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Mixing and cut-off in cycle walks*
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Abstract

Given a sequence (X;, #;);2; of Markov chains, the cut-off phenomenon describes
a period of transition to stationarity which is asymptotically lower order than the
mixing time. We study mixing times and the cut-off phenomenon in the total variation
metric in the case of random walk on the groups Z/pZ, p prime, with driving measure
uniform on a symmetric generating set A C Z/pZ.
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1 Introduction

The mixing analysis of random walk on a finite abelian group is a classical problem of
probability theory, with widespread applications; the Ehrnfest urn and sandpile models
of statistical mechanics are motivating examples [8, 17, 26]. Among the early results
in this area is a theorem of Greenhalgh [15], which shows that for generating set of
size k contained in Z/nZ, the mixing time of the corresponding random walk satisfies
FIX > n®=1. A set of size k with mixing time bounded by <, nFoT log n is also exhibited.
Dou, Hildebrand and Wilson [13], [16], [28] consider the mixing of measures driven by
typical generating sets on cyclic and more general groups. Among the results of [16] is
that typical generating sets of size k = (logn)?, a > 1 produce a random walk satisfying
the cut-off phenomenon. We confine our attention to cyclic groups and symmetric
generating sets which are smaller than logarithmic size in the order of the group, and
prove a number of refined results on the mixing behavior. Our results are in a similar
spirit to those of Diaconis and Saloff-Coste [5] proven in the more general context of
random walk on groups of polynomial growth, but in narrowing our focus we emphasize
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Cycle walks

strong uniformity in the number of generators of the random walk. Note that in the
context of random walk on nilpotent groups, the mixing of the walk projected to the
abelianization often controls the mixing in the group as a whole, see [14], [9].

To briefly summarize the results, Theorem 1.1 gives spectral upper and lower bounds
for the mixing time in a sharper form than previous results which have appeared in the
literature. A natural conjecture regarding random walk on a connected graph is that
the total variation mixing time is bounded by the maximum degree times the diameter
squared. A highlight of our work is Theorem 1.4, which verifies the conjecture for
the mixing time of random walk on the Cayley graph of Z/pZ with a small symmetric
generating set. Theorem 1.6 gives a lower bound for the period of transition to uni-
formity relative to the mixing time - a lower bound on the cut-off window. Theorem
1.7 determines the generic and worst case mixing behavior for a sequence of typical
symmetric random walks. We conclude by analyzing the mixing time of a walk which
may be considered an approximate embedding of the hypercube (Z/27)¢ into the cycle,
demonstrating a cut-off phenomenon.

1.1 Precise statement of results

Let & be the set of primes. Given p € & let A C Z/pZ be symmetric (x € A if and
only if —z € A), lazy (0 € A) and generating (|A| > 1). Write <7 (p) be the collection of
symmetric, lazy, generating subsets of Z/pZ, and for k € Z~, write </ (p, k) C &/ (p) be
those sets of size 2k 4+ 1. Given A € &/ (p) let 4 denote the uniform measure on A,

1
= — Op-
HA |A| Z

z€A

The distribution at step n > 1 of random walk driven by 14 is given by the convolution
power
i =pa @ =Y wpa, n> 1L

As n — oo, p" converges to the uniform measure Uz,,7 on Z/pZ and we consider
asymptotic behavior of this convergence for large p. In particular, the behavior of these
walks as k = k(p) varies as a function of p, and as A varies in the set 7 (p, k) is studied.

Given measure space (X, %), a norm || - || on the space .#(X) of probability measures
on X, a Markov chain P"(-) with stationary measure v € .#(X), and 0 < € < 1, define the
e-mixing time

™% (¢) = inf {n :osup [P (p) —v|| < e}
WEM(X)

and the standard mixing time ¢™* = ¢™* (1) In the cases considered X is a (finite,

compact, locally compact) abelian group, and, due to the symmetry of the walk, it is

sufficient to take for p the point mass at 0. Of primary interest is the total variation

norm, which for u,v € .#(X) is given by

[ = vlTv) = sup [u(S) — v(S)].
se#

The mixing time with respect to this norm is indicated #}**. Two further important
parameters in considering reversible Markov chains are the spectral gap of the transition
kernel

gap =1 —sup {|A| : A € spec(P) \ {£1}}

and the relaxation time ) .

~
~

trel _ .
—log(1 —gap)  gap
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Cycle walks

In stating our results we let 7y denote the ratio ttl—lx of the one dimensional Gaussian
diffusion

O(z,t) =) exp(—2n°tj?)e*™" (1.1)
JEZ

on (R/Z,dx); 2wt = 15 solves the equation

! 2
/ |0(x,t) — 1|dt = —
0 e

and has numerical value!
7o = 0.56161265(1). (1.2)

In the context of random walk on Z/pZ with small symmetric generating sets, the
relaxation and total variation mixing times are related as follows.?

Theorem 1.1. Let p be prime, let 1 < k < log’i{;p and let A € </ (p, k). Denote t*°!, t}x

the relaxation time and total variation mixing time of ua on Z/pZ. We have

%Oepg <p ot <, £ <) 0,163k,
/I
Also, uniformly in k,

2k+1 pF <, .

1677 (& 4+ 1)

Remark 1.2. The relationship ttT—]x > 19 exhibits Gaussian diffusion on R/Z as asymptot-
ically extremal for the ratio between the mixing and relaxation times.

Remark 1.3. The lower bound gives an explicit dependence on k in Greenhalgh’s
theorem. An upper bound of this type may be extracted from [5], Theorem 1.2, but the &
dependence there is, in worst case, exponential.

Theorem 1.1 relates the mixing time to spectral data, but in some cases it is more
desirable to understand the mixing time geometrically. Given symmetric generating
set A C Z/pZ denote ¥ (A, p) the Cayley graph with vertices V = Z/pZ and edge set
E = {(n1,n2) € (Z/pZ)?* : ny — ny € A}. Write diam(%'(4,p)) for the graph-theoretic
diameter of € (A, p). Since Z/pZ is abelian there is a more geometric notion of diameter

diamgeom (€' (A,p)) = m»IenZE%Z min (||m|2 :neZk Jae A* n-a =2 mod p) )

One has (the second inequality is given in Lemma 2.4)3

. . trel
diam(% (A, p)) > diamgeom (€' (4,p)) > -
Random walk driven by 14 on Z/pZ may be interpreted as random walk on €' (A, p) in
which at each step the walker chooses a uniform edge leaving its current position.

Theorem 1.4. Let p be an odd prime and let A € </ (p) with |A] =2k+1,1<k < log)igp.

The mixing time t{** of random walk driven by y 4 satisfies, as p — oo,

trlnix <k- diamgeom(%(A’p))Q'

1We use parentheses to indicate the last significant digit of numerical constants.

2We write A(x) <, B(z) meaning that there is a non-increasing function f : Rt — RT with limz— 0 f(z) =
1 such that A(z) < f(«)B(x), thus indicating the parameter which must grow for the asymptotic to hold.

3The notation A > B means B = O(A).
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Remark 1.5. In the context of random walk on a cycle, Theorem 1.4 refines in two ways
the much more general Theorem 1.2 of [5], which applies in the context of groups of
moderate growth. The dependence on the number of generators k there is, in worst case,
exponential. Also, we replace the diameter there with the smaller geometric diameter
here. See also [27].

Given a sequence of triples (X;, P;, ;)2 where X; is a measure space and P, is a
Markov kernel on X; which has v; € .#(X;) as its stationary distribution, the sequence
exhibits the cut-off phenomenon in total variation if for all 0 < € < 2,

A

m——— =1.
=0 (1= )

The cut-off phenomenon is frequently observed in natural families of Markov chains
including the hypercube walk of [8] and riffle shuffling viewed as a random walk on
the symmetric group [1]. Especially in total variation, the cut-off phenomenon is still
imperfectly understood, so that there is significant interest in deciding its occurrence in
specific examples, see for instance [10], [12], [4], [2], [21].

One necessary condition for cut-off in total variation to occur is

tmix
. 1,2
1

i—oo trel = %9

K3
see Chapter 18.3 of [20]. In particular, by Theorem 1.1 any sequence of walks generated
by {4, mod p C Z/pZ},c» for which |A,| remains bounded does not have cut-off, a
result first obtained in [5]. We give a different proof of this result found independently
by the author, which gives further information on the period of transition to uniformity.

Theorem 1.6. Let p > 3 be prime, let 1 < k < 10§i’g’p and let A € o/(p, k). For any

0 < e < 1 the total variation mixing times of s on Z/pZ satisfy

. . Ilnix
() — (] —€) >, T
In contrast to Theorem 1.6, our next theorem shows that the generic behavior when
|Ap| grows slowly is for there to be a sharp transition to uniformity with infrequent
exceptions. This Theorem answers a question raised in [6].

Theorem 1.7. Let k : & — Z~( tend to oo with p in such a way that k(p) < Iog’ﬁo’g’p. Let

sets {A, mod p},c 2 be chosen independently with A, chosen uniformly from <7 (p, k(p)).
The following hold with probability 1.

1. Letp: & — Rt satisfy Zp ﬁ = oo. There is an infinite subsequence ¥y C &

such that for p increasing through &,

2

Ep) 2 Sp()? T and  H(p) ~ 1ot ().
T
In particular, the cut-off phenomenon does not occur for (Z/pZ, jia,, Uz/pz)pe 2 -

2. Letp: & — R satisty ), ﬁ < co. Then

T0€ 2

" (p) < 7/)(19)2;0’“““)-

3. For any sequence {¢(p)}pe» C Rso satisfying e(p)+/k(p) — oo there is a density 1
subset &y C & such that in the family (Z/pZ, ja,, Uz/pz)pc 22, Wwe have

i k(p) 2
X () ~ ()
1 (p) 27T6p By
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and as p increases through &,

1

Te)mix
’:LLELXP )1 (p) _

lim Hu(Alp_e)tT]X(p) —Ugzpz , lim ‘ Uz/pz

’TV(Z/pZ) - ‘TV(Z/pZ) -

In particular, the cut-off phenomenon occurs.

Remark 1.8. Since Zp % = o0, items (1) and (3) of Theorem 1.7 demonstrate that almost

surely among a sequence of walks, infinitely often there are slowly mixing walks which
_2

are slower than the typical behavior by a factor of > %.

Remark 1.9. (3) of Theorem 1.7 gives a cut-off sequence with, for 0 < e < % period of

transition between t1**(1 — ¢) and t**(¢) of length O, (t\l/g ) While this is longer than
tlluix

the lower bound -— given in Theorem 1.6, it is much shorter than the true transition
period for many known examples giving cut-off. For instance, the transition period
of random walk on the hypercube is faster than the mixing time by a factor which is
logarithmic in the number of generators.

Our proofs of Theorems 1.1-1.7 approximate the distribution of random walk on
the cycle Z/pZ with that of a Gaussian diffusion on R*/A where A is a co-volume p
lattice. In making the transition between these models we use the following quantitative
normal approximation lemma for which we don’t know an easy reference in the literature.
A proof is included in Appendix A.

Lemma 1.10. Let n, k(n) > 1 with k? = o(n) for large n. Let vy, be the measure on R*
which is uniform on {0, te;, 1 < i < k}, where e; denotes the ith standard basis vector.

Foro > 0 set .
n (o,2) = L )* exp f—”ﬂl%
AT 2mo? 202

the standard Gaussian density. As n — oo we have

2n
*n 1 o .
Vi * ) Tk (V 2k + 1’ )

After transition to the diffusion model, the measure on lattices induced from the
random choice in Theorem 1.7 is close to the uniform measure on the (rescaled) p-
Hecke points, which are the index p lattices of Z*. It is known that, after rescaling to
volume 1, as p — oo these lattices are equidistributed with respect to the induced Haar
measure in the space SL;(Z)\ SLi(R) of all volume 1 lattices in R*. Statistics regarding
correlations of vectors in a random lattice are well-known, see for instance [25] for a
modern treatment. Although we estimate somewhat different quantities, the results
considered there may be useful in understanding our argument.

We conclude by giving an example of random walk on the cycle which has cut-off.
This may be considered an approximate embedding of the classical hypercube walk into
the cycle.

= o(1).
TV(RF)

Theorem 1.11. Forp € & let ¢5(p) = [log, p| (logarithm base 2) and let the power-of-2
set be Ay, = {0,+1,+2,...,+2®) -1} C 7Z/pZ. Set

> 2w
o=y (1 — cos 23) = 3.394649802(1).
j=1

The power-of-2 walk (Z./pZ, jia, ,, Uz/pz)pe 2 has cut-off in total variation at mixing time

mix ¢ p logf p
() ~ 22 2B0)

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 5/49



Cycle walks

1.2 Discussion of method

Our arguments view random walk on the cycle Z/pZ with symmetric generating set
A, |A| = 2k + 1 as random walk on an index p quotient of Z*, in which a standard basis
vector is assigned to each non-zero symmetric pair {«, —z} of generators. The index p
lattice is the set A = {n € Z* : 3" n,z = 0 mod p}. In the case of Theorem 1.11, the
corresponding lattice is approximately cubic, and the argument is a perturbation of the
Fourier analytic analysis of the hypercube walk in [11]. In particular, the mixing time
and cut-off are the same in total variation and in L?.

For k < 10?5) g -» arandom index p lattice gives a mixing time in total variation which
is less than the L? mixing time by a constant, and thus the L? methods of proving cut-off
are not immediately suitable. Thus in our first four Theorems the arguments are made
initially in time domain by first applying Lemma 1.10 to replace the discrete random
walk with a diffusion on R*/A. This initial step is the reason for the restriction on the
size of k since the corresponding approximation fails for & > (1 + ¢) log)i g e For larger
k there is a standard method of correcting the approximation using the saddle point
method, but we have not made an attempt to do so.

After having made the Gaussian approximation, Theorem 1.1 combines standard
spectral estimates with bounds for the shortest vector in a lattice (the lower bound)
and for sphere packing (the upper bound). Theorem 1.4 goes through in time domain,
using convexity. Theorem 1.6 goes through in time domain, and uses an estimate for the
derivative of the density in time.

Parts (1) and (2) of Theorem 4 study rare events in which the random lattice is
essentially one dimensional due to the presense of many short vectors. We study these
cases in frequency space. The dual lattice of an index p lattice of Z* is AY = Z* + ¢
where

1
=14, ={av:0<a < p}, ve -7k \ zZ*
p

is a line. We are able to show that with high probability the large Fourier coefficients
arise from frequencies which are small multiples of a single vector. The analysis restricts
attention to primitive vectors, and their multiples by Farey fractions modulo p, which
are residues bg~! mod p in which b and ¢ are bounded.

Part (3) of Theorem 4 is proven in time domain again. After removing a small !
error, the modified density may be estimated using a variance bound. In particular,
our argument requires averages concerning pairs of short vectors in a random lattice
which are discrete analogues of the averages performed by Siegel and Rogers [23], [22]
regarding the distribution of vectors in a random lattice.

1.3 Possible extensions

From the point of view of mixing of Markov chains, an attractive open problem is to
decide the Peres conjecture

cut-off < ™/l 5 oo

for random walk on a cycle.

Abelian groups are prevalent in arithmetic, and there would be interest in extending
the results to random walks on more general abelian groups. The class group of
an imaginary quadratic field grows like the discriminant to the power 1 + o(1), so a
reweighting of Theorem 1.7 with roughly d groups of order d would be of interest. The
techniques presented should translate without any great difficulty to studying random
walk on cycles of composite order. The general case has not been considered, but see
[28] for a study of random random walk on the hypercube.

To model abelian sandpiles, asymmetric generating sets should be considered.

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Notation and conventions

Given groups G, H, H < G indicates that H is a subgroup of G and [G : H] denotes
the index. &}, is the symmetric group on k letters and we write (Z/27)" x &, = O(Z)
for the & x k orthogonal group over Z. For ring R = Z,7/pZ, GL,(R) and SL,(R) are
the usual linear groups with entries in R. We denote e(z) = ¢>™® the standard additive
character on R/Z.

Given measure space (X, #), .#(X) indicates the Borel probability measures on X.
When X is a finite set, Ux denotes the uniform probability measure on X and when X
is a compact abelian group, Ux denotes the probability Haar measure. In either case
expectation and variance with respect to Uy are indicated Ex and Varx. | - [|pv(x)
indicates the total variation norm on .Z (X).

Unless otherwise stated, || - || indicates the ¢2-norm on R¥, k > 1, || - ||, denotes the ¢*
norm, p > 1, and | - ||(g,zy» denotes the ¢* distance to the nearest integer lattice point.
$*—1 is the unit sphere in R¥, $*~! = {z € R¥ : ||z|» = 1}. Given z € R*, R € R~(, and
p > 1, By(z, R) denotes the (P ball

Bp(z,R)={y e R": |ly —z|, < R},

the ambient dimension being clear from the context. If p is not stated /2 is assumed.
Given further parameter 0 < 7 < 1, S(z, R, 7) indicates the spherical shell

S(z,R,7) = {g e R¥: lz —yll2 € [(1-7)R, (1 —I—T)R]}.

I'(%+1) . log(k +1) 1 k
Rk‘(ﬁ _<1+2k +O<k)> Ime

is the radius of an ¢ ball of unit volume in R¥. One may check that R, > ﬁke for all
kE>1.

For k > 1, given € R¥ and o € R+, 1 (0, z) denotes the density at = of a symmetric
centered Gaussian distribution scaled by o,

k
(o, x) = ! i exp | — il
U 2mo? 202 )

By default, quantities considered depend upon a large prime parameter p varying
over a set of primes &,. We use the Vinogradov notation A < B with the same meaning
as A(p) = O(B(p)). A < B means A < B and B < A. For positive parameters A, B,

For k > 1,

A ~ B means limpﬁmﬁ = 1land A < B, resp. A 2 B means limsup% < 1,
resp. liminf % > 1. We also use the non-standard notation already introduced in

the introduction A <, B, with the meaning that there is a non-increasing function
f:RT — RT with lim,, f(z) = 1 such that A(z) < f(z)B(x).

2 Background

This section collects together several statements regarding classical probability
theory and lattice theory on R”, k& > 1.

2.1 Classical probability

See [6] for background regarding random walk on a group and [20] for a thorough
treatment of Markov chains. We have provided proofs of the statements which we use
for the reader’s convenience.

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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We have already introduced the total variation distance between two probability
measures u, v on a measure space (X, 4), by

It = vllpy(zy = sup [u(S) = v(S)].
Se®

In the case when p has a density with respect to v, equivalent characterizations are

1 du du du

When p is the distribution of a Markov chain with stationary measure v define the
L?(dv) distance to stationarity by

1 dp 2 3
M—Vhwm=2</(¢f4>da

with the convention that the norm is infinite if % is not in L?(dv). The factor of % is for
consistency with the interpretation of total variation distance as half the L!(dv) norm.
For ¢ > 0 denote t3'*(¢) the e-mixing time of the L?(dv) norm.

Lemma 2.1. Convolution with a probability measure is a contraction in the total variation
norm. Also, given symmetric probability measure . on finite or compact abelian group
G, for any 0 < € < 1 the total variation mixing time of random walk driven by p satisfies
trellog L < 11%(e) < 3% (e) and Z= 317 < 11X (1 — ¢) as € | 0.

Proof. The contraction property follows from the triangle inequality.
To prove tJ'*(e) < t5%(¢), use the L! characterization of the total variation metric
and Cauchy-Schwarz

1™ = Ugllrve) = 2/(;‘dlUG - 1’dIUG < |w™ = Ugl|r2(aue)-

To prove the lower bounds regarding ¢*®!, observe that the eigenvalues of the transi-
tion kernel for the random walk are given by

spec() = {Bu[  x € G},

where G denotes the set of characters of G. Let x; generate the spectral gap. Since
lIx1lloo < 1, we have, for any n > 1,

o 1 1 n
™™ = Ucllrve) > 5 B [x1]| = 5 (EL[xi)"],

so that the first mixing time bound follows by taking logarithms.

To obtain the bound for tJ**(1 — ¢), let ¢y > €; be small parameters, satisfying, for
some A, B > 0, ¢ = A€e?, ¢g = Be®. Let n be maximal such that E,-[x1] > 1 — ¢;.
Set S = {g € G : Re(xi1(9)) > 1 — e} and a = p**(S). Bounding Re(x|s) < 1 and
Re(x|se) <1 — e,

(I—e) <Er[a]<a+(l-e)(l-a)

whence o > 1 — :—(1] According to uniform measure, Re() has the same distribution as
cos(2rx) on (R/Z,dz), so that

cos (1 —ey) 26
77

™

Ug(S) = (14 O(eo))-

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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It follows that

117" = Ugllry(gy = #(S) = Ua(S)

-1 — B V2A
spoa_ s lza) (B V24 50,
€0 T A T
Imposing the constraint ;**(S) — Ug(S) > 1 — € gives t"*(1 —€) > n+ 1. As € | 0, one
obtains the constraint (% + @ + 0(62)> < 1, which gives the asymptotic claimed with
272 272

~ = ~ == ]

9 7’ 27

Define the standard symmetric centered normal distribution on R* scaled by ¢ € R+q

e —llzl3
1 x5

ne(o,z) = ex .

k(o) (2702)5 p( 202 )

For t € R, n(v/to, z) is its t-fold convolution. We use several results regarding concen-
tration of the Gaussian measure.

Lemma 2.2. Let k > 1 and o > 0. There are positive constants C, {C)}2<p<co such that,
foranyt > C,

/xele (o, 2)1 (‘HQHQ - O\/ﬂ > Ut) dx < exp <_(t_20)2> )

and, for allt > 0, forall 2 < p < oo,

2

1 t
/ (o, 2)1 <||£||p > Cpokr + to) dz < exp (—) )
zERK 2

Proof. All quantities scale with ¢ so we may assume o = 1. Let v, denote the measure

2

on R¥ with density y;(z) = - l)ﬁ exp (—%) . Let M, 2 < p < oo denote the median
)2

with respect to v of || - ||, that is, v (z : ||z, < M,) = 3. Since | - ||, is 1-Lipschitz on

(RF,|| - ||2) for p > 2, Talagrand’s inequality ([19], p.21) gives, for any ¢ > 0,

t2
Y (22 |||z, — Mp| > t) < exp (—2> .

The first statement follows, since the mean, root mean square, and median of | - |2

differ by constants, as is evident from the concentration around the median. The second
1

statement follows since M, < k7. a

2.2 Lattices

Siegel’s Lectures on the Geometry of Numbers [24] are a recommended reference.
A lattice A < R is a discrete finite co-volume subgroup of R*. Write

vol(A) = / dx
RF/A

for its co-volume. Fixing the usual inner product (-,-) on R*, the dual lattice of lattice A
is
A ={NeR":VAeA (N, )\ eZ}.

This satisfies vol(A) - vol(AY) = 1. For instance, the dual lattice to A = 2Z is 1Z. More
generally, if A = QZF for some Q € GL,(R), then AV = (Q~!)'Z*. We reserve \* for the
shortest non-zero vector of AV.

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 9/49



Cycle walks

Given lattice A < RF, its norm-minimal fundamental domain (Voronoi cell) is
F(A) ={z e R":V A e A\ {0}, [|z]| < llz - All}.
One may choose a set .ZY(\)
F(A) c Z%N) c Z(A)

such that every z € R*/A has a unique representative in .Z°(A).
Minkowski’s geometry of numbers gives an upper bound for the shortest non-zero
vector in a lattice.

Theorem 2.3 (Minkowski’s Theorem). Let A € R* be a lattice and let C be a convex
symmetric body, i.e. x € C < —z € C. If

vol(C) > 2Fvol(A)

then C contains a non-zero vector in A. In particular

Eal

min [\ < — (1 (& 1) vol(a) N ol(A)
AeA\{0} 2= Nis 2 v Te '

with the asymptotic holding as k — oo.

For lattice A, the diameter of the norm-minimal fundamental domain and the shortest
non-zero vector in the dual lattice are related as follows.

Lemma 2.4. Let A be a lattice with norm-minimal fundamental domain % and dual
lattice AV. Let \* be the shortest non-zero vector in AY. We have

A"z - diam(.F) > 1.

Proof. Letv = HAAW and choose z the point on the boundary of .# on the ray determined
by v. Write z = zv. Since z € 9(.F) we may find y € A\ {0} with |(z,y)| = L[|y[3. Set
y = yov + v' where (v,v’) = 0. In particular, yo # 0 so |(y, A*)| = [A*|[2|yo| > 1. Since
|zoyo| > 22 it follows that |22 -[[A*|l2 > 3. The diameter is at least as large as 2[|z|[>. O

Given z € R* and R > 0, let By(z, R) denote the ball
By(z, R) ={y € R" : |z — yll» < R}.

The following is an easy estimate for the number of lattice points contained in a ball.
Lemma 2.5. Let k € Z-, let z € R* and let R > k?. Then

Z" N By(z, R)| = (1 +0 (";)) vol(By(z, R)).

and thus

=<1+0<2

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Cycle walks

We also use the following estimate counting lattice points of a more general lattice.

Lemma 2.6. Let A < RF be a lattice with shortest non-zero vector \*. For anyt>1,

1+sind 1+sinf@ 1—sinf 1 —sin®
2sinf O 2sinf 2sinf 8 2¢nf |’

log |[A 1 Bz (0, A[))] <k &

where § = 2sin™" ().

Proof. This follows from [18], see [3] for a nice exposition and related results. We sketch
the argument.

Write By ; for a /2 ball in R/. By rescaling we may assume |[\*||> = 1. View R* as a
hyperplane through zero in R**!, and consider the ball B = By ;11 (0,t) in R¥t!. Project
AN By 1(0,t) orthogonally onto B. The points remain 1-spaced and thus satisfy an angular
spacing of at least 6 = 2sin™' (). Let, as in [18], A(n,¢) denote the largest set S C $"~*
which is separated by angle 6 as above. Thus

AN Byi(0,t) < A(k +1,0).
The claimed estimate for A(k + 1,0) is the main result of [18]. O

Given a probability measure i € . (G), G = Z* or G = R¥, and a lattice A < G the
quotient measure p, is defined for f € C(G/A) by

(fima)a/n = (fsm)e-

Quotienting commutes with convolution and contracts the total variation norm. For
lattice A < R*, t € R>o and z € R*, the quotient measure of Gaussian 7, (v, ) is the

theta function
Oz, t;A) =D m (\/E,%L A) .
AEA

This has a representation in frequency space as

1
vol(A)

Oz, t;A) = D exp (=27 t|A]3) e(A - z).

A€AY

To check the expansion, Fourier expand O in the orthonormal basis { cdz) } for
AEAY

Ve
L?(R¥/A) (this is the usual proof of the Poisson summation formula). In the case of
a cubic lattice, where for some o € R~g, A = aZF, the theta function is particularly
pleasant.

Lemma 2.7. Let k € Z+q, a,t € R-g and x € R*. We have

k
(C] (g,t; aZk) = H@ (zi,t; Q7).

i=1

The one dimensional theta function O(x,t; oZ) satisfies

|| 2 ll5 )
EXp\——= exp (—‘g—t)
O(x,t;aZ) = 0O
(= 60Z) Vot O\ V(1 —exp (—2)
1o e ()
Tt O\ G e ()

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Proof. The factorization is immediate from the definition of ©. The first estimate for
O(z,t; aZ) is the result of pulling out the largest term and bounding the remaining terms
by a geometric progression. For the second, apply the Poisson summation formula,

1 2712tn?
S (Verran) = £ 5 oo (<255 ) ¢ ()

neZ

and bound the n # 0 terms by a geometric progression. O

2.3 Identification between generating sets and lattices

Our proofs of Theorems 1.1- 1.7 approximate random walk on Z/pZ with symmetric
generating set A, |A| = 2k + 1 with a Gaussian diffusion on R*/A where A is a co-volume
p lattice. The reduction is as follows.

Let Oy (Z) = (Z/27)* x & be the orthogonal group over Z consisting of signed k x k
permutation matrices, which acts naturally on R*. Let

L=1L(pk)={A<ZF:[ZF: A =p}
&L =L(p, k) = Ox(Z)\L(p, k)

be the set of index-p lattices of Z*, resp. those lattices up to Oy(Z)-equivalence. The
action is matrix multiplication on the left applied to lattice vectors. Define subsets

Lo(p,k) = {A € L(p,k) : A€ A\ {0} = [|A3 > 2}
go(p7 k) = Ok(Z)\LO(p7 k)

Let
Alp,k) ={a € (]F;)k V1<i<j<k, a; #=+a;}.

</ (p, k) may be identified with O(Z)\A(p, k) by interpreting the factors of (Z/27)" as
flipping signs, and the factor of & as rearranging the order of the coordinates in the
vector. Evidently the action is free, so that uniform measure on A(p, k) descends to
uniform measure on < (p, k).

' acts freely on A(p, k) dilating all coordinates simultaneously. T\ A(p, k) and
L%(p, k) are in bijection via the map

k
A(p, k) > ad Aa) = {n VAR Zniai =0 modp} € L°(p, k).
i=1

The map in the reverse direction is
A »gg(A) ={1,a9, - ,a : Vi, e; — a;e; = 0 mod p}.

It follows that uniform measure on A(p, k) pushes forward to uniform measure on L°(p, k).

Ox(Z) acts on L°(p, k), and we obtain a map F\.«/(p, k) % #(p, k) which we write as
A(A). Note that the joint action of IF)Y x Oy on A(p, k) need not be free, but this will not
concern us. We write Uz, U o for uniform measure on L and L°.

Let v = v € .#(Z*) be the uniform measure on S, = {0, +ey,..., £ey}, e; the ith
standard basis vector. Let A € &/(p, k). For any n > 1 the law of p*" on Z/pZ and
(V™) a(a) on Z¥ /A(a) are equal. The above observations imply that we may sample the
laws of p** with A chosen according to U, i) by instead sampling the laws of (v}")a
with A drawn according to Upo, 1)

Combining this discussion with Minkowski’s theorem has the following consequence.

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 12/49



Cycle walks

Lemma 2.8. Let p be a large prime, let 1 < k < lfgl?fgpp andlet A € o/(p,k). Let A < ZF
be any lattice in the class of A(A) € £, and let

((A) = min{[[A[[2:0# X € AV}
The relaxation time of random walk driven by 4 on Z/pZ satisfies

2% + 1
Ar20(A)2°

rel

Proof. The characters of Z* /A are given by the dual group, AV /Z*. Let \* = (\y, ..., A\x)
be a vector of minimal length in A \ {0}. The claim follows on noting that the spectral
gap is given by

E

T+00\)

k
L= () = o Z (2 — 2cos (27)))

The error is of lower order since ||A\*||oc < Vkp~* = o(1) by Minkowski’s Theorem. [

Lemma 1.10 from the introduction has the following consequence.

Lemma 2.9. Let p > 3 be a prime, let 1 < k < 101;)1% and let A € o/ (p, k) with

A < ZF any representative of A(A) € £°(p, k). There is a function ¢ : R~g — R+ with
lim,_, o €(x) = 0, such that, forn > 1
n
+0(c(33))-

‘ 2n
) for the indicator function of the cube [—1, %)k C Rk.

= UZ/PZHTV(Z/[)Z) = He (" 2% + 1§A> — Urk/a

TV(RE/A)

Proof. Write A = A(A) and 1[7

1
'2

[SIE

We have
1 = Uzl vvizspmy = VA" = Uzesalloyznn) = 8" * 2 2y 4)r — Ureya TV(RF/A)
and
i x1 U H@ (CE 7271 A) U
A _1 1)k 7 URK/A - L, 5 — URk /A
2n
< Tx1 -0 A
= ey (m’ 2k + 17 ) TV(RF/A)
<llpm 1 _2n
=7 e T\ Ve
TV(RF)

by two applications of the triangle inequality. The bound now follows from Lemma 1.10.
O

Combining the pieces above we prove the following lemma which is the main reduc-
tion in this section.

Lemma 2.10. Let 0 < ¢ < 1, and let k = k(p) satisfy 1 < k < 1o§i§p- For any set

A € o/ (p, k) with uniform measure p, of total variation mixing time t1"*(¢), we have, as
p — oo, for all n > 3% (¢)

2n

*n(‘r) - IUZ/pZHTV(Z/pZ) = H@ (l’, %H7A(A)> - IU]R."‘/A(A) + 06(1)'

TV(R*/A(A))

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Proof. By Minkowski’s geometry of numbers, the shortest non-zero vector in the dual
lattice A(A)Y has length

0(A) < VipF
so that Lemmas 2.1 and 2.8 give for the discrete walk {™(¢) > ¢*! > pt. The claim
now follows from Lemma 2.9, since k = o ( %) O

3 Mixing time estimates

Let p be prime, A € &/(p) with [A| =2k +1and 1 <k <5 logp . Let A = A(A) be any
lattice associated to A in Z*, as above.

Proof of Theorem 1.1. Theorem 1.1 is contained in the set of estimates
2k +1

1670 (5 +1)*

To pr <, mot™ <, 1 < 0,163k

since
2k+1 e
—2 _> 47,
16T (5 +1)* T
Combining Lemma 2.8 and Minkowski’s theorem gives
2k +1 2k +1
= zP"-
AT2U(A) ™ 16D (£ 4 1)

k — oo.

rel

N

The estimate ¢™!(1 —log 2) < #"™* is given in Lemma 2 1. To replace (1 —log2) with the

larger constant 7, consider the theta function © ( A) which has asymptotically

) 21g+17
the same relaxation time as p4 by Lemma 2.8. Let \* be a shortest non-zero vector in

the dual space, and consider

2t 1 4
A) = -
ey P b (G I ) e ),

which is found by projecting © in frequency space onto the line determined by A\*.
Equivalently, identify R*~! with R* N (\*)* and let n_(7,-) denote a Gaussian of
covariance matrix 727 on this space. Write A € AY as A = \; + Ay where )\ is the
projection to the span of A* and A5 is orthogonal to A*. One has, for 7' > 0,

2t
(T, y)® Y A)d

47t 22
= % oo (=5 - 2w el ) el -0

AEAY

and thus

2t 2t
S A =1 -1(T,y)© dy.
0 ( 2k+1 ) TLI}ntXJ ka()\*)L nk 1( 7%) (ery, 2k+1 ) g

The convergence is uniform in z as the error at 7" is dominated by the case in which z is
orthogonal to A* so that all the terms are positive. This justifies exchanging the limit and
integral in the following calculation. Let .# be a fundamental domain for R* /A.

2t 1 2t 1
@ A - U :7/ (1’7’[\) _ =
H 0( "2k + 1 ) Ty meny 2)s | O\T 2k +1 P

1 2t 1
= lim = (T, S , A —=)d
TI_EI’}’O2/? /Rfcm(x«)L Ll y)( <x+y 2%k +1’ > p) Y

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Applying the triangle inequality,

g 2t 1
160 — URk/A|‘Tv(1Rk/A) < fim o /y/Rkn(»)L m-1(T,y) ‘9 (fc+yv 2k+1’A> - p‘ dydz
- I 1 (Tyy)||©-TU d
Tl—l;noo ]Rkﬁ(/\*)L 77k 1( y) || Rk/AHTV(Rk/A) y
= [1© = Urs/allpyrea) -

Let

O(x,t) = Z exp(—27m2tj%)e(jz)

JEZ

denote the time ¢ Gaussian diffusion on R/Z. For t > 0,

Since the latter distance is monotonically decreasing and smooth, and since for n > t‘f‘ix,

= 0(-,t) — Uryzlltv(w/z)-
TV(RF/A)

t
00 (- ryirzih) Ve
B B2/

2
HMZ” - UZk/AHTV(Zk/A) = H@ ('a 2]{_"&17A> - IU]R’C/A +0(1)

TV(RF/A)

by Lemma 2.10, it follows that #J* > ro#tel,
To give the spectral upper bound for #"*, again consider instead the distance from

uniformity of © (-, T A) on R¥/A. Fort >0,

2

2t 1 8m2t||\[|3
L— A = . < = [ L)
H@(’%H’ ) Ure/a <7 X eXp( 2% + 1
AeAV\{0}

Writing the sum as a Stieltjes integral, then integrating by parts, the right hand side

TV(Rk/A)

becomes
L= 8m2t[|A* |35
1 ————=— ) d(J]AY N By(0, s||\* 31
4/3:17 eXp< % +1 (I 2(0, s[A"[D]) (3.1)
Ar? A3 B2t [ A" 252
T T ok+1 ——— 27 )V AY N By(0, s||A*])]| ds.
2%+ 1 /1_ §EXp 1 | 5(0, s[|\*|[)| ds

Sett = T% so that 7 ~ 4. Thus (3.1) simplifies to
2

(3.1) = T/io sexp (—27’52) |AY N By (0, s||A\*|))| ds
< T/io sexp (—275° + (1 +e(k))kF(s)) ds

where e(k) — 0 as k — oo, and

P = |

Lsing, Lrsind 1-sinf, 1=sinf) =y ogn1 (2
2sinf 08 2sin 6 2sin @ 08 2¢in0 |’ §) = 2sin

see Lemma 2.6. The maximum of Fs(;) in s > 1 occurs at s = 1.260816271(1) with

maximum < 0.324908241 and i(j) — 0 as s — oo. Thus, choosing 27 = (0.325 + £(k))k for
an appropriate function £(k) tending to 0 as & — oo the L? distance is negligible so that
7t*! is an upper bound for 5% > #pix, O

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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3.1 Geometric mixing time bound, proof of Theorem 1.4

Let p, A and A as above, and let .# be the Voronoi cell for R*/A. Note that Z* Nn.#
contains a system of representatives for Z*/A, and that the Cayley graph %(A4,p) is
isomorphic to €'({0, +e; : 1 <i < k},Z¥/A). Thus

rad(F) :=sup{||z|]2 : z € F} = diamgeom (G (4, p)).

Proof of Theorem 1.4. Write D = diamgeom (%' (A4, p)) and assume, as we may, that ¢ >

kD?. In view of Lemma 2.4, which proves D > —L_ we have ¢ > t"!, and thus as in

L(A)’
Lemma 2.10

)

TV(RE/A)

. 2t
it = Ul + o0 = [ (i) = U

so we will estimate the right hand side.
Since, for any z, t, Eyc > [@ (g + Y, 5 A)} = . we may estimate using the triangle
inequality

1 2t 2t
10~ Ol = 5 [ [0 (2 574) ~Bucr 0 (24 i) |

1 2
<z et _
—2/ > 77’“( k1LY A)]

2t
ZEF e ( 2k +1

Now use the inequality |1 — e*| < el®l — 1 to obtain

H@ _U]Rk/AHTV(]Rk/A)

1 o % +1,
5[ Xu (V%H’f”) Bues |exo (2500 (Il + 21z - A ) - 1] az

= A€A

Fold together the sum over A and the integral over z, then integrate away all directions
in z orthogonal to y to obtain

2t
o <~,;A> ~ Ui
H 2k +1 / TV(RE/A)
2t 2k +1
[ o ( - 1@) Byes [oxp (2t (1l + lullale) ) —1) o

k
Dy/—.
< \/z

The last estimate follows on using —&= [, e~ 7 Hllde =14+ 0(8) as 6 | 0. O

<

DN | =

4 Transition window bound, proof of Theorem 1.6

We prove the following somewhat more general theorem.

Theorem 4.1. Let p be a large prime and let k < 102’5)’;1). Let A C Z/pZ be a lazy

symmetric generating set of size |A| = 2k + 1. Forany 1 > ¢; > ¢ > 0, for all

262

n < exp (%2) - tP*(¢;) we have

I8 = Uzl oz = 1 = 2 + 0V

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Proof. Let A < Z be any lattice representing the class of A(A) € .. By Lemma 2.10

— UZ/pZHTV(Z/pZ) with H@ ( z, 2k+1,A) - IU]Rk/AHTV(]Rk/A) making
error o(1).
Write n = ot}**(¢; ). Differentiating under the sum in the ¢ function,
d 2011 (€7) k 207t (¢q)
—0(z, ———A >0z, ——25A ). 4.1
do ("T Wt T T\ F 2k “.1)
Also, (g, %ﬁfl) A) — U]Rk/AH VR /A is a decreasing function of ¢ > 0. Define
2011 (€7) 1
P(o) = kA —1 /A — .
(@) {xelR/ ®<o:, T > >p}

Now for any 0,09 > 0,

20t (€7)
it T 2 N
o (- 554 -

2 mix 1
:/ @(x,atl(el);/\)_dm
TV(RF/A) P(o) 2k +1 p

2 mix 1
Z/ @<$7Ut1(61);A> — Zdz.
P(o0) 2k+1 P
2 tmix
H@ (.’ gl(el);A) _ U]Rk/A

QUotﬁnix(El) )
- ®<~,;A — Upisa
2k +1 TV(Rk/A) H 2k +1 / TV(R¥/A)
2/ @(m’%tl(el);A) —@<$7200t1(61);/\> dz (4.2)
P(o0)

Thus for o > oy,

2k +1 2k +1

Differentiate under the integral, then apply (4.1) and finally drop the restriction to P(oy)

to obtain the estimate
7 d 2 stmix
/ / falfe) <x, ‘31(61);A> do'dz
P(UO) oo dS 2k‘ + 1 _
71 20X
Z 77/ / &, ? (61)1A didU/
2k +1

> log— (4.3)
2 (1)

(4.2)

Note that k = o (t{"*(e;)). Applying (4.3) with o = 1 — m and ¢ = 1, which
corresponds to the random walk at the mixing time and the step before, we deduce

o (28900 vy

= (1),
2% + 1 €1+ 0c, (1)

TV(RE/A)

Applying (4.3) again, but now with og = 1, 0 = exp(262) we obtain in the range " (¢;) <
n< eXp(ng) tm1x(€1)’

™ _y H > — 1 0
HMA Z/pZ. TV(Z/pZ) = €1 — €2+ 0¢, ¢, (1).

5 Random random walk, proof of Theorem 1.7

We record several facts regarding the uniform measure Uy, on the set L(p, k) of index
p lattices in ZF.

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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Lemma 5.1. When A is chosen uniformly from L(p, k), the dual lattice AV has the
distribution of ;
{0,1,--- ,p—1}=+7*
p

where v is a uniform random vector in (Z/pZ.)* \ {0}.
When A is chosen uniformly from L°(p, k), the dual lattice AV has the distribution of

{0,1,--- ,p—1}= + 7
p
where v is chosen uniformly from
P ={v e (Z/pZ\ {0})" : V1 <i < j<k,v; # +v}.

Proof. In the case of L(p, k), the structure follows from [A : Z*] = p and %Z’“ < A, while
the uniformity follows from the fact that SLj(Z/pZ) acts transitively on the space of dual
lattices. This holds since any non-zero vector may be completed to a basis for (Z/pZ)*.

The further conditions imposed in the case of L%(p, k) are those necessary to ensure
that A does not contain a vector A with ||A||3 € {1,2}. O

Lemma 5.2. Let p be prime, let k > 2 and let v # w € Z*. We have

1 v,w € (pZ)F
k—1
Up(A:v,we )= 7’1?;@__11 |Zv + Zaw mod p| = p
7”;;2_*11 |Zv + Zaw mod p| = p?

In particular, U (L°(p,k)) > 1— O (%2) .
Proof. These follow immediately from the distribution of the dual group. O

5.1 Summary of argument

As the calculations in the remainder of this section are somewhat involved, we pause
to sketch the main ideas.

Theorem 1.7 has three claims, the first two of which consider the worst case mixing
time behavior, with the third considering typical behavior. When considering the walk
as a diffusion on R¥/A where A is a lattice, the spectrum of the transition kernel is
determined by the dual lattice AY. In general, it is difficult to work on the spectral side
due to the high concentration of eigenvalues near the spectral gap, but in the worst
case regime we are able to show that for all behavior that persists, the dual lattice
is essentially one dimensional. When this occurs the mixing and relaxation times are
proportional and we obtain a slow transition.

In typical behavior the walk has a sharp transition to uniformity. The analysis in
this regime consists of separate arguments estimating the distance to uniformity at
times (1 4 ¢)#*. When considering the walk at time (1 — ¢)t** we study the diffusion

L opt1°

lattice A, % (A) is a highly complex convex body determined by a number of hyperplanes,
but in a statistical sense, for the purpose of the lower bound, .%# (A) behaves very much
like the volume p ball of R* centered at the origin. A Gaussian in R* centered at the
origin is concentrated on a thin spherical shell (see Lemma 2.2), and the mixing time
is essentially the time needed for this spherical shell to expand to the boundary of the
volume p ball. At time (1 — ¢)#}** we are then able to show that the diffusion is typically
concentrated on a small measure part of .%(A).

S} (m 2 A) on the norm-minimal fundamental domain .% (A) for R¥/A. For a particular

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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For the upper bound at time (1 + €)#*, we note that pZ* < A, and we show that

the distribution of values of © (g, T
uniformly from R* /pZ* and A is chosen at random from L(p, k). This is the most delicate
part of the argument. For instance, it is not sufficient to consider the expectation of

A) is concentrated near 1 when z is chosen

2
(@ (l‘, 2,3%; A) — 1) as this gives an upper bound which is too weak, so we split © into

an L2-concentrated piece O,; plus a small L! error Oz.

5.2 Slow mixing behavior

We prove Theorem 1.7 in two parts. In this section we prove parts (1) and (2) which
concern rare slow mixing walks. In Section 5.3 we prove part (3) regarding the typical
behavior. The main estimate regarding slow mixing behavior is the following theorem.

Theorem 5.3. Let p be a large prime, and let k = k(p) tending to co with p in such a way

1 1
that k < log’ﬁ) g 5. For any é > 0, for all p sufficiently large, uniformly in 51’\/—% <p< M,

the following hold

9 2
re ep pk
Popk) lt > 1 =—7r (5.1)

2. Let, as in Theorem 1.7, 1y be the ratio between total variation mixing time and

4
relaxation time for Gaussian diffusion on R/Z. For any C' > 1, and opk < J<

4 2 k
pF (logp)F
o

. k k 2
Po/pr) {t{mx > C(r + )t and % <t < J} < exp <2 log = + Og(k)) % (5.2)

p2

. J k
Popr) {trf“x < (10 — 6)t" and 3 <t < J} < exp <2 log k + Og(k)) Tk
Deduction of Theorem 1.7, parts (1) and (2). Before giving the proof of the Theorem we
prove an auxiliary claim.
Let 0 > 0 be an arbitrarily small fixed quantity. We claim that with probability 1, only
finitely many of the events

. 4 tmix(p) ‘ }
B, = t™%(p) > ép* and | +—— — 1| >§
p { 17(p) = dop ’Totrel(p) 2

4
occur. Note that by Theorem 1.1, t™*(p) > dp* implies t*(p) > §2=. Thus, combining
(5.1) and (5.2),

klog k k 1
P(B,) < exp ( 0g2+05( ))+ ,
P plogp

where the first term is handled with (5.2) and covers the range '®' « p% (log p)%, the

4
worst case occuring when ¢! <« % is minimized. Note k < —°82_ from which it follows

loglog p
log p
exp (—1 i (logloglogp+05(1))) 1
Sp sy < Yy (T -
- - P plogp
so that the claim holds by the Borel-Cantelli Lemma.
We now prove the Theorem.
EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
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(1) Replace p(p) with p(p) := max (p(p),p%) without altering the divergence of

Zp p(p)~*. Estimating with (5.1), by Borel-Cantelli, with probability 1 there is an infinite
sequence ¥, C & such that, for p — oo through &,

€ 2
' (p) 2 —p(p)°p*-

The above remarks guarantee that, for this sequence, t**(p) ~ 7t*!(p).
(2) Let 6 > 0 be fixed. Estimate with (5.1) to obtain that with probability 1, for all but
finitely many p,

d\ e 2
trel(p) < (1 + 2) ;p(p)ka-

Since p(p) > p% eventually, the remarks above imply that with probability 1

. ET( 2
% (p) < (1+0)—p(p)°p?

for all but finitely many p. O

In proving Theorem 5.3 we introduce two commonly used pieces of terminology from

the theory of lattices. Let p be a prime and let k£ > 1. Say that A € Z* is reduced (at p)
if A\ € [-L, g)k. Any class \ € (Z/pZ)* has a unique reduced representative 7(\) € Z*.
Say that A = (\y, ..., \x) € Z* is primitive if A # 0 and GCD(\; : 1 <i < k) = 1.

Our proof of Theorem 5.3 depends upon the following two estimates, the first of
which estimates a mean concerning pairs of short vectors in the dual space.

Proposition 5.4. Let § > 0 be a fixed constant. Let p and k(p) tend to oo in such a way

1
log spt 1
that k < 2Rl Let%‘ <p< i(plogp)*. Forany% <C< % for any e > 0,

1 1 :
Erowp,r Z Mk (1, >\1> Mk <Cl,)\2> <p®>+ 0. (P%+%+€) . (5.3)
A#£+A2 €AY\ {0} PP* pP*
pA; primitive

Remark 5.5. This proposition should be interpretted as expressing the approximate
independence of the appearance of a pair of short primitive vectors in the dual space.

Proof. It is enough to estimate with respect to Uy, 1) since this introduces a relative

error 1 + O (%), which is smaller than the error claimed.

Let . C (Z/pZ)* x 7Z/pZ denote the set of pairs (), a) such that A\ € (Z/pZ)*,
a € Z/pZ\ {0,+1} and both reduced vectors () and r(a\) are primitive. Also denote
for \ € (Z/pZ)*, #()\) C Z/pZ the fiber over ).

Lemma 5.1 gives

1 1
Erepm § Mk (1 ,)\1> Mk (1 7)\2)
pp® Cpp*

A1#EX2€AV\{0}
PpA; primitive
2k
p(p—1)
<1 > ST @ (N)Bc(ad) + o(1), (5.4)
xe(zn(-%,8])* ee (V)
primitive
where
p'*
‘I’c@):Zm ,x+pn|.
cp
nezk
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To briefly explain this formula, the factor of p** results from scaling both the variable and
the standard deviation in the Gaussians by p. The condition A\; = a\; mod pZ* for some
a follows from the characterization of AY. The error term o(1) covers summation over
pairs A1, Ao for which one of A\, A5 is not reduced but both are primitive. The summation
in this case is bounded by, for some ¢ > 0and all B > 0

_ 1 1
<p b § : Tk < T 7>\1) Nk (Cl7>\2)
% %
AhA2€(%Z)k rp PP
max([|A1lcos | A2]loo>3)

< po( )eXp( ) Op(p~ )7 (5.5)

since p% dominates k log p.
We make several modifications to the sum of (5.4) which make it easier to estimate.
First we may exclude from .# any pairs (), a) for which

max <ppi

as these contribute, for any B > 0, Op(p~?). To obtain this, note that the cardinality of
the summation set is O(p**!) since we have replaced summation over \, with summation
over a. Thus it suffices to show that for excluded pairs, ®;(\)®¢(a)) <5 p~2275; to
see this, note that ® is controlled by the contribution of the summand nearest 0.

Let ./ be those choices of (), a) which remain. Denote by .#(Q) the collection
of Farey fractions modulo p (the definition is non-standard since the numerator and
denominator are bounded by different quantities),

F(Q) = {bq_1 mod p : max (|b| Iq') < 2@ q# 0}

We claim that for any reduced )\, /(A mod p) C Z/pZ\ #(Q). Indeed, suppose otherwise
and let a = bg! € ' (Amod p) N .Z(Q). Let n = a) mod p with 1 reduced. Then
bA = gn mod p, but the norm condition implies that in fact bA = ¢qn, which contradicts the
primitivity.

Replace .’ (\) with Z/pZ \ % (Q) and complete the sum over A to obtain

(5.4)goB(p—B)+m > > B(N)Pe(aN).

P
p (Z/pT)* 1eF Q)"

A

Pz

a\

ax ) - @ — \/ogploglogs
(R/Z)*

p

,Cpp*

Applying Plancherel on (Z/pZ)*, we obtain

(5.4) < Op(p~?) + Z Z ®1(a)®c(8)

a€F(Q)° £€(L/pZ)*

v nk( - ) eXp(zmg n) 5 eXp( gﬂzpz

nezk nezk

where

‘ €,

0

All but one term from the sum over n is negligible, and we obtain, for any € > 0,

(5.4) :OB(p_B)
2
<1R/Z>k>> |
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Due to the decay in the exponential, we may truncate summation over a and £ to

o <. p~ 1 %+¢ with negligible error.

Plloryzye (R/Z)*

From ¢ = 0 pull out a term ~ p?. To treat the remaining terms, suppose k > 3, and let
£ = q¢° for q € Z¢ and & primitive. Write a¢ = ¢ mod p where ||¢||gr <. p* <. It follows
for 1 <i <k, £9¢; = €9¢; mod p, and in fact, £¢; = £€9¢; so ¢ = b¢ for some b € Z. The
sum is thus bounded by

k 2
pi(p—1) 27 9
enliDY > oo (2 (&) ).
gezt lalys epk
L<]lg]|cph +e M (PLE)>

?‘\

We may estimate this sum crudely by truncating summation over b, q at |b], %I < ppite
with error Op(p~5). The total number of such b, ¢ is < k1) p2p7 T2 <« pi €. For all
such b, ¢, summation over £ is bounded by (see Lemma 2.7)

k

2 .
P Z exp ( 2C,|2§”2> <p Zexp ( 50° ) <<p(2Q)k < p%+€. O

0#£E€ZF 13/

Next we determir}e the distribution of the shortest vector in the dual lattice. Recall
r(&+1)
that Ry, = | =2

T2

&
) is the radius of a volume 1 ball.

Proposition 5.6. Let § > 0 be a fixed constant, and let p, k and p be such that k < lolgig(j’g’p,

and 555 <p<i@p logp)*. Given A € L°(p, k) denote \* the shortest non-zero vector of
the dual lattice. One has

Ry 1 Q) k?p
P A* = 1+0 .
sy (Wl < 2] = L (10 (S + 5

Proof. By Lemma 2.5

— 1_%
EL@p.k) [#{O#)\GAVQBz(O,}zIz)H:il#{o;«é)\ez’f032<07R’“pk>}
pp¥ pr—1 p
= <1+0( hp ))
P pt —%

By counting vectors A with \; = 0 or Ay = 4+, one finds

2
ELo(p,k) [ {0 #£ A€ AV N By (0 g) }:| = pflk (1 +0 <p]jp]1)> . (5.6)

Let 0 < 7 < 1 and observe that for all (1 — 7)-% ‘f <lzlls <(1+71) %E ,
pk

k 1
pp" exp (— (L4+7)*+ log%)) <Mk ( ;
2 pEp

k
,x) < pp®exp (—2 ((1 —7)2 + log27r)> .
(5.7)
Choosing C' =1 in Proposition 5.4 and inserting these bounds, one finds

Ry 1 O(k) k2p
P A* (0] — 1),
Heh) { I < ppk] 2pF ( " ( P plE

by subtracting the contribution to (5.6) from lattices with pairs of primitive short vectors,
and accounting for the factor of 2 from counting +\*. O
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Proof of Theorem 5.3. The estimate (5.1) regarding the distribution of trel follows from
Proposition 5.6 together with Ry ~ ﬁke and "' ~ m as k — oo.

For (5.2), choose p = 2% such that pr% = J. Equivalently, consider A for which the
shortest non-zero vector A* of AV satisfies ppi’% = |[|A\*||2. For such \*,

1
T (;’A*) = ppre®®). (5.8)
pp

This majorant is used in what follows.

Let )
2t 1 —4m-t
@ 7'A = — )\* 22 ')\*.
O(x’2k+1’ ) ijeZeXp(%H” ”2J>6(J 2

denote the projection of © (g, 2,3%; A) in frequency space onto the line determined by

mix
tl

A*IE

- 1‘ > ¢ then there is some ¢ = (1 + O(¢))#"™* such that

bl
H(@ — 0yp) (-, 2t;A> > 1. (5.9)
2k + 1 LARF/A)
Apply Cauchy-Schwarz to obtain
2 2
| <. AEA;W exp (in fnxus) < M%mexp (%81 ’lf ||)\||§) 510

P primitive
The latter sum may be written as
5 grt \* (1 [2k+1 \
ok+1) T\ ¢ )

AEAV\{£A"}
P primitive

Since t > Ct*' < OW = Cp?pt (take C = 1 in the case of the second estimate of
2
(5.2)) there is ¢ < C such that

k

1 2
> m( kl,A> > pp” (i) Ok,

C k
AEAV\{£X*} PP
pA primitive

Applying Proposition 5.4,

1 k1 344,
ELO(p’k) Z Mk (ppi ’)\1> Mk (\/pri 7)\2> é p2 + Oe <p2+k+ )

A1#EA€AV\{0}
pA; primitive

and thus, by specializing to A\; = A* and applying Markov’s inequality,

Vk —8m%t

d1 <, g — IAl2

p% and 1 < exp<2k+1 |2>
AEAV\Z A

Progw |[IA]2 =
k k
< p~PFexp (2 log ol + O(k:)) .
This verifies (5.2). O

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 23/49



Cycle walks

5.3 Analysis of typical mixing behavior

We turn to analysis of the mixing behavior for A in the bulk of <7 (p, k) proving the
following theorem.

Theorem 5.7. Let p be prime, let 0 < ¢ = ¢(p) < 1 and let1 < k < log’i{g’p. Set

trx = Sk pk. There is a function 6 = 0(e, k) > 0 tending to 0 as €2k — oo and a set
*(p, k) C o (p, k) satisfying

|7 (p, k)| = (1 —o(1) |« (p, k)],

such that, forall A € </,

Vn < (1 —e)tix) ‘ Wit — = >1—6(e k) + o(1),
Plltvz/vz)

Vn > (14 et ‘ ot — = < 0(e, k) +o(1)
Plirv(z/pz)

where all quantities o(1) tend to zero as p — oo uniformly in k.

We can now conclude our proof of Theorem 1.7.

Deduction of Theorem 1.7, part (3). For each j = 1,2,..., let E(p,j) be the event that

- 1 ;
Vn < (1 —e(p))trx, ‘ ot — = >1-277,
Pllrv(z/pz)
Vn > (1+e(p))tr, ‘ Wt — = <277,
Plitv(z/pz)

For a fixed p, the events E(p,j) are nested in j. For each j € Z(, let N; be min-
imal such that for all p > N;, Uy, x)[E(p,j)] = 1 —277. This is finite by Theorem
5.7. Define E*(p) = ﬂj:Nj<p E(p,j) and let p € & if and only if E*(p) occurs. Since
Uy (p,ky [E*(p)] — 1 as p — oo and the events are independent, we have &, has density 1
with probability 1, as desired. O

In the remainder of this section we shall frequently be concerned with counting

lattice points within Euclidean balls By (z, R) C RF. It is useful to bear in mind that the
radius Ry, of a ball of unit volume in R satisfies

r(k+1)\* k log k 1
me (M) < (e o (1)

Let € = ¢(p) as in the theorem and set § = (1 — /1 — ¢€). Recall that, given lattice
A < RF, Z(A) is the norm-minimal fundamental domain of A,

F(A)={z eR* : ¥ e A\ {0}, [|z]| < [IA —z[l}-

Let k = k(p) and set t = t(p, k) = (1 — €)™ ~ (1 — €)RIp*.

Lemma 5.8. As k, p — oo in such a way that k < —°52_ we have

loglogp
E / S ( 2t A) d 1—o0(1) (5.11)
L(p,k Ly 73 | = 1—oll). .
(P:k) €8, (0,(1-5) Rept ) () 2k +1
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Proof. Since © ( ; 2k+1» ) > Nk (\/TH, )
Eromk / ( >da:
Heh l £€32(07(176)ka NF(A) 2k+1
2t
§ T\ arrt ) (5.12)
/|r|<(16)Rka ( 2k +1 )

2
/ L 1EA€AN{0}: A —zf < zll)dz|. (5.13)
lzll <(1-8) Ryp 2% + 1

Since 6 ~ 5 as ¢ | 0, (5. 12) 1 — o(1) follows from concentration of the norm of a
Gaussian vector on scale f times its median length, see Lemma 2.2.
We estimate

2t
5.13 S/ u =5z |E L(A—z| < |z
(5.13) <0t Rk ( ST ) ) (Il < llzll)

AeA\{0}

—-E

For k sufficiently large, any A counted in the expectation satisfies |\|| < p, and thus, by
Lemma 5.2,

P -1
B > 1)<l = a0 e 28 A -l < .

AeA\{o0}

For any z € R¥, any lattice point Z € Z* which is the vertex of the unit lattice cube
containing z satisfies ||Z|| = (1 +0 (%)) |z||. Since k% = o(Ryp*), it follows that for
all ||z|| < (1 — 6)Ryp* we have

k—1

k
%#{)‘ € ZF 1 |IA - zf| < [lzll} < (1 540 (i)) — o(1),

2t
5.13)=o / Nk dz | =o(1). O
(513 ( lzll<(1—8) Rip < 2% +1’ ) ) W

t(p k)

and thus

Proof of Theorem 5.7, lower bound. For n > , Lemma 2.9 gives

Ew(p.k) [H/‘A _UZ/PZHTV(Z/;)Z)} =o(1) + Erog.r) U’@ (', 2k‘+1’A) D TV(Rk/A)l

while, for all n < t(p, k),

2n 1
(L4 0(1))ELogp,r) Me (" %H;A) o

TV(RE /A)]

2t 1
/ 1 @(x,;A> Ll
zEB> (O,(l—é)Rk,pE)mg(A) 2k +1 P

By Lemma 5.8, the expectation of the integral against © is 1 — o(1), while the expectation
of the integral against % is bounded by

2 Erp.r

1
/JceBZ(o,u—é)Rwi) P
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5.3.1 Proof of Theorem 5.7, upper bound

The main proposition of the upper bound is as follows.

Proposition 5.9. Let p and k(p) tend to oo in such a way that k < 101;1%' and let

0 < e(p) < 1 with €(p)?k(p) — oo. Sett =t(p) = (1 + e)ﬁp%. For any fixed 6 > 0

2t 1 é
Usgpagnia () € Do) x (R/p2)* |6 (5,203 ) = 3 < 0] = (1 os(a)
(5.14)

Deduction of Theorem 5.7, upper bound. For any A € L°(p, k) we have pZ* < A, and

thus
:/ 1—min(®<m,2t;A),1)dar
TV(RK/A)  JRE/A P 2k+1 p

2t 1
2 A2
H9<x’2k+1’ ) p
= p7k+1/ 1 min (@ <l.’ Qt;A> ,1) dx
ze(®/pZ)" P 2k+1 ) p

2t 1
H@ (m 2k+1’A> )

% 1
LAy N R
H@<x’2k+1’ > p

LetT=171(p) = @. Given z € R*, define spherical shell
Sz, R.m)={y € R : ly—zl| € [(1 - 7)R, (1 + )R]}

and so

(1 + 0(1))EL0(p,k)

TV(RF/A)

=ELp,k)

<d+o(1). O
TV(RF/A)

We use several times the estimate for z € S(0, /%, 7)

w () < dow (- (B vo) §) <o (1) w9

The critical part of A when considering © ( z, 2k+1 ; A) in L' is Ac(z) = ANS(z,Vt, 7).

We split
2t 2t 2t
A) = A A
G(x’2k+1’ ) @M(x’2k+1’ >+@E< kTl )

@M( 2k+1 ) 2 ’7’“<\/;AI>'

AEA ()
Lemma 5.10. For all z € (R/pZ)*,

Bupa) [0 (2 5y ) | = 20+o(0),

Proof. If p is sufficiently large then there is at most one point of pZ* contained in A.(z),
and so (5.15) gives

2t
{eM< )

B g e

AEZE
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Let v € R* be a unit vector, and let D, denote the directional derivative in the x variable
in direction v. For any A € S (z,/%,27) we have

[ 2t
‘Dv<10g77k< 2k+17)\—l‘>>

In particular, for any y € [—1, %)k since [|y[la < %, we have

2t 2t
77k< %H7A—$> —(1+0(1))77k< %Hw\—w—y)

Thus the sum may be approximated with an integral, and the result follows. O

k
<t <O
\/Z pE

Lemma 5.11. We have the following estimates.

1
ELp.k)x®/pz)* |:®M <, CYSIEE A)] = » (1+0(1))

2t 1
E L.k x®/pz)" {QE (x, %H;A)] - (p)
2t 1
E(]R/pZ)k |:VarL (p,k) |:@JM < 2k + 1 A):|:| e (pQ) '

Proof. The evaluations of the means follow from Lemma 5.10.
In evaluating the variance term, we write, for A, Ao € ZE, A\ ~ Ay if Ay = a)\; mod P
for some 0,1 # a mod p. We have the following evaluations (see Lemma 5.2):

and fork > 2,

L(A:)q,)\QEA)—IUL(A:)\lEA)UL(A:/\QGA)

0 A1 E ka or \s € ka
=< O(p™") A1 Ag € ZF\ pZE, Xy # Aoy At o Mg
O™ A, Ao € ZE\ pZF, Ay ~ Xy or A\p = Ay

The variance thus evaluates to

2t
E(R/pZ)k [Vaerk |:@JV[( 2k+1 A):H <

ik > ((MNAz) +0(p~ )) (5.16)

p A1,A2€ZF\(pZ)*

X / 2 A 2 A d
Nk PR S A 5. 2 — X |ax
z€[-2,2)PNS(A1,VE,7)NS (A2, VE,T) 2k+1 2k +1

2t
Mk A—z | dx. (5.17)
pkﬂ /\EZk\(pZ)k /J-‘E [-2.5) ns(x Vi) < 2k+1 )

+

The term (5.17) captures A\; = \2. Replacing one Gaussian by the bound (5.15) and
then estimating as for the mean of ©,; gives a bound for this term of

(5.17) = o (;) .

The error term O(p~*) of (5.16) may be bounded by omitting the restriction on || Ao —z||
and summing over \,, the summation being bounded by a constant. The remaining
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summation over \; and integral over z are then evaluated as for the mean, and give an
error of O(p~F).

It remains to treat those terms from (5.16) with \; ~ \o. Let R(7) = 2(1 + 7)V/1.
Any \; ~ ) contributing to the variance satisfies A = A\ — Ay € B(0, R(7)) \ {0} and
A1 = (a + 1)A mod pZF, Xy = aX mod pZ* for some a mod p. Arranging the summation
over A\ and a, we find that the contribution of terms with A\; ~ A5 to (5.16) is bounded by
(by expanding the integral, this is now independent of a, which we pull out)

1 / \/T \/T
<L— M T | Mk s A— x| de.
»* Z 2€S(0,VET)NS(AVE,T) ( 2k +1 ) ( 2k +1 )

AeZFNB(0,R(7))\{0}

The total number of such A is < 2¥(1 + 7)¥(1 + €)*p by estimating with the volume of the
ball, see Lemma 2.5. Putting in the bound (5.15) for one Gaussian and integratikng the
second over all of R¥, we obtain an estimate from the terms with A; ~ )y of < ;87. O

Proof of Proposition 5.9. Consider separately the cases

1 )
95 |ELp.k[Onm] - » Om —Erpm[Oum] > 3

and apply Markov’s inequality. O

6 The power-of-2 random walk

6.1 A Chebyshev cut-off criterion

We begin by describing a commonly used second moment method for proving cut-off,
which we apply in analyzing the power-of-2 random walk. The following is a variant of
the lower bound method from [11], see also Wilson’s lemma in [20].

Given a probability measure p on Z/pZ and frequency £ € Z/pZ, define the Fourier

coefficient of i at € to be
= ¥ utae(5).

T€Z/pZ p

Define, as before, the L? mixing time by

o om 4
ty™ =inf on€Zs: Z & <
0#£EEZ/pZ

and the spectral gap
ap=1— max | .
gap O#GZ/pZIM(ﬁ)I
Proposition 6.1. Let {4, C Z/pZ},c» be a sequence of symmetric, lazy, generating
sets for 7./pZ, with 114, the corresponding uniform probability measure. Assume that
the spectral gap tends to 0 with increasing p.
Suppose the following holds for each fixed ¢ > 0. For each p € & there exists

symmetric subset 0 ¢ B, C W such that as p — oo,

e Forall¢ € B,
fia, (§) =1—o(1). (6.1)

e Foralln < (1 — €)t5"™(p)

1 an
\/@ Z /’LAP (f) — 0 (62)
§eB,
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e Foralln < (1 — e)t5*(p)

k(G —&) < (4o(1) D @ (&), (&) (6.3)

£1,62€Byp £1,62€8,

Then the sequence {(Z/pZ, p,, Uz ,z)} converges to uniform in total variation distance
with a cut-off at t1**(p) ~ t5%(p) if and only if the condition

5™ (p) gap(p) — 00 asp — oo (6.4)

is satisfied.

Remark 6.2. The condition (6.3) is in fact equivalent to

o (G —&) =04o0(1) >k (G)in (&) (6.5)

£1,62€B, £1,62€8,

since

Yoo & -&) > Y i (€)i, (&)

§1,62€8)p £1,62€8)
by the following application of Cauchy-Schwarz:

2

D )5, (&) =] i, @)
£1,62€By £€B,
2
- X e X ()
z mod p £eB, p
< T o) T ome X ()
x mod p z mod p £1,62€8,

= > G- &)

51752631)

Proof of Proposition 6.1. Since t"* < %, if the condition gap(p) - t5'*(p) — oo fails
then there is no cut-off in total variation, so we may assume that this condition holds.
Let € > 0 be fixed. For n > (1 + €)t5*, by Cauchy-Schwarz,

2
*1

WA — UZ/pZH

IN
e i

3 i, (6)|FRET (6.6)

£#£0 mod p

(1—gap)®?™ Y

TV(Z/pZ)

| 2t12-nix

< —0

since gap 5% — oo.
To prove the lower bound, let n < (1 — €)t5"*. Define function f,(z) on Z/pZ by
fp(x) = \/I? > e B, P4, (&e (*TE””) Writing E,,, Var,, for expectation and variance with

respect to probability measure u, we have

fia,(§)e (536) - fia,(€)de=o =0 (6.7)

Ey, p fp
Z/pZ Z |B ‘ p |BP|§€BP

rmodp £eB,
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since 0 ¢ B,, and

VarUZ/pZ [fp] =

L fia, (1), (E2)e ((5195)“’) 6.8)

Meanwhile

1 —x
Eup [fol= D, —== D fia,(Ee <> Iy
z mod p ‘Bp| £eB, p

mmZ > A€ < §I>; > in (e <Zz> (6.9)

mod p £EB, n mod p
Z fia,( (=¢)
EEB
1
= (1 +o0(1))—= > t4,(9)
|B;D| £eB
and
B 1= X g B im@ia e (ZETE ) o
mo | §1,62€8) P
1

a,(&1)fa, (L), (—(& — &) (6.10)

”’M

B
<1+o<1>>|31| S (6 - 6).

£1,62€B,

It follows by condition (6.3) that
Varo [f] = By [f2] = Bup [F =0 (B 1)) (6.11)

Let X, be the subset of Z/pZ defined by

X, = {a: ) < 3Buy 11}

By (6.9) and condition (6.2),
E#Z’; [fp] = o0. (6.12)

Hence Chebyshev’s inequality, (6.7), (6.8) and (6.12) imply
Uz/pz [Xpl =1 -0(1)
while Chebyshev, (6.11) and (6.12) imply
14, (Xp) = o(1).

We conclude

i ‘ >’IU X,) — (X)) =1-0(1). O
HNAP Z/pZ TV(Z/pT) Z/pZ( p) NAP( p) (1)
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6.2 Proof of Theorem 1.11, lower bound
Recall that we set £ = ¢5(p) = [log, p] and

> 2
Co :Z (1—C0827].T>.
j=1

Llog ¥

We prove the lower bound of Theorem 1.11 conditional on t'* < , which is proven
in the next section. The proof of the lower bound is a reduction to the conditions of
Proposition 6.1.

Let J = o(loglog p) be a parameter. With an eye toward applying Proposition 6.1, set

<o t=7%
R/Z

sz{geZ//\pZ:31§j17éjgge, Hg—z—jurrﬁ
P

Lemma 6.3. |B,| > 5—27 — L.

Proof. Let
:{gmodp:31<j<€,

5l

We have ¢ < |S| < 2{. For each s € S write > in binary
S
— = *.818283....
p
Partition S into 27! sets 51, S5, ..., Sys+1 according to the digits sgsy;1...s¢, . To each

pair s # s’ € S; we obtain r = s — s’ € B,,. The multiplicity with which a given such r
arises in this way is O(1). Hence

2J+1 T+1
|Bpl > D 18511551 = 1) = ~|S| + Z 15512,
j=1

By Cauchy-Schwarz,
2
ISP = DoIS;1 | <27 > s
J J

2 2
151 —|S] >

SO

|Bp| > —¢. O

2J+1 2J+1

Lemma 6.4. For § € By, fia, ,(£) > 1 — 5% — O (537)-

Proof. After possibly replacing ¢ with —¢ we may take £ = 2791 — 2792 4 O (27~7/) with
J1 < j2- Then

—
1—,&,4” = Z 1—cos 277 2’ gl 2i_j2+0(2i—4—J)))>
i=0

1 2 = i— i— = 1—J
:O(w>+%+ > (1 eos (am (270 —27)) + 37 (1 —eos 22 )

1=J1

1 9 Jj1—1 o Jj2—1 o
<0 (W) + Y] i;w (1 — cos (271'2Z J )) + i;w (1 — cos (27r2z J ))
460 1
9] O
20+1 <2J£>
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Lemma 6.5. For all but O (J¢3) pairs & # & € B,

~ . 800 1
fir,, (1 —&) =1~ W1 +0 (W) .

For all but O (J?(*) pairs & # & € B,

~ 660 1
— <1— ).
fras, (G = &) < 1= g7+ 0 <2Je>

For all but O (J3() pairs & # & € By,

~ 400 1
— <1- — .
/‘I’AZ,p(gl 52)—1 20+ 1 +O<2J£>

Proof. Write % =270 —2772 4 O (27%77), %2 =273 — 2744 + O (2777). By excluding
at most O (J¢3) quadruples (ji, j2, j3, j4) we may assume j; > J for all i and [j; — ji| > J
forall i # k in {1,2,3,4}. Then

-1
1- ﬂAz,p (f) = m Z (1 — COS (27‘(’ (217]1 —QVTI2 _9tTIs 4 V04 4 () (21767‘1))))
1=0

1 Jk—1 s
O(QJE) 2£+1 Z Z 1fcos 27r2 J))

k=1i=j,—J
- 1 800
_O(2J£)+2£+1'

For the second statement, by excluding O (J?¢?) tuples (j1, j2, js, ja) we may assume that
three of ji1, jo, j3, j4 are larger than J and mutually separated by at least J. One argues
as before, using the additional calculation that for 1 < j < J,

Z (1—cos(2r (27" £277%))) > Z: (1—cos (2m27%)) = co + 0 (277),

which holds since for all 7,5 > 0,

127 £27 7 |z > 127 IRz
The third statement is similar. O

Proof of Theorem 1.11, lower bound. Let ¢ > 0 be given, and suppose that n < (1 —
st

Set J = 2loglog? and define B, as above. It suffices to show that B, satisfies
conditions (6.2) and (6.5) of Proposition 6.1.
By Lemma 6.4

o Y, € = I (- 05 (55 055 )|

Pl geB, 2
~(ro(3)

@ﬁ

In particular Lemma 6.3 implies

1 . £e _
(fag, ()" > — = ¢7°W
|Bp \ oy ’ 25
p
and condition (6.2) is satisfied.
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To check (6.5), split &1,&2 € B, according as & = &, or &1, & fall into one of the
several cases enumerated in Lemma 6.5. This gives

Do (s, (61— €)" < Byl + By exp {(1 - e)élog€ (4;0 o <21€>>}

260
£1,62€B,
. Llogt [ —3co 1

0 1- =

+0(J )exp{( €) e ( 7 +0 2J€>)}
llogl [ —2cq 1

22 1— PR
—|—O(J£)exp[( €)<200 ( 7 +0 2€>>)]
+0 (J%).

By Lemma 6.3, | B,| = ¢>~°()), and thus all but the second term is an error term. Condition

(6.5) holds, since

{log ¢ 4
1B, exp [<1e> og (CO

200 \ ¢ )]S(”O(U) > (i, ()" | 0

€eBy

6.3 Proof of Theorem 1.11, upper bound
We prove the following somewhat more precise estimate.
Proposition 6.6. For all 0 < 3 < log¥, for alln > ;%O(logé + B) we have

5

. _ e <o log/

lriay , — UZ/PZ||’2FV(Z/;DZ) <e P+ P
co

Remark 6.7. The second term results from a discrepancy between the eigenvalue
generating the spectral gap and the bulk of the large spectrum which determines the
mixing time. With more effort, the factor of log ¢ could be removed.

The proof uses the following frequently used application of the Cauchy-Schwarz
inequality, see [6] for an introduction to these types of estimates, also [7].

Lemma 6.8. Let u be a probability measure on finite abelian group GG. We have the
upper bound

1 N
It =Uslrve = 5 > i)l
O;éxeé

In particular,

Nl=

i, O] (6.13)

>

0#¢& mod p

DN =

14y, — Uzppzllrvz vz <

Proof. We have

1
= Uy = 5 D_ In(@) = Ug(@)|.
z€G

Hence, by Cauchy-Schwarz,

H
Nl=

N[ =

I =V(G) ] py (@) <

<|G|Z|u($)—Uc(9€)2> =2 X wor) o

zeG 0#£xEQ
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The above lemma reduces to estimation of the size of the Fourier coefficients i, , ().
In estimating these coefficients it will be convenient to use the following modified binary
expansion of %.
Lemma 6.9. Let p > 3 be prime. For each 0 # £ mod p there is an increasing sequence
S ={i;}32, C Z>o, and € = £1 such that

o . .
=e» (—1)’27% mod 1.
=1

e

This representation is unique.

Proof. Write —% in binary as *.s152s3... with each s; € {0, 1}, then write f; = —f; — (—%5)

where (72?5) is obtained by a left shift, and then the subtraction is performed bitwise.

The uniqueness follows because any two distinct such representations (e, {i;}), (¢, {i’})
differ by > 277/, where J is min(i1, #}) if € # €/, and otherwise is the least integer which
appears in the symmetric difference {i; }A{}. O

6.3.1 Index sequences

We introduce several notions which will be useful in the remainder of the argument.

Given a real parameter J > 0, define a J-sequence of non-negative integers to
be an ordered set A C Z>,, with members enumerated A = a; < a2 < ... such that
any pair of consecutive elements differ by at most J. |A| denotes the cardinality. Set
i(A) = a1, t(A) = sup(A). A J-sequence with a; = 0 is called normalized. Given
J-sequence A = a; < ag < ..., its off-set sequence is the normalized J-sequence
A'=0<ay—a; <az—ay < ... For instance,

1,3,7,8,10,14
is a 4-sequence with offset sequence
0,2,6,7,9,13.

A J-sequence is called non-trivial if it contains a pair of elements that differ by more
than 1. We denote _¢# the set of J-sequences, ¢, the set of normalized J-sequences and
Jo = %o\ {{0},{0,1}} the set of non-trivial normalized J-sequences.

A J-sequence A contained in sequence B C Zx is called a J-subsequence. We
say that J-subsequence A C B is maximal if it is not properly contained in another
J-subsequence A’ C B. Given parameter J, one easily checks that any B C Z>( has a
unique partition into maximal J-subsequences. For instance, in the first sequence above,

1,3; 7,8,10; 14

is a partition into maximal 2-subsequences.

We write € (B) for the set of maximal J-subsequences of B. The J-sequences in
% (B) are J-separated in the sense that if A} # A; € €(B) and 1 € A;,29 € Ay then
|z1 — z2| > J. The sequences in ¥(B) are naturally ordered by, for A;, A, € €(B),
Ay < Ay if and only if for any z1 € A1, x0 € A, 21 < 9.

In the remainder of the argument we think of the non-zero bits in the expansion of %
above as partitioned into maximal J-sequences. These J-separated parts do not interact
significantly in calculating the Fourier transform. The argument that follows quantifies
the interaction.
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Let J > log, ¢ be a parameter. Given £ mod p, represent £ as (£ (£),¢(£)) as above.
Truncate .7 (&) to 7' (&) = #(£) N (0,¢] (note that € and .#’ determine &) and set

o) =17, € =2(I&). (6.14)

We call € () the set of clumps of &, each clump being a J-sequence. If there exists
C € €(&) with i(C) < J we say that C is initial. A clump C with ¢(C) > ¢ — J is final. We
write Cinit(£), Cun(€) for the initial and final clump, with the convention that Ci,;, = 0 if
there is no initial clump, and similarly Cg,. A clump is typical if it is neither initial nor
final. 6,(&) C €(€) is the subset of typical clumps.

Given frequency &, define the savings of £ to be

£—1 oo
sav() = %TH (1= fia,, () = (1 ~ co8 <2ﬂ < (1)’“2“’“> )) . (6.15)
k=1

1=

For a typical clump C € %,(€) also define
sav(C) = Z [1 — cos (27r Z (—1)’“2””)1 . (6.16)
§{(C)—J<I<t(C) ireC

Lemma 6.10. We have

sav(€) > Y sav(C) + |Crue(€)] + [Can(©)] + O (277]%]) -
Ce%o(€)

Proof. Since the clumps C € ¥ are J-separated, we have

sav(£) > Z Z [1 — cos (27r Z (1)k2lik> +0 (QJt(C)+l)‘|

CES(£) i(C)—J<I<t(C) ir€C

CX (@) T (-ee(3)

1€ Cinit (€) 1€Crin (§)
where in the last two sums we specialize to j = ¢ — 1, and note that for any fixed [
32 ‘Zqzz(—l)ml*irl’ > 7 =
In a similar spirit we have the following crude estimate for savings.
Lemma 6.11. Let0 £ € € Z//\pZ and let C € %,(§). We have sav(C) > |C/|.
Proof. Write C =1, <--- <1;. We have
ij—1 J - J -
sav(C) = IZ;J [1 cos (2777;( 1)™m2 )] > mz:; (1 cos (2))
by specializingtol =i, — 1, m =1, ..., j. O

Lemma 6.12. Let 0 % ¢ € Z/pZ. For fixed §; > 0, for o(¢) as in (6.14),

A(6)] < max (1 ULRE 53) |

Proof. The bound () < 1 — 222(+£1) follows from Lemmas 6.10 and 6.11. The bound
fi(€) > 1 — b3 follows from 1 (cosé + cos26) > —1 + ¢ for a fixed ¢ > 0. O
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For typical clumps we require slightly stronger estimates.

Lemma 6.13. Let 0 # £ € Z//p\Z Let C € %y(€), and suppose that |C| = j > 1.
Enumerate C' = i1 < i2 < ... < i;. There exists fixed §; > 0 such that if iy > i; +1
then sav(C') > sav(C") 4+ 01 where C’ is the J-sequence formed by iy — 1,142, ...,1;, i.e. by
shifting i, to the place adjacent to is.

Proof. We have
sav(C) —sav(C') =

> [1 — cos <2w zj: (_1)m2l—im>] _

i1 —J<l<iz—1 m=1

J
> [1 — cos (27r (2””2 +) (1)’”2”7%))] :
io—J—1<I<is—1 m=2

J
T = Z (—1)m7127i7n+i271’ 0<z<

m=3

sav(C) — sav(C") > lzj; {cos (227 (‘43 _ g)) ~ cos (227[ (_21 - x))] > 8

by noting that the worst case is 11 = i — 2. O

Set

Lemma 6.14. Let 0 # £ € W Let C € %y(¢), and suppose that |C| = j > 1,
C =iy <--- <ij withis =i, + 1. Then sav(C) > sav(C’") where C' is the J-sequence
formed by i, ..., 1, i.e. by dropping i,. Furthermore, if j > 3 and i3 = i1 + 2 then there
exists fixed 02 > 0 such that sav(C) > sav(C’) + ds.

Proof. We have
sav(C) —sav(C') =

i1—1
Z ll — cos (27r

l=i1—J m=1 l=i1—J+1

ZJ:(—l)mQZi"‘)] - Zf ll — cos (27r zj:(—l)mf"m)] )
<

Replace | with i; — 1 —land set z = 5/ _ (—1)m2im—ir=1,

sav(C) — sav(C") > Jf {cos (?) ~ cos <27r(le—;)>} . 6.17)

=0

=

In the case j > 3 and i3 = i; + 2 we have 2 < 2 which proves

(6.17) > cos (‘o’g) ~ cos <58”> O

The previous two lemmas imply the following one.

Lemma 6.15. Let 0 £ ¢ € Z//\pZ Let C € 60(€) be a typical clump of € (&) with digits
i1 <ip<..<i; Ifj=1orj=2andi; =1 +1 we have

sav(C) > co +O(277).
Furthermore, there is a § > 0 such that, if j > 3 or j = 2 and i3 > i1 + 1 then
sav(C) > ¢o + d7.
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Proof. By a sequence of steps in which we either (i) move the first index of C' adjacent to
the second, or (ii) delete the first, we reduce to case of Cy containing a single element,
which satisfies sav(Cy) = co — O(277). O

We collect together several easy combinatorial estimates. Given frequency ¢ we
are most interested in typical clumps C € %;(£) which consist of a single index, or
a pair of adjacent indices. Let the number of these be x1(£) and z5(£). Let z3(§) =
|60(€)| — x1(§) — 22(§) be the number of non-trivial clumps in %;,(€), and let m = o(§) —
|Cinit| — |Chin| — 21(§) — 222(§) be the number of indices contained in the clumps counted
in XT3 (f)

Given m > 0 and z3 > 0, let

aﬂmwﬁ={Aeb%V“§:Mﬂ=m}

i=1

be the collection of z3-tuples of non-trivial normalized J-sequences of total cardinality
m. Given initial and final clumps Ci,;; and Cay,, T € J(m,x3) and integers x1,x2 > 0,
let A (Cinit, Ctin, 1, 22, T) denote the number of ¢ with initial clump Cj,;, final clump
Chin, 71 typical clumps with a single index, =5 typical clumps which consist of a pair
of consecutive indices and z3 non-trivial typical clumps, whose offsets taken in order
are given by 7. For any j > 0, let I(j) (resp. F(j)) be the number of J-sequences on j
indices which may appear as the initial (resp. final) clump of .7 (§), £ € Z//p\Z \ {0}.

Lemma 6.16. Let x1, 22,23, m, T be as above and let C,;;, Can be any initial and final
clumps (possibly empty). We have the bounds

|7 (m,z3)] < (J + 1)"“1

and, for any T € T (m, x3),

fr1tr2trs

N (Cinit; Cin, 1, 2, T) < 2
T1:X2:T3:

Also, for any j > 0,
I(), F(j) < J7.

Proof. To bound |.7|, neglecting x3 and the non-triviality condition, choose for each
index 1 < j < m a distance 1 < d(j) < J + 1 between j and j + 1 in the arrangement,
with a distance of J + 1 indicating that a new clump begins with j + 1.

Similarly, the bound for I(j) follows on choosing a first index in one of at most J
ways, and then choosing sequentially distances between the consecutive indices. For
F(j), choose counting from the back instead.

The bound for .4 (Ciyit, Ctin, €1, 22, T) follows on choosing a first index for each clump,
the factor of 2 coming from choosing the sign. O

Our results on savings may be summarized as follows.

Lemma 6.17. Let0 £ ¢ € Z//\pZ have parameters =1, zs2, x3, m, Cinit, Csn as above. There
is a fixed 0 < § < § such that

T1+ T2 + T3
sav(€) > co(x1 + x2 + x3) + 0m + |Cinig| + |Coin| — O (2J> _
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Proof of Proposition 6.6. Let log J = o(log¢) and fix some 6, 1 — % < # < 1. By Lemma
6.8

*M 2 1 N 2n
(M << > |ias,(9)]
TV(Z/pZ) ~ 4 £0 mod p
1 2n
AR R Y NGl
1<o(§)<td  £9<o(€)<dst  d3l<o(§)
1
= Z(y1+y2+y3).
By Lemma 6.12, for some ¢ > 0,
2€§ (log ¢+)
<20(1- = O(e~ctloety, 6.18
yg =~ ( o0 n 1) 0(6 ) ( )
By Lemma 6.12, again for some ¢ > 0,
~£ (log ¢+3)
14 27 2 (log
nee ¥ () (-wh)
ey j 20 +1
. L 205 240
< Z exp (jlogé—jlogj +j————logl — ———
Z9§j<53€ (2£ + ].)CO 00(26 —+ 1)
< e '8 Z exp (( 0+1— ) j log€—|—j> 0] (e_dg(m'logz)) . (6.19)
00<j <83t

Conditioning on z1 (&), z2(&), z3(§), m as in Lemma 6.16 and i = |Cinit|, f

find
D YD > ox

1<j<£ z1+2z2+m~+i+ =3 |Cinit|=1,|Cein|=j 3 <[ Z ]

~£ (log £+3)
2sav \ °o
X Z ‘/V(Cinitvcﬁnyxl,ivz,T) (]_ — m)
TeT (m,z3)

= |Cﬁn| we

where sav = co(z1 + @2 + x3) + dm+i+ f — O (42323 Inserting the estimates for [.7|
and .4 from Lemma 6.16, we obtain

P < Z Z (J—|— 1)m+z+f€

) z1!29!
1<j<0? x1+2x2+m~+i+f=j

> E,eXp(— (x1+x2+x3+5m+”f—0(“”2”3))<loge+ﬁ))-

T1+T2

waslg) 0 2
m>0=w5>0
Assume that 1oge = 0(1). Then, when m > 1 we find that the sum over z3 is
O (exp(=p)) -
The terms for which 71 = 25 = 0 thus contribute O <eﬁev{+°“) + cﬁ[% ) When x1+xzo #

0 summation over i, f, m reduces to 1 + o(1). Thus

S <0 ( ﬁJ n ) +0 (exp (—ﬁ+0 (logfj+ﬁ>>> )
eco fco

Choose 27 = ¢ to complete the proof. O
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A Local limit theorem on R*

For k > 1 recall that we define the measure on ZF,

1

YF T ok +1

k
8o+ Y (0e, +0-e;)
j=1

and that we write

1 [E4[E

for the density of the centered standard normal distribution on R¥. In this appendix we
prove Lemma 1.10, which we recall for convenience.

Lemma. Letn,k(n) > 1 with k> = o (n) for large n. As n — oo we have

n 41 2n
* c — N _
TR T M \Vare

We actually prove a stronger estimate, which is a local limit theorem on R* for which
we don’t know an easy reference.

=o(1).
TV(RF)

Lemma A.1. Let n, k(n) > 1 with k? = o (n) for large n. Uniformly for o € Z* such that

lall3 < 224 + nit;gn and |||} < = (1 + l‘zgf") asn — oo,

v (a) = {1+ o(1)} e ( Q”,a) .

2k +1
The deduction of Lemma 1.10 is as follows.

Proof of Lemma 1.10. We have, for any A4, > 0, and for some C > 0,

2n a
Tk dI = 06 A
/|z|§> 2kn, +5”‘5%" ( 2k +1 ) ( )

2k+1

2n
K —— z|dz=04(n""
/|r|i>C7f(1+bg¢;) » ( 2k +1 ) a(n™%)

see Lemma 2.2, so it suffices to estimate the difference

" 2n
Ly @ e (g

for 23 < 252 +0 (“2£2) and |lzf}f < 5 (1+ 1282).

For z € Z* satisfying this upper bound and for y € [—3, )",

2n _ 2n 2k +1 )
77k< 2k+1,$+y>—nk< 2k+1,x>exp( i (2g y—|—||y||2)>

n 2k+1)x -
= (14 o) ( %2“) o (-5,
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Therefore

/ n n 2n d

ey AV TETE ) T Ve )|

5 2k+1)z-y
_ 1 1 1 = =) —1ldy|.
77k< 2k+1’$> (0()-1—( +o( ))/—é,é exp( 2n ) Y
We claim that for all ||z|2 < 22,5’& + nl\(}%n'
2k+ 1)z -
[-3.3) "

To see that this suffices for the proof, let

2kn nlogn

logn
B = VA <c™ (1
{eeziag < 28+ B oyt < o (14122

and estimate
2n n 2n d
ST REE BN W VSTANE e

(i

=o(1) Z (L4 o(1))n;"(z) = o(1)

TERB

z/é

1
rER 2

s

where in the last line we apply Lemma A.1. Since

Z/ 3" <\/E“y> dy = 1+o(1)

1
zER 2
it follows that >~ . 5 7;"(z) = 1 + o(1) so that

"x1 2n
V — —— .
CEe) TV T )|

Z/ < 2k211’x+y>_”< 21311 >

1 1
cezt/[-303)
by bounding both terms in the sum over z € %° separately.

To prove (A.1), choose a parameter A = A(n, k) — oo with n such that A = o (%)

dy = o(1)

" k .
and partition [—1,3)" = Fo0d U Fhaa With

) s )}

By Azuma’s inequality, for some fixed C' > 0,

1 1\" log 1 2
meas ye[—2,2> :‘m-y’>t\/ﬁ<1+ \/%> §2exp(—c),
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and thus meas(.%go0d) = 1 — 0(1). Since exp (—%) =1+o0o(1) forall y € Hyo0a We
have
2k+ 1)z -
exp 7M —1|dy = o(1).
YE S good 2n o
Meanwhile,

/yGy’bad

2k + 1)x - 2k+ 1)z -
on () s [ e (B
2n = YESnd 2n =

:_/Aooexp t(2k+1)\§%+k§£> dmeas(y:|y-x|>t\/ﬁ<1+k\)§£>)
< exp (f +o(1)) — o(1). o

The proof of Lemma A.1 is a standard application of the saddle point method. As
there are several intermediate lemmas, it may help the reader to skip ahead to first read
the eventual proof. Associate to v; the generating function

1
T 2%k +1

flz1, ey 2i) (1+z1+zf1—|—...+zk+z;1),

so that vy («) = C,[f], where for Laurent series in multiple variables

oo

— ni Nk
9(z1, .y 2) = E Qny o212

N1,eeeyNp=—00

we write Cy [g] = ao. The generating function associated to ;" is thus f™.
By symmetry we may assume « > 0 coordinatewise. By Cauchy’s theorem, for any

Rl,...,Rk > O
F n
1/;:”(04):<1.> / / %%dﬁ
2mi |z1|=R1 lzs|=Re 21 %k 21 2
1
= par  por 01,....0,)"e(—a-60)db AD
R R /(R/Z)k Jo(01, ., 0)"e (—a - 0) dB, (A.2)

where

f0(91, ceey Gk) = f(R16(91)7 ceey Rke(ﬂk))

and o - f is the usual dot product on R*. The asymptotic in Lemma A.1 is derived by
choosing Ry, ..., Ri such that the phase in fy(6)" is approximately equal to e(« - ) for 0
near 0. The main contribution of the integral then comes from small 6.

Let Y., be the domain

Do = {9 & (R/Z)" : 6] < 112}

For 0 € Y, define

F(8) = nlog { (1 + Rie(6y) + e(—b61) bt Ree(0) + e(-%))}

Ry Ry
— (a1 log Ry + ... + ay log Ry,) — 2miae - 6.

1
2k+1

fo(0)"e(=a-0

Evidently F'(6) gives a continuous definition of log AT R ) on Dem.
1 Ttk
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Lemma A.2. The first few partial derivatives of F'(0) are given as follows

Rie(6,) — <201
, n j€\Vj R,
D;F(0) = 2mi 1 0@ Q;

9. _0,
472n (lee(ejl) - %) (Rbe(ab) - 6(1?7];2))

D; D;, F(0 (a1 . .
©) = (2k +1)? Fo(0)? 1 F J2
2
el—bv; e(—0;
T L Rie(0;) + G2 yr2y, (Rje(ej) _ %)
I ok 1 fo(0) (2k +1)2 Fo(0)2
D;, D;,Dj, F(0) =
e(—05,) e(—05,) e(—0;5)
—167r3in (lee(ejl) - R, ) (Rj2€(9j2) - Rin) (RjSe(HjS) — Tn)
(2k +1)3 fo(0)3 ,
j1,j27j3 distinct
3 ./1 912)
D2 D, F() = " (Bnettn) + 524 (Bae “w)
(2k +1)2 fo(6)?
e 931) 2 e(=05)
167%in (Rj16(9h . ) Rj,e(0; Rz‘z ) ‘ .
2k +1)3 fo(6)3 s J1F g2
35, Re(f;) — <20
D;’F(Q):f&r in AV E\V; R;

2k+1 fo(0)
€ 79]‘ e 79_7'
2andin (Rie(6;) + <) (Rje(;) - “G20)

(2k +1)2 fo(0)?
3
1o (Roe(0)) — “G22)
BT T

Choose R; by solving the stationary phase equation, for each j, D;F(0) = 0, thus
7751 —a; = 0. (A.3)

Lemma A.3. Let n,k(n) € Zo wjth k* = o(n) asn — oo. Let a € ZF and assume
lall3 < n (1 + k’g”) and [laf|f < %= (1 + log”). The stationary phase equations (A.3)

N NG
have a solution and the solution satisfies

2k +1 k3
o0 =1+ 2l 0 (£l (a4
1 2k +1 k*at
Ri+—=2 0)a; O ! A5
J+Rj +(fo()ocg 2n)+ <n4 (A.5)
o2k?
=240 ( - >
n
2k + 1 k3o
log R; = o™ fo(0)a; + 0O ( el (A.6)
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Proof. We have the system of equations

1 & 1
fo(0) = (R- +— - 2) . (A.7)
1 ; 7 R;
and
1 2k +1
Rj+Rj_\/ (fo( ) n ) : (A.8)

Beginning from an initial guess f(0) = 2, solve for each R; in R; > 1 according to (A.8),
sequentially update f,(0) and then the R;. This produces a decreasing sequence of
guesses for fy(0) and for each R;, as is evident since the first step is decreasing, e.g.
since

1 fo,01a(0)%a3(2k + 1)?
i+ =——2< = J
RJ + Rj - 4n?

and therefore,

2k+1 1
fomew(0) <1+ An2 ——5fo,01a(0 )2HQ||§ <1+0 (n) .

As fy(0) is bounded below, the sequence necessarily converges.
To verify the asymptotics, note that fy(0) = O(1) leads to

1 (fo(0)ar; 21
Rj 2+\/4+ fO O)QjM>2

Ko
2+ (e, 251) +0< f)

which satisfies the claimed asymptotic.

Inserted into the formula for f,(0), this yields

3
70 =1+ 22 a0 + 0 (Kpat)

The error introduced by the factor of f,(0)2 may be absorbed into the last error term,
since [lal; < k.
Combining the stationary phase equation with (A.5) we find

2 4
Ry =14 20 0y + 5 (Tt o0l ) +0 ().

SO

2k+1 ka3
logRj fO( ) O< TLSJ [l

Lemma A.4. Let n,k(n) € Zso w1th k(n)? = o(n) asn — oco. Let a € Z* and assume

lall3 < n (1 + 10%) and |of|f < % (1 1‘2%’ Let R; be determined by the saddle

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 43/49



Cycle walks

point equations (A.3). For § € 9, we have

2/€+1 k3
O = -2l + 0 (Sl
D;F(0) =0
4
D, Dy, F(0) = 0% g,
—8m2n  27?|al|3 ko? k?
D2F(0) = =2 i) R4
2r0) = gy + T 0 (22 ) o (Jlalt

n k|la klo kla
Dlej2Dj3F(0)O(k3 <|9j1|+ |nj1|> <|9J2|Jr | J2|) <|933|+ |njs|)>’

J1,J2, j3 distinct

n klo; ) )
D]2'1Dj2F(Q) =0 (k‘2 (|0]2| + |nj2|>) y J1 %]2

pir® =0 (7 (Io+24)).

Proof. We have
F(0)

nlog f(0 Za] log R;

2k + 1 2k +1 k3
= 2 ol - 2L folalg + 0 (S5l

2k+1 k3
S ||a§+0( Ellalt).

At the saddle point, the first derivatives vanish. The mixed derivatives are evaluated by
plugging in

1 2%k+1
Ry~ =
J

fo(0)ey;

We have

4r2n Rj+ % 47r2a?
L+

2k+1  fo(0) n

:_877271 1 Lo %
2%+ 1 fo(0) n

8r2n  272||all ka2 k2
“wmrit +0 +O( ||a||4)

The triple derivatives are estimated by Taylor expanding e(f) to degree 1 in the
numerator, using R; — - < *% and R; + -, fo(0) =< 1. O
J J

D3F(0) = —

J

Lemma A.5. Let n,k(n) € Zso wjth k* = o(n) asn — oo. Let a € Z* and assume

lall2 <n (1 + l‘igf") and ||lo|} < %= (1 + l‘zgf") Let 8 € D5, We have

—dr” logn logn 9
2k + 1 Tl +o (( NG > 19113 + \f( N ) ||9|4)
noae . Mo VI logn
0 (ol + o+ L (1422 jagg)

n f logn
o —leli+ <1+ ) 0 3).
(hent+ 55 (14 2 o
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§
In particular, for any fixed constants ca,cq > 0, for |82 < 2t and 10l < ca®3 we have
n2
F(B) ~ F(0) + 5813 = of1), (a9
- 2k +17% ‘

while for ||0]|2 < c2 and 18]l = o(1),

B 47*n Ny log n NI
FW)-ﬂ®+dk+ﬂWb<0(%%ywu+< 2 ) (VR + Y0k . a0

and in general for ||0]|o <6 < 5,

473n oM logn ]
FO) - FO)+ 5 100 < 10+ (14250 ) (Tl + Y10 ).
Proof. By Taylor’s theorem, for 6 € %, for some 0 <ty <1,
1 1
F(6) = F(0) = 57%(0)(8,0) + 5 7°(ta0) (6,6, 0)
where 22 and 2° represent the second and third derivatives of F. Write
72(0) = 251, 1 2(0)
2% +1°"
We have
- lall3]18 kllallZllol
720)(0.0) < LIV | MIalEIOs K2y s
1 logn
1+—=)|e +f(1+ ) 0|2
< (1+22) 1ol 21 o
Also,
3 n
|2°(t69)(0,0,0)| < = 16115 + ||9H a3
n
+W(w%ﬁwmmﬁ
n k
+ 7 (ent + Ereiirals)
nooe Mg VT logn 3
g+ el + Y (14 8 ) ol
n vn logn
+ —10]11 + 1<1+ )93.
Lol = N 110]]3
For (A.11) use ||§]la < 6%[0]|2, and ||6]|> < 6v/%. O

Lemma A.6. Keep the same assumptions on k,n and « as in Lemma A.5. We have

lalzl61
I _—
I fo(6)] < 42

Moreover, there is a constant ¢ > 0 such that, if Re(fo(¢)) > 0 then

fo(0)
fo(o)‘ =

C
161 e
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and if Re(fo(0)) < 0 then

2

<1---=
=Tk Ok

)

fo(e)‘ c ¢

),

where () . denotes the vector of R*, all of whose coordinates are 3.

(R/Z)*

Proof. We have

[Tm fo(0)| =

1 1Y .
1 Z <Rj - R) sin(276;)

=1 J

<.

k

Z i sin(276,)

all2]|8
B |L||2||J|2_

If Re(fo(6)) > 0 then

RefO(Q> N _; k | i e
’h@)‘_l ij@k+n§:<&+j%)“ (276;))

J=1
c
<1- EHQH%

If, instead, Re(fo(8)) < 0 then

Re fo(@)| _ B 1 3 1 k 1 ‘ |
’fO(O)‘ - (2k +1)fo(0)  (2k +1)fo(0) Z (R] + Rj) (1 + cos(2m8;))

j=1
()
2 k
fo(0)

7e00) ‘ in the case Re(fo(0)) > 0 follows from, for some ¢’ > 0,

@O _ 1 <o (( Mw)Wﬁ)
fO(O)‘ S 1 kHQ||2+O 1+ \/E n ’

and the claim in the case Re(f(8)) < 0 is similar. O

2

(R/Z)¥ .

The bound for

We give our final estimate.

Proof of Lemma A.1. Let0 < § < 1—12 be a constant to be chosen.

. fo(0)"
v (a) = —ar—par 49
k (7) /(R/Z)k Rll...Rkk

0" 0)\"
RERE | iggnss l6lle>5 \ fo(0)
By Lemma A .4,
n 3
% _F0) _ -2 a3 [1 +0 <a||4>} ~ e Tt llelly (A.12)
R{'..RY*

1
since ||laf|] < & (1 + ?)

EJP 22 (2017), paper 90. http://www.imstat.org/ejp/
Page 46/49



Cycle walks

To treat the integral over ||6||.. < §, write

k
% +1)° 2%+ 1
emmzwu9< > / - VF,GemﬂGw»M.
/|e|x<a T\ dmn 6]l <5 gm2n o

Partition B, (0,0) by choosing for some parameters cs, ¢4,

B (0,0) = BUE; U Es

B = BOO(O, (5) N BQ (0, Co
E1 = B (0, (5) N By (0, Co

E2 = BOO(O, (S) \BQ <O, CQﬁ) .
The parameters cs, ¢4 are considered fixed, but may be arbitrarily large.
On B, (A.9) gives G(f) = o(1) and we find

me( ﬁ;jﬁwmmmw=u+dmlwm<w§;jﬁw

=1+ 8(62,64),

where ¢(cg,¢4) — 0 as min(cq, ¢4) — 00, as follows by Lemma 2.2 (c; and ¢4 only need be
taken growing if & does not grow).

In treating F, and F», let Cs, Cy be the constants of Lemma 2.2. To treat E1, note

that with respect to the Gaussian measure v = 7 (\/ et 0) , the event § € B,.(0,6) N

w2n <

B (0, Ca %) has probability =< 1, and thus, even after conditioning on this event, the

probability of ||0]4 > CukT/2E4L 4 ¢ is, for some C > 0, O (exp (—2%)). The bound
kC

8m2n

1
10]ls < 62||0)|2 implies that on Ej,

0]l = o(1). Set t = ||0]|ls — Cuk 7/ 241 and assume ¢,

3
is larger than a sufficiently large multiple of Cy, so that ¢ > k\/—% By (A.10) we find that
for 6 € F,

G(9) < g(t)
n logn n .o AN
g(t)<<0(1)—|—gt4+ (1+ i ) ( Pk kit3>'

Then

1 2k +1
<[, exp (g(t)) dmeas [ |8l > Cakt /2L 1)
B2 e () 8m4n

Integrating by parts, we find that this integral is o(1) as ¢4 — oo.
To treat F», set s = ||6]|2 and appeal to (A.11) to find

G(0) < h(s)
n logn n n 3
h(s) <<0(1)+52k32+<1+ \/E) < o+ \kgsz)
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Also, for some C > 0,

2k +1 2
s (101> o L) o (5).

We conclude

2k + 1
/%E2 Nk ( 87r2n’6> eXp(G(Q))dQ

2k +1
< - / exp(h(s))dmeas | [|0]> > \/i+ +s .
\L'F<<s§6\/g smn

n

If § is sufficiently small, this integral is in fact o(1) as ¢a — oo, as may be checked again
by integration by parts.

It remains to bound the integral over ||0||» > 0. Consider first the case Re(f(68)) > 0.
Let S C [k] be the collection of §; with |6,| > ¢. Write 64 for the variables in S and ¢ 4. for
the variables in S°. Appealing to Lemma A.6, we see that if |S| > logn then the integral
is negligible. Using 1 — z < e~ " in the remaining range we obtain a bound, for some
fixed ¢ > 0,

J
2

cjn cn
< exp <—)/ exp | ——||fqe
2 2 k) Nlogelloo<s ( %

1<j<logn SC[k],|S|=j

k i
2k +1\?2 k 4dmne |\ ? cjn
< ( 4dmnce > Z (]) (2k+ 1) P (_k)
1<j<logn
C((2k+1\?
- 4mn ’

The terms for which Re(f(8)) < 0 are handled similarly. O
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