting, for f € L'(G'),

dt
(2.2) . flg)dg = JR/Z JR+ JR f(kgatnu)dﬂt—sdu
and, for f e L'(G),

2.) twan=[ [ 1 ((5 )e) -

2.1. Automorphic forms. For consistency with Shintani we work on L?(K\G' I,
with the lattice quotient on the right. This differs from many modern authors. See
[15] for a summary of the results discussed here, and note the normalization y = ¢2.

A convenient basis for L?(K\G*/T") consists in joint eigenfunctions of the Lapla-
cian and the Hecke operators. These automorphic forms split into discrete and
continuous spectrum. The discrete spectrum has an L? basis of Hecke-eigen Maass
forms while the continuous spectrum is spanned by the real analytic Eisenstein
series.

Le(6) = cos(270), s(0) = sin(276).
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4164 BOB HOUGH
Let ¢(g) be a Hecke-eigen Maass form with Laplace eigenvalue A = s(1 — s),

s = % +ity. The Maass forms split into even and odd forms. An even Maass form
2 @
¢ has a Fourier development in the parabolic direction

(2.4) o(g) =2t Z pe(n) K1 (2mnt?) cos(2mnu)

whereas an odd form replaces cos(-) with sin(-) in the Fourier expansion. We use
the Mellin transforms

o0 i

(2.5) J K, (2)2* e = 22T (S i ”) r (‘9 ”) . Rs> R,
0
0

2 2
J cos(z)x* tdx = T'(s) cos (W—S) , 0<Rs < 1.
O 2

We assume the Maass forms considered are even, although the argument applies
to odd forms without change. Let the Maass forms be Hecke-normalized, that is,
ps(1) = 1. This means that the Fourier coefficients satisfy the Hecke relations

(2.6) pomips) = Y, pa (S

d| GCD(m,n)
from which it follows that there exists constant C' > 1 such that for all primes p
and n > 1,
(2.7) lps(P™) < (C(1 + |ps(P)])"
The sup bound
(2.8) |po(n)| « nite
was proven in [7] while the L2-bound
(2.9) S los(n)? « X

n<X

follows from the Rankin-Selberg theory.
We follow Shintani’s convention regarding the real analytic Eisenstein series,
which puts the symmetry line for these forms at R(z) = 0. Define

(2.10) E(zg)= Y, tlgn)™"!
~el' /T

the real analytic Eisenstein series with complex parameter z. This satisfies a func-
tional equation

(211) €+ DE(g) = €1 - 2)B(=z,0); €)= 1T (5) (),

and has a Fourier development in z # 0 given by

_ 42 _zﬂ
" % Z 15 (m) Kz (2rmt?) cos(2mmu),
o= £ )"
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MAASS FORM TWISTED SHINTANI £-FUNCTIONS 4165

Say that f € C(K\G*/T") is of polynomial growth if f is bounded by a polynomial
in 6,u,t, similarly, is Schwarz class if it decays when multiplied by any polynomial
in 0, u,t. The Maass forms are Schwarz class, while the Eisenstein series has poly-
nomial growth. After subtracting the constant term in the Fourier expansion, the
resulting modified Eisenstein series again is Schwarz class.

Due to convergence issues resulting from the constant term it is convenient to
work with a truncated Eisenstein series. Let ¥ denote the space of entire functions
such that for all ¥ € ¥, for all —o0 < C; < Cy < o0, for all N > 0,

(2.13) sup (1+ (%w)Q)N |th(w)] < o0.
C1<R(w)<Co

For ¢y € ¥ and R(w) > 1 define the incomplete Eisenstein series at ¢ by choosing
1 < ¢ < R(w) and setting

(2.14) &Y, w; g) jg Y(z )

2.2. Binary cubic forms. G acts naturally on the space
(2.15) W= {a:l:?’ + b2y + cxy® + dy® : (a,b,c,d) € R*}
of binary cubic forms via, for f € Vg and g € G,

(2.16) g9 fla,y) = f((z.y) - g")
The discriminant D, which is a homogeneous polynomial of degree four on Vg, is

a relative invariant: D(g - f) = x(g9)D(f) where x(g) = det(g)®. One identifies the
dual space of Vg with R?* via alternating pairing

1 1
(2.17) (@,y) = zath — giﬂsyz + §$2y3 — T1Y4.
Let 7 be the map Vg — Vg carrying each basis vector to its dual basis vector;

the discriminant D on the dual space is normalized such that 7 is discriminant-
preserving. There is an involution ¢ on G given by

219 = (3 D) (Y o)

This satisfies, for all ge G, x € Vg, y € VR,
(2.19) CRNERCEEN RN

The set of forms of zero discriminant are called the singular set, S. The non-
singular forms split into spaces V. and V_ of positive and negative discriminant.
The space V. is a single G orbit with representative z, = (0,1, —1,0) and stability
group

(2.20) I, = {I, <_01 _11> , <_11 _01>}.

Set xg = A;24, rescaled to have discriminant 1. V_ is also a single G* orbit with
representative x_ = (0,1,0,1) with trivial stabilizer. 2% = A_z_ is also rescaled
to have discriminant 1.

Set wy = (0,0,1,0),we = (0,0,0,1). The singular set is the disjoint union

(2.21) S={0} UG w; LG - w,.
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4166 BOB HOUGH

The stability group for the action of G* on wy is trivial I, = {1}, while on ws it
is I, = N.

Over Z write L and L for the lattices of integral forms and their dual, and write
Lo and Ly for those integral forms, resp. dual forms, of discriminant zero. Ly and
Ly are the disjoint unions

(2.22) Lo = {0} u Lo(I) u Lo(IT), Lo = {0} u Lo(I) u Lo(IT),
with
o8]
m=1T7/TAN
o0 m—1
Lo(I11) = |_| 7+ (0,0,m,n),
m=1 n=0 el
. o 3m—1
Lotun = || || | ]~ (0.0,3m,n).
m=1 n=0 ~el

Given Schwarz function f € .#(VR) one has the Fourier transforms

(2.24) f@) = fweley)dy,  flz)= % FWe(Ca,v))dy.
Ve Ve

For ¢ € R. write fo(z) = f(fx). Say that f is left-K-invariant if, for all z € Vg,
for all k € K, f(k-z) = f(z). One easily checks that f and f are simultaneously
left- K-invariant. Say that f is right-K-invariant if, for both choices of +, for all
geGT forall ke K, f(gk-z4) = f(g-7+). Let ¢ be a Maass form and let f be
right- K-invariant. Identify f, (g . x%) as functions f; + on Gl/Ixi. Interpret, for
heG',

(2.25) Ll fo (9 200 m) @ (gh) dg

as group convolution on G', written fg,i # ¢(h). The result obtained is left-K-
invariant. Since the Laplacian and Hecke operators commute with translation, it
follows by multiplicity 1 that f; + * ¢ = A(fe,4,¢)¢ is a scalar multiple times ¢.

3. DIRICHLET SERIES

Let ¢ € C(K\G'/T') be a Hecke-eigen Maass form and extend ¢ to G by pro-
jecting onto G. Note that this means that ¢(g) = ¢(g*) since g and g¢* differ
by a scalar. Let f € .(Vk). Adapting Shintani’s construction, introduce orbital

integrals
(3.1) Z(f,Lys, ¢) = (9)°¢ (9) f(g - z)dy,
s JG+/FX g g weg\:Lo g-x)ag
Z(f,L;s,¢) = J x(9)°6(9) Y, flg-x)dg.
G+ /T wel\Lo

Lemma 3.1. Let f € (VR) be right-K -invariant. Let ¢ be a Maass form satisfy-
ing, for £ >0,
(32) fox x ¢ = Afo,4:90)0.
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MAASS FORM TWISTED SHINTANI £-FUNCTIONS 4167

For R(s) sufficiently large, the orbital integrals Z(f, L; s, ¢), Z(f, L; s, ¢) satisfy
(3.3 20115, 0) =2e(Lasid) [ A )ae
+ Z (L, s;9) LOO Mfeo—, p)0r*~ de
Z(f, L;s,¢) =24 (L, 5:9) fo " Mo 0)621a
+ 2 (L5 9) L Moo,

Proof. One finds for R(s) sufficiently large

h(m)

& Z f 9Y9im x(s)gn m)dg

(34)  Z(f, L;s, ¢) = L T(i,m)

+/T m#0 i=1

m) 1251
) Z | J ng Sgn m) ¢ (99;,1,) dgdl

m#O \I’ i, m
gz m J 125 40 dﬁ

= fZ sgn m» (b)é

éo » TG

125 12s dl
- L) [ Mo o)™ L 2 (Losio) [ Moo= Y
0 0
The proof for the dual Z-functions is the same. O

Following Shintani, introduce

(35) Z+(f,L;Su¢>:f Xg Z fg xdgv
G4 /Tx(g)=1 xeL\Lo

R N (OO W
G4+ /T,x(g)=1 zel\Lo

These functions converge absolutely and are entire.
The following proposition is the analogue of [12, Proposition 2.14].

Proposition 3.2. For R(s) > 4

Z(f,Lis,¢) = ZH(f, Ly s, ) + ZT(f, L;1 — 5, 0)

(3.6) - JGMF, x(g)%(g){ D) flg-a)—x9)t Y, flg 'x)} dg,
x€Lg

x(g)<1 zeLo

206 Li5,0) = Z° (. Lis, o) + %Z+(f,L; 15,9

e {ngx Y e x}

x(g)<1 zeLo xz€Lg

Licensed to Stony Brook Univ. Prepared on Sun Jul 1 10:40:46 EDT 2018 for download from IP 129.49.88.95.
License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



4168 BOB HOUGH
Proof. Write
(3.8) Z(f,L;s, o)
R RO W O O W

el G4 /T x€Lg

Split the first integral at det(g) = 1. In the integral with det(g) < 1 perform Poisson
summation in the sum over L, using that Fy(x) = f(g-z) has F,(y) = ﬁf(g‘ “y).

The proof for L is similar. O

The objective now is to give the holomorphic continuation of (3.6) and (3.7). This
closely follows the evaluation of Shintani leading up to the Corollary to Proposition
2.16 of [12].

Given f € (V) which is left- K-invariant, introduce distributions, for z, z1, 25 €
C and u € R,

(39)  Si(fe1,z) = f f (F(0,0, ) + £(0,0, £, —u))t5~ ™ dtd,
0 0
%a(h,7) = | * (0,0,0,upudu,
0
Ys5(f,z,u) = JOO f(0,0,t,u)thldt.
0

Following Shintani, for g € G1/T" define

(3.10) JL(Hg) =D flg-x), T =D flg-=).

x€Lg reﬁo

It follows from [12, Lemma 2.10] that for f € . (Vg), for ¢ of at most polynomial

growth, ¢(9)Jr(f)(g) and ¢(g)J; (f)(g) have at most polynomial growth, while

(3.11) o(9) (1(N)(9) - T (F)(9))

is a Schwarz class function on G!/T.
The starting point is the formula (see e.g. [12, p. 174])

¥(1) ;
012 g ] (00 - n(e) e
=tmo =) [ (006) ~ T4 60)6 5wz .

We have the following evaluation of integrals.

Lemma 3.3. Let ¢ be a Maass form. Then

(3.13) LVF 8, w; 9)d(g)dg = 0.
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MAASS FORM TWISTED SHINTANI £-FUNCTIONS 4169

Proof. Let 1 < ¢ < R(w). Opening & (1, w; g) as a contour integral, then unfolding
the Eisenstein series, one obtains

. _l t(g)lJrz N
a1y [ swwaetds =5 | ST | s

z)=c

This integral now vanishes by integrating in the parabolic direction, since the Maass
form has no constant term. (]

Let 11,12 be two holomorphic functions in the half-plane $(w) > 4. Say these
functions are equivalent 1)1 ~ 1y if (1)1 — 12) may be meromorphically continued
to R(w) > 0 and is holomorphic in a neighborhood of w = 1. Equivalent functions
are interchangeable in the integrand of (3.12).

Let ¢ € C(K\GY/T). Set

(3.15) O (w; ¢) = &, w; 9)é(g) f(g - z)dg,
0% (w; ¢) = &1, w; 9)p(g) (g - x)dg,
v JGI/F xeLZO;‘H)
6P (w; ¢) = &, w3 9)b(g) flg-x)dg.
v JGI/F xe%[[)

Also, write ¢.(t) for its constant term, found by integrating away the parabolic
direction.

Lemma 3.4. Let f € ./ (WR) be left-K -invariant. Given Maass form ¢,
@, .
(3.16) 0 (w; ¢) ~ 0.

Proof. Let R(w) > 2. Write

(317) 0D (w;¢) = L ST Flgr (0,0,0,m)E(w, w; 0)é(g)dg.

1/F m=1 F/l_‘mN

Introduce the Dirichlet series

(3.18) Fylusz) = ) 200

Licensed to Stony Brook Univ. Prepared on Sun Jul 1 10:40:46 EDT 2018 for download from IP 129.49.88.95.
License or copyright restrictions may apply to redistribution; see http:/www.ams.org/journal-terms-of-use



4170 BOB HOUGH

which converges absolutely in R(u) — ‘WQ—Z)' > 1. After unfolding the sum over
I'/T n N and integrating in the compact and parabolic directions, this becomes (see
[12, p. 178], middle display, for the first evaluation)

(3.19) O (w;9) = . Jooof((),o,(),t_?’m) fﬁ Mw(z)dz dt

m=1 w—z t3
- R(z)=2

:42] £(0,0,0,t=3m)

m=1 0

(St mz (Mpo(n) K ; 2mnt) K,y (27nt?)) e
€z + D)(w—2) w(2)dz [ =

X

X (—)uK%(Qﬂ'ntQ)K 1(27rnt2)1/)(z)%dzdu

m 57z

LA B R (B
_4ﬁ)L €tz VT ETOR G

—(3:2)

Shift the z contour to R(z) = 0 to verify that @g)(w; ¢) is holomorphic in R(w) >
0. ]

Introduce

o Psltm)
f,m=1

Form C% by dilating the sum over m by 3.

Lemma 3.5. Given Maass form ¢, Gg(x) is holomorphic in the half-plane R(x) >
—1
T.

Proof. Let L,(s,¢) = >, 2s(P") he the local factor in the L-function L(s,¢) =

n=0 pns

[1, Lp(s,¢) in R(s) > 1. For R(z) > — 1, write the local factor at prime p in G4(z)
as

(3.21) Gyplx) =Lp(1+z,0)Ly(1 + 3z, 9)
2\ 2 1 3
" (1 N p¢(1’}32+4€¢(1?) Lo (( +pLP+¢7§D)|) ))

It follows that Gg(x) = L(1 + z,¢)L(1 + 3x,$)Hy(x) where Hy is given by an
absolutely convergent Euler product in z > —i. (Il
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MAASS FORM TWISTED SHINTANI £-FUNCTIONS 4171

The Archimedean counterpart to G is

2w2—3 T
(3:22)  Wo(wi,ws) = gy T (1= w2) cos (F(1—wy))
T 2
“T <—1 + wq +43w2 + 2it¢) r (—1 + wq +43U)2 — 2it¢>

which is holomorphic in {wy,ws : R(wy + 3ws) > 1, R(wsz) < 1}.

Lemma 3.6. Let f € .7 (WR) be left-K -invariant. Given Maass form ¢,

(3.23) 95;) (w; ) Nf@;f(Tl)—l) # i(f, w1, we)

m(wlﬂu&):(l#%)

) Wy (10, 12) G (w

1
B) > dwlde.

To obtain the corresponding terms for éff) (w; ) replace G with G.
Proof. Calculate (see [12, p. 179], next to last display)
(3.24)

0 (w; )
- Ll/r €W, wi9)8(g) 3,

o prl ®© 0 .
:J f DD flar-(0,0,m,n + mu)) jﬁ mw(z)m%

0 m=1n=—0 R(2)=5

In the Eisenstein series, separate the constant term, writing E(z,g) = E(z,g) —
E(z,g).. The contribution of the non-constant part of E(z, g)®(g) is holomorphic
in R(w) > 0 by tracing [12, p. 180], top.

The contribution of (E(z,)¢(g))e is given by

(3.25) 3 £(0,0, 41, u) L)
e w—z
(Z pe(n)nz(n (27rnt2)Ks ;(27711152)) dzdut?dt
B () Fs (355 2) 9(2)
B z+1 J J %(ﬁ)zgf,zu 2mn)E  w-—=z
=(5 5)

x K5 (1), 1 (t)t"

Shift the z contour to R(z) = 0 to verify that this is holomorphic in R(w) > 0.
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4172 BOB HOUGH

From the constant term of E(z,g), only the term E(i(j)l)tl # contributes, and

from this term one picks up a pole at z = 1. Following Shintani, this yields

320 o)~ i [N putem)

D fm=1
X KS_%(27r€mt )£(0,0,t m, u) cos(2mlt3u)dutdt.
Split the integral over w by writing f(0,0,*,u) = f+(0,0,#,u) for « > 0 and

£(0,0,%,u) = f_(0,0,*, —u) for u < 0. Now open f by taking Mellin transforms in
both variables,

(321 0 (wso) ~ 5 21/) _1JJ # Z1(f, wn,ws) i me

§R wl,wg)

x K, 1 (2mlmt? )cos(27r£t3u)u7“’2t1+“’1dwldwgdudt.

Replace u := 2lt3u, then t := 2wfmt? to obtain

1) (w1+w2—1)
3.28 o® w; NL ﬁ Y1 (f, wy,w 2
( ) P ( ¢) 5(2)(11) — 1) 1(f 1 2) (271') 1+w§+w2
R(wy,w2)
=(1,%
© [ du dt
X f f sté(tj COS(U)Wwdwldwg
£@2)(w—1)
wy +wy —1
X # El(f, wl,wg)W¢(w1,w2)G¢ <%) dwldwg.
R(wy,w2)
:(1>%)
U
Putting together the above lemmas we conclude
B20) [ (9l - ) elo)ds
Gir
w1 +we — 1
= # (S, w1>w2)W¢(wluw2)G¢ <72 ) dwidws
R(wy,ws2)
:(17%

— terms replacing f, G with f,G.
We now holomorphically extend the orbital integrals. Note that

(3.30) E1(fe, wi,wa) =t T8 (f, wi, w2).
Proof of Theorem 1.1. Choose f which is bi-K-invariant, and arrange f such that

the integrals So (fe,+, (;5)6125% are entire. Since Z7 is entire, it suffices to consider
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the integral

(3.31) X(9)°6(9) 3 Y, flg-x)—x""9) ), flg'x) pdg

IGL[) Ieizo

- JG*/Fyx(g)Sl

_—rt”sf 6(91) X, folgr-z)— Y Fulor o) ag 2.
0 GT ¢

IGLO IG[A/O

The contribution from f may be expressed

1
(3.32) - f ﬁ 12 mdve sy, (f wy, wa)
o

wi,w2)=(1,3)

w; +wy — 1 dt
X W¢(U)1,U)2)G¢ <#>

9 dwldwg ?

Shift the w; contour left to R (w1) = e. This expression is holomorphic in R(s) >

1 + €. The contribution from f may be expressed (see [12, p. 182])

1
(333) J # t125712+3w1 +3wso 21(f7 wi, w2)
0
R(wr,w2)=(1,3

s w1+ we —1 dt
X W¢(w1,w2)G¢, (%) dwldwg?.
In this integral, integration with respect to w; may be pushed right as far as we
like, so that the integral itself is holomorphic. O
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