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Abstract

Using techniques from motivic homotopy theory, we prove a conjecture of Anthony Blanc about semi-
topological K-theory of dg categories with finite coefficients. Along the way, we show that the connective
semi-topological K-theories defined by Friedlander-Walker and by Blanc agree for quasi-projective complex
varieties and we study étale descent of topological K-theory of dg categories.
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1 Introduction
Blanc defines [Blal6] semi-topological and topological K-theory functors
K5, K*P : Cate — Sp,

where Catg denotes the co-category of small idempotent complete pretriangulated dg categories over C'
(C-linear dg categories in this paper for short) and Sp is the co-category of spectra. When € is a C-linear dg
category, there are natural maps K(€) — K5(€) — K'"P(€). Moreover, K*¢(C) is a ku-module spectrum, and,
by definition,
K"P(€) =~ K*(€)[57"] =~ K*(€) @i KU,

where 8 € moku is the Bott element.

Let Sch¢ denote the category of separated C-schemes of finite type. If F': Catg — Sp is a functor and C is
a C-linear dg category, then we define a presheaf F(€) : Schf — 8p by the formula F(C)(X) ~ F(Perf x ®¢C).
In other words, F(€) is the composition of the functor Perf : Schf’ — Catc, the endofunctor

Catg — Catg D—DR¢C,

and the functor F' : Cat¢ — Sp. In many cases, we will use the restriction of F(€) to Aff¢’, Sm¢P, or
AffG" P ~ Sm?ff")p the opposites of the categories of affine C-schemes of finite type, smooth separated
C-schemes of finite type, and smooth affine C-schemes, respectively.
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1By work of L. Cohn [Coh13], Catg is equivalent to the co-category of small idempotent complete C-linear stable co-categories.



2 2. Comparison of semi-topological K-theories

In this paper, we prove three theorems about semi-topological and topological K-theory of dg categories.
First, we prove that K*'(X) ~ K (Perfx) when X is a quasi-projective complex variety, where K*'(X)
is the semi-topological K-theory spectrum defined by Friedlander and Walker in [FWO01] and Kt (Perf x )
is the connective version of Blanc’s semi-topological K-theory. Second, we prove a conjecture of Blanc,
stating that K(€)/n ~ K¢(€)/n for n > 1 and any C-linear dg category €. Third, we prove that K'*°P(€) is
Al-invariant and a hypersheaf for the étale topology on Smg for any C-linear dg category C. Put together,
the last two theorems imply that K(C)/n satisfies étale hyperdescent after inverting the Bott element.

The first theorem has also been obtained by Blanc and Horel and they also made progress toward the
second theorem along the same lines as the argument we give.

Acknowledgments. BA would like to thank Tasos Moulinos for patiently explaining Blanc’s work on
semi-topological K-theory to him on several occasions. Both authors express their gratitude to Anthony
Blanc for his email comments on this topic and for looking over a preliminary version of the paper. They
also are grateful to a careful referee who made several nice suggestions for improvements. Finally, this paper
would probably not be possible without the dogs Boschko and Lima, who created the opportunity for the
authors to work together.

2 Comparison of semi-topological K-theories

The original definition of semi-topological K-theory is for complex varieties and goes back to work of
Friedlander and Walker [FW02, FW01]. They construct spectra K™ (X) and K*'(X) when X is quasi-
projective and they give a natural map K*'(X) — K*™(X). When X is projective and weakly normal,
this map is an equivalence by [FWO01, Theorem 1.4]. In their survey [FWO05], they settle on K*'(X) as the
‘correct’ definition of semi-topological K-theory of quasi-projective complex varieties. It is natural to wonder
about the relationship between K**(X) and K5'(Perfx). We prove that they are in fact equivalent. Blanc
has communicated to us that he was aware of this fact, although it was open at the time of [Blal6].

We recall the definition of semi-topological K-theory of dg categories from [Blal6]. Let Sche¢ — Psp(Sche)
be the spectral Yoneda functor, where Pg,,(Sche) is the stable presentable co-category of presheaves of spectra
on Schg. Let Sch¢g — Sp be the composition of

Sche — 8 X — Sing X(C)

with the suspension spectrum functor ¥5° : § — 8p, where § denotes the co-category of topological spaces.
Define the topological realization Re : Psp(Schg) — 8p as the left Kan extension

X% Sing X(C)

Sche — 3 Sp (1)

Tsp(SCh@).

Given € € Catg, there is the presheaf K(C) as defined in Section 1, where K : Catg — Sp denotes nonconnective
K-theory as defined for example in [BGT13].

Definition 2.1 (Blanc [Blal6]). The semi-topological K-theory of € is the spectrum K**(€) = Re(K(C)).
More generally, let f : X — SpecC be a separated C-scheme of finite type and let Schx be the category
of separated X-schemes of finite presentation. There is an adjunction f* : Pg,(Sche) = Psp(Schx) @ fu
defined in the usual way. We let K**(€) : Sch®® — 8p be the presheaf with value at f : X — C given by
K5(C)(X) = Re(f. f*K(€)). In particular, K**(C)(X) ~ K (Perf x ®¢ €) and K**(C)(Spec C) ~ K**(C).
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Definition 2.2 (Blanc [Blal6]). If we apply the same construction with connective K-theory K™ we obtain a
connective version of semi-topological K-theory, namely K***(C) = Re(K®*(€)), where K*(C) is the presheaf
of connective spectra K (€)(X) ~ K (Perfx ®¢ €). This is the theory denoted by K(C) in Blanc’s paper.

The following theorem has also been obtained by Blanc and Geoffroy Horel (private communication).

Theorem 2.3. If X is a quasi-projective complex variety, then there is a natural equivalence K**(X) ~
K5 (Perfx ).

Proof. To begin, we give the definition of K*'(X) after [FW01, Definition 1.1]. Let ‘J/'(\i) be a small category

. . .. - U—sU(C
of topological spaces and continuous maps containing at least the essential image of r : Sch¢ H—()> Top

and the topological simplices A}’ . Friedlander and Walker consider the left Kan extension

top*
ey
Sehep — 5 g,
U'—}U(C)J ZRe(X)
Top .

By definition, if Y is a topological space, then

r*K(X)(Y) ~ colim K™(X)(U)~ colim K"(X x¢U).

Y—=U(C) Y —=U(C)

Evaluating r*K®(X) at the cosimplicial space A,

semi-topological K-theory of Y is defined to be

we obtain a simplicial spectrum 7*K(X)(Ag,,

). The

K=H(X) = [K(X) (Afp) -
Note that this process is precisely the composition of the functors

Resy : Psp(Sche) 2 Psp(Top) <5 Psp(A) — Sp
applied to K*(X), where s denotes the inclusion of A into ﬂ) classifying the cosimplicial space A, and
the final arrow is geometric realization of a simplicial spectrum. This composition is the stabilization of
Re : P(Sche) 2 P(Top) =5 P(A) 1k s,

where P(A) is the co-category of presheaves of spaces on the simplex category A, or in other words the
oo-category of simplicial spaces, and | — | denotes geometric realization. To prove the theorem it suffices to
prove that Re : P(Sch¢) — 8 is equivalent to the functor P(Sche) — 8 obtained via the unstable version of
the left Kan extension in (1):

Sche Uw—Sing U(C) s
J{ Re
‘.P(Sch@) .

To prove that Re ~ Re, note first that both functors are left adjoints because P(Sch¢) is presentable. The
only thing to check is that s, preserves colimits, but this follows because colimits in presheaf categories are
computed pointwise (see for example [Lur09, Corollary 5.1.2.3]). Thus, it suffices to prove that the restrictions
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of Re and Re to Sche are equivalent. On the one hand, we know that Re(U) ~U(C) in 8 for U € Schg. On
the other hand, by definition, 7*U(Af,,) ~ colimay v (¢) Homgen (V,U). Using Jouanolou’s device [Jou73],

we see that any map AL — V(C) factors through W (C) — V(C) where W(C) is affine and W(C) — V(C) is

top
a vector bundle torsor. Thus, by [FW02, Proposition 4.2, r*U(Af,,) = Homg,, (Af,,, U(C)) = Sing U(C),,

and hence Re(U) ~ Sing U(C), as desired. O

Remark 2.4. A theorem of Friedlander and Walker says that when X is smooth and quasi-projective,
K*%(X)[871] ~ KU(X(C)), the complex K-theory spectrum of the space of C-points of X (see [FWO05,
Theorem 32]). It follows from the theorem that K*P(Perf x) = K5 (Perf x)[371] ~ K*'(X)[8~!] ~ KU(X(C))
when X is smooth and quasi-projective, where K5t (Perf x ) ~ K5t (Perf y ) because X is smooth and by [Bla16,
Theorem 3.18]. This gives a new proof of one of the main theorems of Blanc’s paper [Blal6, Theorem 1.1(b)]
in the special case of X smooth and quasi-projective. Blanc’s theorem says more generally that if X is
separated and finite type over C, then K'*P(Perfx) ~ KU(X(C)).

Remark 2.5. It is clear that one could have defined a nonconnective version K"¢*(X) of Friedlander
and Walker’s K*'(X) simply by replacing connective K-theory with nonconnective K-theory in [FWO01,
Definition 1.1]. If this is done, then the proof of Theorem 2.3 goes through and shows that there are natural
equivalences K"“*'(X) ~ K**(X) for quasi-projective complex varieties X.

3 Blanc’s conjecture

Let C C Sche be a full subcategory closed under taking products with Al. Let (PQ;(C) C Psp(C) be
the full subcategory of Al-invariant presheaves of spectra, i.e., those F such that the pullback maps
F(X) — F(X x¢A') are equivalences for all X € C. The inclusion has a left adjoint, Ly1 : Psp(C) — 9’?; (©C).
A map F — G is an A'-equivalence if Ly1 F — L1 G is an equivalence. Given a presheaf of spectra F on C,
we let SingAl F' be the presheaf defined by

(Sing®’ F)(X) = colim F(X x¢ A},

where Ag is the standard cosimplicial affine scheme. It is a standard fact that SingAl F is Al-invariant
in the sense that for every X € C, the pullback map (SingAl F)(X) — (SingAl F)(X x¢ A') induced
by the projection X x¢ A§ — X is an equivalence. Moreover, F' — Sing® F is an Al-equivalence. Tt

follows that SingAl F ~ Ly F for all F and that if F is Al-invariant, then the natural transformation
F — La1 F is an equivalence. For proofs of these facts, see [MV99, Section 2.3]. From the natural equivalences

LaF ~ SingAl F, we see that if i : C’ C C is a subcategory (also closed under taking products with Ag)
and if F' is a presheaf on C, then i*Lg:1 F' = Lg1i*F.

Let C be a C-linear dg category. Then, L4:K(€C) ~ KH(C), where KH : Cat¢ — Sp is the homotopy
K-theory of dg categories, as defined for example in [Tab15]. If F': Sch®® — 8p is a presheaf of spectra, write
F*' for the presheaf with value at f : X — Spec C in Sch¢ the spectrum F®¢(X) ~ Re(f.f*F).

Lemma 3.1. If F': Sch®® — 8p is a presheaf of spectra, then
F5' ~ (L1 F)™ >~ L (F™).
In particular, if C is a C-linear dg category, then
K5'(C) ~ KH* (@),
where KH**(€) = Re(KH(C)).
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Proof. Since Ay — Spec C realizes to an equivalence in 8p, the realization functor Re : Ps,(Sche) — 8p
factors through the A!-localization Pg,(Sche) — ?Qg (Sche), which is modeled concretely by L:. This
proves that F*' ~ (L1 F)st. If we prove that (Lg:1F)%" is Al-invariant, then we will have proved that
L1 (F5Y) ~ Fst. Tt is enough to prove that st : Ps,(Sche) — Psp(Sche) preserves Al-invariant presheaves.
Let G be Al-invariant. If f : X — SpecC, then f.f*G ~ g.g*G where g : X x¢ A{, — SpecC since G
is Al-invariant. Thus, G*'(X) ~ Re(f. f*G) ~ Re(g.9*G) ~ G**(X x¢ A'), as desired. The second claim
follows from the equivalence K5'(€) ~ KH®'(C) of presheaves evaluated at Spec C. O

Write 8p(C) for the co-category of motivic Pl-spectra over C, Mapg, ¢y (—, —) for the internal mapping
object, and Mapsp(c)(—, —) for the (classical) mapping spectrum. A good reference for Sp(C) in the language
of co-categories is [Rob15].

Proposition 3.2. Let C be a C-linear dg category. There is a motiwic spectrum KGL(C) € Sp(C) such that
Maps, o) (S5 X 1, KGL(€)) ~ KH(€)(X)
for any X € Smg.

Proof. Below, we use the (nonstandard) notation T' = (P!, 00) for the based scheme and for the duration of
this proof write P* only to denote the unbased scheme.

Write 8pg1(C) for the oo-category of Al-invariant, Nisnevich sheaves of spectra on Sm¢. Note that
KH(C) € 8pg:(C). Indeed, it is Al-invariant by definition and it is a Nisnevich sheaf, because it is the
restriction of a localizing invariant to Smg (see [Blal6, Theorem 1.1(c)]).

By [Rob15, Corollary 2.22] for example, we have an equivalence

Sp(@) ~ StabT(Spsl (C)) = lim(8p51 (C) & Spst (C) ... )

Let 8 € moMaps, , (¢) (T, KH(Perfe)) = KHo((IP!, 00)) be the usual Bott element. Write as well 8 : KH(C) —
Mapg,, , () (T, KH(C)) for the “multiplication by 57 map, obtained from the KH(Perfc))-module structure
on KH(C). Now define KGL(€) € 8p(C) to be the “constant” spectrum whose value is KH(C) and structure
maps § : KH(C) — Mapg,, , () (T, KH(C)).

Since KH(C) is a localizing invariant and Perfp: = Perfx & Perfx, the projective bundle formula holds
in KH(C):

KH(C)(PY) ~ KH(€)(X) ® KH(€)(X)

for X € Sche. This splitting identifies Mapg, ., (¢) (T, KH(C)) with KH(C) via the map 3 defined above.

In particular, we see that KGL(C) is a periodic motivic spectrum and Q5 (KGL(C)) ~ KH(C). It is now
immediate that

Mapg,¢) (57 X+, KGL(C)) ~ Mapg,, , (¢)(X31 X4, KH(C)) ~ KH(C)(X),

for any X € Smg.

Now, we prove Blanc’s conjecture. Blanc has told us that Horel was exploring a similar argument.

Theorem 3.3. If € is a C-linear dg category, then the natural map K(€)/n — K54(@)/n is an equivalence
for anyn > 1.



6 4. Descent for topological K-theory of dg catgories

Proof. By [Blal6, Theorem 3.18], we may compute the semi-topological K-theory of € using only smooth
C-schemes Sme C Affe. In fact, if £ : Sch” — 8p is any presheaf of spectra, we can compute Re(F) by first
restricting F' to Smg and then using the realization Re : Ps,(Sme) — Sp given as the left Kan extension

X—X% Sing X (C)
Smg i Sp

j Re

Tgp(Sm@).

Let E denote the constant presheaf on Sme¢ with value K(€)/n. There is a natural map E — K(C)/n.
The topological realization of E is K(C)/n since it is a constant sheaf. As topological realization factors
through Nisnevich hypersheaves, it suffices to check that E — K(€)/n induces an equivalence after Nisnevich
hypersheafification. For this, it suffices to see that the natural map K(€)/n — K(R®¢ €)/n is an equivalence
for every essentially smooth hensel local ring R over C.

By the proposition above, KH(C) is represented by a motivic spectrum, KGL(€). Thus, KH(C)/n
is represented by a motivic spectrum denoted KGL(C)/n. Gabber-Suslin rigidity is valid for KGL(C)/n
by [HY07, Corollary 0.4]. (As noted in loc. cit., the normalization property of that result holds for any motivic
spectrum over an algebraically closed field.) In particular, KH(R ®¢ €)/n — KH(R/m ®¢ C)/n ~ K(€)/n is
an equivalence for any essentially smooth hensel local ring R, where m C R is the maximal ideal. But by a
result of Tabuada [Tab17, Theorem 1.2(i)], whose proof essentially follows the argument of Weibel in the case
of associative rings [Wei89, Proposition 1.6], K(€)/n is Al-homotopy invariant so that K(C)/n ~ KH(C)/n.
It follows that K(R ®¢ €)/n — K(R/m ®¢ C)/n ~ K(€)/n is an equivalence so that E — K(C)/n is an
equivalence, which is what we wanted to prove. O]

4 Descent for topological K-theory of dg catgories

In this section we prove the following result.
Theorem 4.1. Let C be a C-linear dg category.
(i) The presheaf K*P(C) : Sm¢¥ — 8p satisfies étale hyperdescent.
(ii) The presheaf K(€)/n[B71] : Sm¥ — Sp satisfies étale hyperdescent.

Part (ii) of the theorem is a noncommutative generalization of the main theorem of Thomason [Tho85].
Indeed, if € ~ Perfy where X is an essentially smooth separated C-scheme, then K(Perfx)/n[371] is
equivalent to the presheaf

Y 5 K(Y xo X)/n[87],

which satisfies étale hyperdescent by [Tho85, Theorem 4.1]. In general, we cannot improve the result to
semi-topological K-theory. Indeed, it is well-known that K**(Perfx)/n ~ K(Perfx)/n does not satisfy étale
descent. The Quillen—Lichtenbaum conjectures (which follow from the, now proved, Bloch-Kato conjecture)
give a bound on the failure of étale hyperdescent for K-theory with finite coefficients. For example, if X is an
essentially smooth separated C-scheme of Krull dimension d, then

K(X)/t — K(X)/([57"]

is 2d-coconnective. (See [Tho86, Section 5] for a discussion of the bound 2d.) Recall that a map of spectra
M — N is r-coconnected if the induced map w,.M — 7N is an injection and w,M — 74N is an isomorphism
for s > r. Following the tradition of proposing noncommutative versions of theorems known for C-linear dg
categories of the form Perf x, we ask the following question.
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Question 4.2 (Noncommutative Quillen-Lichtenbaum). If € is a nice (probably smooth and proper) C-linear
dg category, is
K(C)/n — K™P(€)/n

is r-coconnective for some r.

To prove Theorem 4.1, we make use of the topological realization functor Re : Sp(C) — 8p, extending the
functor of taking complex points of a C-scheme. This functor factors through the localization Pg,(Smg) —

soal
Shv?}‘:’A (Smg), which is equivalent to 8pg1(C), the category of motivic S'-spectra. To see that it factors

through the T-stabilization functor 8pg:(C) — Sp(C), it is enough to note that the realization of T is S?,
which is already tensor invertible in Sp. Thus, we have a commutative diagram

X5 X(C)
Smg 47> Sp

LT AT
Re .-~ " Re
Psp(Sme) — Spgi (€) — Sp(C)

of realization functors, and we will abuse notation by not distinguishing them.

Lemma 4.3. Let C be a C-linear dg category. Then, there is an equivalence Re(KGL(€)) ~ K%P(C).

Proof. By definition, KGL(C) € lim(8pg:(C) Al 8pgi(C) < ---) is the periodic T-spectrum with value
KH(C) and structure maps induced by S:
B B, 02 B
ka(e) & arku(e) L o3kuE) & -

The realization functor Re : Sp(C) — Sp factors through the equivalence Spg28p ~ 8p, where Spg28p is the
oo-category of S%-spectra in spectra. The realization functor sends KGL(€) to the S2-spectrum

K (e) 5 02kte) & okt 4
The underlying spectrum of this S2-spectrum in spectra is “Q2°°”, the colimit of the diagram, which is by
definition K*P(€). O
Lemma 4.4. If X € Smc, then Re(Mapg, ¢ (X35 X+, KGL(€))) ~ K*P(€)(X).

Proof. By adjunction,
Mapg,,(c) (Xp1 X+, KGL(€)) ~ KGL(Perfx ®¢ C).

The claim follows from the fact that Re(KGL(Perf y ®@¢ €)) =~ K'*P(Perf x ®¢ €) ~ K'*P(€)(X).

Lemma 4.5. If X € Smg, then K*P(C)(X) ~ Mapg, (XX (C)4,K"*P(€)).

Proof. Because the functor Re is symmetric monoidal, it commutes with internal mapping objects. Since
Y3 X is dualizable in 8p(C), the statement of the lemma follows from the previous lemma. O

Proof of Theorem /.1. Tt follows from the equivalence K(C)/n ~ K*'(€)/n of Theorem 3.3 that the second
part follows from the first part. On the other hand, Lemma 4.5 shows that K'*P(C) is the restriction of the
cohomology theory on spaces represented by K'*P(€) to Schg. It follows that it satisfies étale hyperdescent
since any cohomology theory does (see for example [DI04, Theorem 5.2]). O
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