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ABSTRACT. We prove equivariant versions of the Beilinson-Lichtenbaum con-
jecture for Bredon motivic cohomology of smooth complex and real varieties
with an action of the group of order two. This identifies equivariant motivic
and topological invariants in a large range of degrees.
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1. INTRODUCTION

A major achievement of motivic homotopy theory is the proof of the Bloch-Kato
conjecture relating Milnor K-theory to Galois cohomology [Voe03a], [Voell], and
consequently the solution of the Beilinson-Lichtenbaum conjecture by the results
in [SV00, §7]. With finite mod-n coefficients and X a smooth scheme of finite type
over a field k of characteristic coprime to n, one form of the Beilinson-Lichtenbaum
conjecture asserts that the comparison map between motivic and étale cohomology

(L.1) HH (X, Z/n) — HE (X, )

is an isomorphism when p < ¢ [SV00, Conjecture 6.8] and [VSF00, Chapter 1].
This “étale descent” property identifies a large range of motivic cohomology groups,
a.k.a. higher Chow groups, with more computable étale cohomology groups. For
a smooth complex variety X, the étale cohomology groups in (1.1) agree with
the singular cohomology groups of its corresponding analytic space X(C). Thus
the Beilinson-Lichtenbaum conjecture provides a powerful link between algebro-
geometric and topological invariants. This can further be enhanced to prove the
Quillen-Lichtenbaum conjectures comparing the algebraic and hermitian K-theories

2010 Mathematics Subject Classification. 14F42, 19E15, 55P42, 55P91.
Key words and phrases. Equivariant motivic homotopy, Bredon motivic cohomology, Betti
realization.

1



2 J. HELLER, M. VOINEAGU, AND P. A. @STVZER

of X with their analytic or étale counterparts, see e.g., [Sus95, Theorem 4.7],
[Voe03a, Theorem 7.10] and [BKS©®15, Theorem 5.1].

A framework for invariants of smooth varieties equipped with a group scheme
action has recently been organized in the subject of equivariant motivic homotopy
theory [Del09], [HKO11], [HK®15], [Her13], [Hoy15], [CJ14]. Of particular inter-
est are actions by the group C5 of order two governing the examples of hermitian
K-theory and motivic Real cobordism [HKO11]. Bredon motivic cohomology in-
troduced in [HV@15, §5] is an equivariant generalization of motivic cohomology for
finite group actions. This theory is now amenable to a homotopical analysis on
account of the equivariant cancellation theorem shown in [HV@15, Theorem 9.7].

‘We employ this setup to prove an equivariant Beilinson-Lichtenbaum comparison
theorem for smooth complex (and real) varieties. Before stating our main theorem,
we review the players involved. If M is a topological space with Cy-action and A is
an abelian group, the Bredon cohomology groups H gjp 7(M, A) are an equivariant
analog of singular cohomology groups. Here a,p are integers and o stands for
the sign representation, i.e., topological Bredon cohomology is graded by virtual
representations of Cs. Now if X is a smooth complex Cs-scheme of finite type,
the Bredon motivic cohomology groups H. gjp 70499 (X A) have a grading by a 4-
tuple of integers. This 4-tuple is a pair of virtual representations V' = a + po and
W = b+ go which are respectively the “cohomological degree” and the “weight” of
the grading.

In Appendix A we construct a natural comparison map between Bredon motivic
cohomology and its equivariant topological counterpart

(1.2) HETPOPH7 (X, A) — HEP7(X(C), A).

The map in (1.2) is induced by a Betti realization functor for the stable Cy-
equivariant motivic homotopy category. In fact, the groups on the left hand side
of (1.2) are represented by a Cy-equivariant Bredon motivic cohomology spectrum
MA, whose Betti realization agrees with the Cs-equivariant Eilenberg-MacLane
spectrum for the constant Mackey functor A, cf. Definition 3.2, Section A.6, and
Theorem A.29.

A virtual Cy-representation U = a + po has the dimension given by dim(U) =
a+ p and dim(U%?) = a. The Beilinson-Lichtenbaum comparison theorem says
that the comparison map (1.1) is an isomorphism (resp. injection) for cohomological
degrees less than or equal than the weight (resp. weight plus one). Our main result,
which appears as Theorem 6.8 below, asserts that the condition of isomorphism
depends on the dimensions of the representations and their fixed points. A precise
statement is the following.

Theorem 1.3. Let X be a smooth complex scheme of finite type with Ca-action.
Write V.= a+ po and W = b+ qo. Then, the comparison map (1.2) is an
isomorphism for a + p < b+ q and a < min{b,b — ¢} and an injection when
a+p<b+qg+1, and a < min{b,b — q} + 1 for any finite abelian group A.

The condition a < b — g cannot be improved as we can see from Remark 5.6.
From this theorem it also results that in the above range of degrees it follows that
Hg:'po’b"’q” (X, A) is a finite abelian group.

We also establish an equivariant version of the Beilinson-Lichtenbaum compari-
son theorem in the case of smooth real Cs-schemes of finite type, see Theorem 7.10.
In this case, if X is a finite-type Cs-scheme over R, the space of complex points
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X (C) has a Cy x Cy-action. One copy of Cy acts algebraically through the action
on X and the other acts via complex conjugation. Thus Theorem 7.10 is a com-
parison result which relates Cy-equivariant Bredon motivic cohomology of X with
Cy x Cy-equivariant topological Bredon cohomology of X (C).

We expect that over other fields, there is an analogous comparison between
Bredon motivic cohomology and an appropriate equivariant étale analog of the
topological Bredon cohomology. However it doesn’t appear that this has been
developed yet. Doing so here would lead us too far astray and so we leave this for
a future paper.

The nonequivariant Beilinson-Lichtenbaum comparison theorem is a fundamen-
tal ingredient in the proof of Theorem 6.8. We leverage this nonequivariant compari-
son result to an equivariant comparison by means of a motivic version of the isotropy
separation cofiber sequence together with some computations in Borel motivic co-
homology. We emphasize that these arguments rely both on the representability of
Bredon motivic cohomology in the stable equivariant motivic homotopy category as
well as that it can be computed as sheaf hypercohomology. That the representable
theory coincides with sheaf hypercohomology is basically a recasting of the homo-
topy invariance and equivariant cancellation theorems, established in [HV(@15], and
is proved in Theorem 3.4 below.

The equivariant Beilinson-Lichtenbaum comparison theorem is a first important
step towards understanding the Bredon motivic cohomology ring H, EJ;(k:, Z/2) of a
field k. As in (1.2), the gradings are sums of Ca-representations. These invariants
are fundamental for understanding key features of Cs-equivariant motivic homotopy
theory, e.g., H, é:;(lm Z/2) forms part of the largely unknown Cs-equivariant motivic
Steenrod algebra of cohomology operations. Another fundamental aspect of Bredon
motivic cohomology is that the zeroth slice of the Cs-equivariant motivic sphere
spectrum turns out to be the highly structured Cs-equivariant Bredon motivic
cohomology spectrum MZ introduced in Definition 3.2, cf. [HO16].

This paper is structured as follows. Sections 2-7 are devoted to the proof of
our main result for the comparison map (1.2). The proof rests on techniques from
equivariant motivic homotopy theory: roughly speaking, taking complex or real
points induces a Betti realization functor which in turn gives rise to the compar-
ison map for Bredon motivic cohomology. The details of these constructions are
found in Appendix A. In Section 2 we develop the homotopical techniques that we
need in the sequel; in particular, the motivic isotropy separation cofiber sequence
plays a central role in our approach. The computational core of the paper lies in
Sections 3-7. First, in Section 3, we establish that Bredon motivic cohomology is
represented by MZ and show that it affords Thom classes for a certain class of equi-
variant vector bundles as well as Gysin sequences. In Section 4 we compare Bredon
motivic cohomology with Edidin-Graham’s equivariant higher Chow groups. In
Section 5 we show that the generalized “geometric” Borel motivic cohomology ring
Hé;*(ECQ7ZQ) is periodic with period (20 — 2,0 — 1). These preliminary results
are used to prove the complex and real comparison theorems for Bredon motivic
cohomology in Section 6 and Section 7, respectively.

Notation and Conventions: Throughout k is a perfect field of characteristic
char(k) # 2. Unless said otherwise, a scheme is always assumed to be separated.
For a finite group G, let GSch/k denote the category of separated schemes of finite
type over k with left G-actions and equivariant maps. Similarly, GSm/k is the
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category of smooth schemes of finite type over k with left G-actions and equivariant
maps. We use the term k-variety synonymous with separated, finite type, scheme
over k.
We write A(V) = Spec(Sym(VV)) for the affine scheme associated to a vector
space V over k, and P(V') = Proj(Sym(V'")) for the associated projective scheme.
The construction of the stable G-equivariant motivic homotopy category SHg (k)
is recalled in Appendix A. We write [—, —]¢ for maps in SHg(k). We distin-
guish four sphere objects in the Cs-equivariant motivic homotopy category, see
Section 2.3. These are denoted S', S7, S}, and S7. The sphere S! is the usual
simplicial sphere and S? the simplicial sign representation sphere. The algebro-
geometric sphere S} is the pointed scheme (G, 1) equipped with trivial action and
7 is the pointed scheme (G,,,1) equipped with the inversion action, z ~ z 7.
We write V' = a + po for the Cs-representation which is the sum of a-copies of the
trivial representation and p-copies of the sign representation, and define

(1.4) gatpobtas . ga=b A G(p=a)o 5 GY A G917

We adopt the convention that * refers to an integer grading of homotopy or coho-
mology groups while x refers to grading by representations.

2. BACKGROUND

Equivariant motivic homotopy theory was introduced by Voevodsky [Del09] as a
tool for understanding symmetric products and motivic Eilenberg-MacLane spaces.
Stable equivariant motivic homotopy category was introduced by Hu-Kriz-Ormsby
[HKO11] as part of their study of the homotopy limit problem for hermitian K-
theory of fields. In this section we recall definitions and basic results about equivari-
ant motivic homotopy theory. Technical details and a fairly complete, self-contained
discussion are given in Appendix A.

2.1. Equivariant Nisnevich topology. The equivariant Nisnevich topology was
introduced by Voevodsky [Del09, §3]. See [HV(15, §3] and [HKO15, §2] for more
details concerning the equivariant Nisnevich topology.

Definition 2.1. An equivariant distinguished square

(2.2) W ——Y

L b

Ut . x

is a cartesian square in GSch/k such that p is étale, i : U C X is an open embed-
ding, and p induces an isomorphism of reduced schemes (Y \ W),eq = (X \ U)req-
An elementary Nisnevich cover is the cover {U — X,Y — X} associated to an
equivariant distinguished square. The equivariant Nisnevich topology on GSm/k is
the smallest Grothendieck topology containing the elementary Nisnevich covers.

Recall that the set-theoretic stabilizer S, of a point z € X is the subgroup
Sy :={g € G| gz = z}. By [HVO15, Proposition 3.5], an equivariant étale map
f:Y — X is an equivariant Nisnevich cover if and only if for every x € X there is
y € Y such that f induces an isomorphism k(y) = k(x) on residue fields as well as
an isomorphism S, = S, on set-theoretic stabilizers.
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Remark 2.3. Using this characterization of Nisnevich covers we see that every
smooth G-scheme is locally affine. Every point z € X has an S -invariant affine
neighborhood (take any affine neighborhood and consider the intersection of the
translates by elements of S, ). Let U, be such a neighborhood. Then G xS U, — X,
where for a subgroup H C G and H-scheme Z we write G xI Z for (G x Z)/H, is
an equivariant Nisnevich neighborhood of G-z in the sense of [HK@15, Section 2].
The collection {G x% U, — X} is an “infinite” equivariant Nisnevich cover of X
by smooth affine G-schemes admitting a finite subcover by [HK@15, Remark 2.18].

2.2. Motivic G-spaces and spectra. A motivic G-space over k is a presheaf of
simplicial sets on GSm/k. We write GSpc(k) and GSpc, (k) respectively for the
categories of motivic G-spaces and pointed motivic G-spaces over k. The unstable
equivariant motivic homotopy category is constructed following a pattern familiar
from ordinary motivic homotopy theory; technical details are found in Appendix A.
In brief, it is the homotopy category of a model structure which is constructed so
that the following two relations hold.

(i) Any equivariant distinguished square (2.2) is a homotopy cocartesian square.
(ii) The projection X x Al — X is an equivariant motivic weak equivalence for
any X in GSm/k.
These relations have non-obvious consequences. For example, by the Whitehead
theorem, a map inducing isomorphisms on equivariant Nisnevich sheaves of homo-
topy groups is an equivariant motivic weak equivalence, cf. [MV99, §3.2, Proposition
2.14]. Moreover, every G-equivariant vector bundle is an equivariant motivic weak
equivalence [HK(@15, Proposition 4.10].

Let V be a representation of G, e.g., the regular representation pg = k[G].
The associated motivic representation sphere is defined to be the pointed motivic
G-space

™V =P(Va&1)/P(V).
For an integer n > 0 we use the smash product in GSpc, (k) to define
TnV — (TV)/\n.
Consider the equivariant distinguished square

A(V)\ {0} A(V)

l |

PVae1)\PQl) —=P(V &1).

It is in particular a homotopy cocartesian square. The inclusion of P(V & 1) \ P(1)
into P(V @ 1) is equivariantly Al-homotopic to the inclusion P(V) C P(V @ 1); the
requisite deformation is given by ([zg : -+ : Tpy1],t) = [Xo -+t Ty @ txpyr]. We
conclude there is an equivariant motivic weak equivalence

TV ~ A(V)/A(V)\ {0}

Also note that 7"V ~ TV®" and more generally TV A TW ~ TVEW,

The stable equivariant motivic homotopy category SH¢ (k) is the stabilization
of GSpe, (k) with respect to the sphere T°¢. We use symmetric TP¢-spectra as a
model for SHg(k), see Section A.4. It is a tensor triangulated category with unit
the sphere spectrum 1 = %5%,,5%. Here, S° = Spec(k), is the unit for the smash
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product in GSpc, (k). If X is an unbased motivic G-space, e.g., a smooth G-scheme,
we have an associated based motivic G-space X, by adding a disjoint basepoint,
and an associated suspension spectrum X5, Xy. When no confusion should arise,
we sometimes simply write X for 55, X, and S° for the sphere spectrum.

2.3. Cy-equivariant spheres. When G = (5 there are only two representations,
the trivial representation and the sign representation which we write as o. It is
convenient to introduce the following sphere objects. The sign Tate sphere S} is
the pointed Cy-scheme (G,,, 1) where G,,, is equipped with the action x +— 2~!. The
simplicial sign representation sphere S¢ is defined to be the unreduced suspension
of Cy, i.e., it is the homotopy cofiber of Cy — S°. We have as well the usual
simplicial sphere S and the Tate sphere S} which is the pointed scheme (G,,,1)
considered with trivial action. As observed in [HKO11, §4.1], there is an equivariant
motivic weak equivalence S7 A S ~T7.
The indexing convention

Satpobtar .— ga=b A P07 A §Y A GH7

in (1.4) is a mixture between the convention standardly used in motivic homotopy
theory and that used in classical equivariant homotopy theory. The translation
between the convention of indexing here and the one in [HKO11, §4.1] is given by

gatpobtao _ gla=b)+(p—a)y+batava

The convention we use in this paper has the feature that the effect of the complex
Betti realization functor (constructed in Section A.5) is the first entry of the index,

Rec (Sa+pa',b+qa) _ SG-HDO‘ .

A real Betti realization (taking value in SHe, xx, ) is constructed in Section A.7. In
this case,
Rec. 5 (Sa-‘rpo',b-l‘qo) — Sa—b+(p—q)g+b€+qa®€
y &2 ,

where o is the sign representation corresponding to the factor Cy and € is the sign
representation corresponding to Xs.

The following two fundamental homotopy cofiber sequences of pointed motivic
Cs-spaces are useful for computations,

(24) CQ+ — SO — SU’O
and
(2.5) (A(no) \ {0})4 — S° — §2nome,

Here, the first maps in these sequences are induced respectively by the projections
Cy — Spec(k) and A(no) \ {0} — Spec(k).

2.4. Motivic isotropy separation. The isotropy separation cofiber sequence is a
fundamental tool for analyzing equivariant homotopy types in classical equivariant
homotopy theory. Our proof of the main Theorems 6.8 and 7.10 makes use of an
appropriate motivic version. We shall restrict our attention to the group Cs. See
[GH16] for a general discussion of motivic isotropy separation.

Recall that the classical topological isotropy separation cofiber sequence is

EeCsi — S — EoCs,
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where the last term is defined by this sequence. A check of fixed points shows that
a model for E,C5 is given by

(2.6) E.C5 ~ colim 5.
The geometric classifying space BCy for Cs is defined as the quotient of
EC5 := colim A(no) \ {0}

by the free Cs-action. This space plays an important role in nonequivariant motivic
homotopy theory because it is a geometric model for the étale classifying space
[MV99, §4.2]. A similar interpretation of the geometric classifying space is also
true in equivariant motivic homotopy theory as well, see [GH16].

The motivic isotropy separation cofiber sequence is the cofiber sequence

(2.7) ECy, — S° — ECs,

where the space ECQ is defined by this cofiber sequence. Because of the definition
of the geometric classifying space we have an equivariant motivic equivalence

(2.8) EC, ~ colim §2"7"7

Proposition 2.9. The maps~50 — Sz‘i’” and SO — g"’o induce equivariant motivic
equivalences ECy ~ 8279 AECy and ECy ~ 570 A ECs.

Proof. The first equivalence follows from (2.8) together with the fact that the cyclic
permutation on 737 is the identity by Lemma 2.10 below. Using Lemma A.9, and
that EC + is nonequivariantly contractible [MV99, Proposition 4.2.3], we have
equivariant motivic equivalences

ECQ+ N CQ+ =~ (ECQ+)€ A CQ+ =~ CQ+.

It follows that (C2)4+ A EC, ~ %. Thus the second equivalence follows from the
cofiber sequence (2.4). O

Lemma 2.10. Let W be a representation. Let v € ¥ be an even permutation.
Then the induced map on T*W is the identity map in Hg o (k).

Proof. Since W®* = 19* QW any automorphism of 19 induces an equivariant au-
tomorphism of W®* and thus a pairing GLg x A(W®F) — A(W®*) in GSmy, (where
GLy, has trivial action). This induces in turn a pairing (GLg)4 A TEW — T*W in
GSpc,(S). An even permutation « is the product of row multiplication and addi-
tion of elementary matrices. We therefore have a map A — GLj connecting the
identity and . This implies that the map on T*" induced by an even permutations
is equivariantly A'-homotopic to the identity. O

3. BREDON MOTIVIC COHOMOLOGY

In [HVQA15, §5] we introduced a Bredon motivic cohomology theory on GSm/k.
Here we define an equivariant motivic spectrum which is a representing object for
the Bredon motivic cohomology groups of loc. cit., and record some of its basic
properties. To keep the exposition streamlined, we restrict our discussion to the
group Cj.
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3.1. Motivic complexes. For X and Y smooth k-schemes of finite type we write
Cor(X,Y) for the group of finite correspondences [SV00, §3.1]. If X and Y have
an action by Cs then Cs acts on Corg(X,Y) as well. The category of equivariant
correspondences Cy Cory, has the same objects as CoSm/k and maps Cory (X, Y)Cz.
A presheaf with equivariant transfers on C3Sm/k is an additive presheaf on Cy Cory,.

If Y is a smooth Ch-scheme over k, write Z, ¢,(Y) for the free presheaf with
equivariant transfers,

Loy (Y)(X) := Corg (X, Y)%2.

More generally, if A is an abelian group, we write Ay.c, (Y) = Zyo,(Y) ® A.
It is useful to extend the definition of Ay c,(—) to quotients of G-schemes. If
X = colim; X;, where X; are smooth Cy-schemes over k and the colimit is in the
category of presheaves, then we define Ay, ¢, (X) := colim; Ay ¢, (X;), where the
colimit is computed in the category of presheaves of abelian groups.

Defining Ziy.c,(X) @ Zir,cy(Y) 1= Ztrc, (X x Y) determines a symmetric
monoidal product ®'" on the category of presheaves with equivariant transfers.

If W is a finite Cs-set, viewed as a smooth Csy-scheme over k, we have isomor-
phisms as presheaves on CoSm/k, Zy,.c, (W) = Z(W) := Z Homy(—, W)2. More-
over, if F'is a presheaf with equivariant transfers, then we also have an isomorphism
F & Ziy,c,(W) =2 F @ Z(W) of presheaves on CoSm/k.

If F is a presheaf of abelian groups we write C, F(X) for the simplicial abelian
group F'(X x A}). We use the same notation for the associated cochain complex.
Here, A} is the standard cosimplicial object in Sm/k.

Write D~ (Cy Cory,) for the derived category of bounded above chain complexes
of equivariant Nisnevich sheaves with equivariant transfers on CoSm/k. According
to [HVQ15, Lemma 5.12] the cone Zqp,(0) of the map Zy, ¢, (C2) — Z is invertible
in (D~ (Cq Cory),®"). If F, is a cochain complex of presheaves with equivariant
transfers, write Fy[o] = Fy @ Zyop(0).

Let V = a 4 bo be a representation of Cy and A an abelian group. Define the
motivic Bredon complex

A(V) = anis(Cs Ao,y (TV))[~2a — 2ba],

where ay;s denotes sheafification in the equivariant Nisnevich topology, see Defini-
tion 2.1. There are quasi-isomorphisms ais(Cx Aty (T)) = anis(CuAtr. 0, (SH)[1]
and anis(CrAir.c, (T7)) =~ anis(CiAtr,c, (S7))[0], see [HVO15, p.328]. It follows
that there is a quasi-isomorphism

(3.1) anis(CeAtr. 0, (TY)) = anis(Cu A0, (SE A SP7)) @ + bo].
Now let A be a commutative ring. We construct a product pairing
AV)RAW) = AV aW).

First, we have an associative pairing A c,(TV) ® Agr.cy (TV) = Aproy (TV ATW)
of presheaves which is induced by the pairing

Aty (P(V @ 1)) (U)@ A4, (P(W @ 1)) (U)
5 Aoy, (V@ 1) x P(W @ 1)) (U x U)
2L A, (P(V @ 1) x P(W & 1)) (V).

Let A, . be a bisimplicial abelian group. We write A, . as well for the associated
cochain complex. By the Eilenberg-Zilber theorem [GJ99, Theorem IV.2.4], taking
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totalizations and diagonals yields a natural quasi-isomorphism of chain complexes
Tot(A, «) — diag(A, +). We thus obtain the natural pairing

Tot (Atr,c, (TV)(U x A}) @ Agrc, (TV)(U x A}))
— diag (Asrc, (TV)(U x A) @ Agy o, (TV)(U x A}))
= Ay (TY NTVYU x AL) <= Apycy (TVEW)U x AD).

This induces our desired pairing upon sheafification. Now the quasi-isomorphism
obtained from the Eilenberg-Zilber theorem is homotopy associative, so the pairing
is also homotopy associative.

3.2. Stable representability. Let A be an abelian group. Let F be a presheaf
of sets. we may consider Ay ¢, (F) as a presheaf of sets and therefore as a based
motivic Cy-space, the basepoint is 0. We have a canonical map v : F — Ay ¢, (F) of
motivic Ca-spaces and there is a pairing p : Ay 0y (X) AZgr 0y (YY) = Apr.o, (X XY)
of motivic Cy-spaces.

Definition 3.2. Let A be an abelian group. The motivic Bredon cohomology
spectrum MA, is defined by letting MA,, := Ay, ¢, (T7P¢2) with structure maps

Aty (T™92) AT? 20 Ay, 0, (T092) A Ly, 0, (T2 )
2y Agy, oy (TP

The symmetric group X, acts on MA,, by permuting the factors of 7°°2. The
iterated structure maps MA, A T"2 — MA,, ,, are (X, X y)-equivariant. This
means that MLA is a symmetric motivic Co-spectrum, cf. Definition A.10. Moreover,
if A is a commutative ring, there are pairings MA,, A MA; — MA,, ;. which give
MA the structure of a commutative ring spectrum (i.e., a commutative monoid in
the category of equivariant symmetric motivic spectra Sptg2 (k).

Finally, we note that the spectrum MA is stably equivalent to MZ A SA where
SA is a Moore spectrum associated to A. This can be seen by noting that the
assignment A — MA defines a functor Ab — Sptgz(k) which has the following
properties.

(i) If A = colim; A; is a filtered colimit of abelian groups, then colim; MA, ~
MA.
(ii) If A= @;A;, then V;MA; ~ MA.
(iii) If 0 = A3 — As — A3 — 0 is an exact sequence of abelian groups, then
MA, - MA, — MA; is a homotopy cofiber sequence of spectra.
Moore spectra satisfy similar properties and so it suffices to check the statement
when A = Z, where it is trivial. Of course, an important advantage of the model
MA is that it is a commutative ring ring spectrum when A is a commutative ring
while this is not necessarily a priori clear for MZ A SA.

Definition 3.3. The Bredon motivic cohomology of a motivic Ca-spectrum E, with
coeflicients in the abelian group A, is defined by

rra+po,b+ L o,b+qo

HZZ po qa(E,A) — [E’Sa+p +q A MA]SHCQ(k)-
If X is a smooth Cs-scheme, then its unreduced Bredon motivic cohomology is
defined via its suspension spectrum by setting

Hg;rpa,bJrqa(X’ A) = _[A—jgjpﬁ,ﬂqa( ) X+,A)~

7702
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Next we verify that the definition of Bredon motivic cohomology which we have
just given agrees with the one given in [HV@15]. (Note, however, that the indexing
we use in the present paper is slightly different than in loc. cit.). The fact that
Bredon motivic cohomology defined in the stable equivariant motivic homotopy
category is equal to the hypercohomology groups of the motivic complexes, plays a
crucial role in our arguments in the later sections. This fact relies on the homotopy
invariance and equivariant cancellation theorems for presheaves with equivariant
transfers proved in [HV(@15, Theorem 8.12, Theorem 9.7].

If X = colim X; is a colimit (in presheaves) of smooth Cs-schemes over k, write
Z(X) := colim; Z(X;) and

Hé,nis (X, A(V)[po]) = Exte, nis (Z(X), A(V)[po]).

Theorem 3.4. Let V = b+ qo be a virtual representation of Cy, W = ¢ + da
a representation such that V& W is a representation, X a smooth Cs-scheme of
finite type over k, and A an abelian group. Then there is a natural isomorphism

HEPo M7 (X, A) = HE, g (TY A X4, AW @ V)20 + (2d 4 p)o]).
Proof. We assume that V = b+ go is an actual representation; the more general
case of a virtual representation is similar. Let MA — MA’ be a levelwise motivic
fibrant replacement, i.e., for each n, MA/ is motivic fibrant and MA, — MA,
is a motivic weak equivalence (see Section A.4 for details on the motivic model

structure). We claim that MA’ is already a fibrant motivic Cy-spectrum. Indeed,
using Theorem A.6, the map

mi(MA;,)(X) = mi(Qqec, M4, 4 )(X)
is naturally identified with the map
He,nis(X, A(npc,)) = Ho, i (TP A Xy, A((n +1)pcy,)).

This is the map of the equivariant Cancellation Theorem [HV(?15, Theorem 9.8],
which is an isomorphism for all . Therefore, MA] — Qprc, MA; ;| is a weak
equivalence of motivic Ca-spaces, which implies that MA’ is an Qg»rc, -spectrum
and so is a fibrant motivic Ca-spectrum, cf. Section A .4.

Let 1, j, k, 1 be nonnegative integers such that

S(i+k)+(j+l)o’,k+la A Sa+po’,b+qo’ ~ TPCy

for some m > 0. In particular, m=i+a—b=j+p—qgq=k+b=10+q. We have
HEPTIH7 (X, A) = (X, §94P70%97 A MAJgi, ) and

(X, ,8atpobtas o MA]sue., (k)

= [SUTR Gkt X TP A MAlsu,, k)

= [STASITASENSIT AX Y, T2 AMA Jsu, (k)

= [S*ASTTASE NS A Xy, (MA ) mlu, o, (k)

= H i (577 ASENSIT A X, CoAprc, (T™))

= HE "Nis (77N SEN ST A X, Cuir 0, (S A S) [m + mal)

O, nis (X, Culiy oy (S5 A STV [(m — ) + (m — 5)o])

(X, A(V)[po]).

~/
HCgst
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The first two isomorphisms are immediate. The third follows from [Hov01, The-
orem 8.10] and the standard adjunction relating H, ¢, (k) and SHe, (k), the fourth
from Theorem A.6, the remaining isomorphisms follow from (3.1) and equivariant
cancellation [HV@15, Theorem 9.8].

(]

Remark 3.5. Under the isomorphisms above, the product structures arising from
the pairing of spectra MA A MA — MA agrees with that arising from the pairing
of complexes A(V) @ A(W) — A(V & W).

3.3. Basic properties. We record some of the basic properties of Bredon motivic
cohomology.

Cancellation. Let V. = s + to be a virtual representation. We defined Bredon
motivic cohomology via a representing spectrum in SHe, (k). Immediate from this
definition we have natural isomorphisms

(36) f_j—g;rpa,bJrqa(TV A E,A) ~ f_jg;2s+(p—2t)a,b—s+((1—t)o(E7A).

Equivariant transfers. Recall we write D~ (Cs Cory) for the derived category of
bounded above chain complexes of equivariant Nisnevich sheaves with equivariant
transfers on CoSm/k.

Proposition 3.7. Let X be a smooth Cy-scheme over k and Ko a cochain com-
plex of presheaves with equivariant transfers. Then there is a natural isomorphism
EXtT[l)*(CQ Cory,) (ZtT,Cz (X)7 K’) = Hg'gNis(X’ K’)'

Proof. The argument is as in [Voe00, Proposition 3.1.9], using that smooth Cs-
schemes have finite equivariant Nisnevich cohomological dimension [HV@15, Corol-
lary 3.9] together with [HV@15, Theorem 4.15]. O

Corollary 3.8. If K, is a cochain complex of sheaves with equivariant transfers
then HE, nio(—, Ko) is a presheaf with equivariant transfers.

Theorem 3.4 shows that for any a, b, p, q, ngpa’b+qa (X, A) is naturally identified
with equivariant Nisnevich hypercohomology groups with coefficients in a (bounded
above) cochain complex of sheaves with equivariant transfers. It is therefore a
presheaf with equivariant transfers.

Mayer-Vietoris sequences. Since Bredon motivic cohomology is a representable the-
ory, associated to an equivariant distinguished square (2.2) is a Mayer-Vietoris long
exact sequence

NN ngpmequ(X?A) %ngpo,bJrqo(U’ A) @ngpo,b+qa(Y7A)

S HETTIIT (W, A) — HET PO (X A)

Ring structure. When A is a commutative ring, then MA is a commutative ring
spectrum. We thus have a cup product pairing for smooth Cs-varieties

Hg:—pa,b+qa(X7A) % Hé—:sa’d-i—tU(X,A) i ]{gl;kc)Jr(p+5)0,(b+d)+(q+t)o—()(7 A)

given by the usual formula
zUy:= A%z Ky),
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where A : X — X x X is the diagonal and X is the external product. The cup

product makes H, é’: (X, A) into a Z*-graded ring. Since it is a representable theory,

it is a module over 75?(1) := Endsp,, (r)(1) and in fact an algebra over this ring.
Consider the following endomorphisms of 1 in SHe, (k)

e =7 (sg A SL twist, g1 /\St1> :
(3.9) ¢ =552 (sg A ST st go Sg) :
uw=x3? (57 AS7 2 57 A 57).

We also write €,€¢/,u € Hg’f(k,A) for the respective elements in cohomology,
induced by these endomorphisms.

Proposition 3.10. Let x € ngpg’b+qd(X, A) and y € Hggsg’d"’w(X,A). Then

zUy = (=1)"(w)” ()" ()" (y Ux).

Proof. This follows by the same argument as [Dugl4, Proposition 6.13] (see also
Remark 6.14 of loc. cit.). The point is to carefully analyze the endomorphism
of §o1ta2:fi+h2 arising from the twist S@101 A §o2:02 5 G2z A Gaubi  where
(a1, $1) = (a+ po,b+ qo) and (ag, B2) = (c+ so,d + to). O

Remark 3.11. We will see in Proposition 3.24 below that ¢ = 1, ¢ = 1, and
u=—1in HZ (k, A) and therefore z Uy = (=1)**P5(y U x).

Topological realization. Let k = C. The functor CoSm/C — CyTop, X — X (C)
extends to a functor Rec : SH¢, (C) — SH¢, from the stable equivariant motivic
homotopy category over C to the classical stable equivariant homotopy category, see
Section A.5. For a topological space M with Cs-action we write Hg;p”(M7 A) for
the topological Bredon cohomology theory, and ﬁg’;p 7:bT97 (x| A) for the reduced
Bredon cohomology of a pointed motivic Ce-space X. By Theorem A.29, the Betti
realization Rec(IMA) represents topological Bredon cohomology with A-coefficients.
This yields the comparison functor

Rec : H P97 (X, A) — HE™7(X(C), A).

Moreover, this yields a ring homomorphism since Re¢ : SHe,(C) — SHe, is a
symmetric monoidal functor, see Theorem A.14.

Change of groups. Consider the adjunction Cy x — : Sm/k = CoSm/k : (—)¢,
where X¢ is the underlying smooth scheme of a smooth scheme with Cs-action.
This extends to an adjunction on pointed motivic spaces and by Proposition A.11
it stabilizes to yield the adjunction

Cy+ A —:SH(k) & SHe, (k) : (—)°
on stable homotopy categories. The functor (—)¢ should be thought of as forgetting

the action. Similarly, the adjunction ()" : Sm/k = CoSm/k : (—)¢? induces an
adjunction on stable homotopy categories

(_)triv . SH(k) = SHC2 (k) : (_)CQ'

Here (=) : Sm/k — CoSm/k sends a smooth scheme X to the Cy-scheme con-
sisting of X with the trivial action. If E is a motivic spectrum then Cs ; A E agrees
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with Cy 4 A (E)*" (the latter being the smash product of two equivariant motivic
spectra). Typically we simply write E again for the spectrum E!".

Write H (—, A) for motivic cohomology theory and MA for the representing
motivic spectrum. There is a natural map

(3.12) ¢ HETPO 97 (X, A) — HYPHa(xe, A)

obtained from (—)° : [X, S*T07 97 AMAgy,, (k) — [X, (S*TP70T97 AMA)spr)
and the facts that (S¢t0ob+ae A MA)¢ = §et0b+a A (MA)® and (MA)© is a T2-
spectrum representing motivic cohomology. When k = C, by Proposition A.15 and
Theorem A.29 we have a commutative square

(3.13) HEPovtam (0, A) —2 s FPI(xe, A)

| |

A&7 (Rec (X), A) —2> HEP (Rec ()¢, A).

sing

Proposition 3.14. Let X be a pointed motivic Cy-space. For integers a,b,p,q,
there is a natural isomorphism

HEPorT9o(Cy o A X A) S HiiP 9 (xe, A).

Moreover, when k = C, there is a commutative square

~

ﬁgjpmequ(CH /\X,A) ﬁﬂp7b+q(xe7A)

Rec \L l REC

HEP7(Cy e ARec(X), A) —= HEP (Rec(X)°, A).

sing

Proof. By Lemma A.9, the adjoint of the inclusion X¢ — (Cay A X)¢ = X°[[X°
as the first summand, is an isomorphism ¢ : Cy f AX® = Cy 4 A X in the equivariant
motivic homotopy category. Together with the adjunction isomorphism and the
observation that (MA)® represents motivic cohomology, we obtain isomorphisms

[Cop NX, Eaer("bJqul\/[A]SHC2(k) = [Cyy A (XS, Za+pa’b+qoMA]Sch(k)
= [x¢, DU IM Algp ),
yielding the first part of the proposition.
We have Rec(X)° = Rec(X°) and Cz 1 A Rec(X) = Rec(Cz 4+ A X) by Proposi-
tion A.13. The map Rec(?) is an isomorphism Cs 4 A Rec(X)¢ = Cy4+ A Rec(X).

Together with the isomorphism Rec(MA) = HA in Theorem A.29 this implies the
second part of the proposition. O

Proposition 3.15. Let X be a smooth k-scheme considered as a Ca-scheme with
trivial action. For integers m,n, the map (3.12) is an isomorphism

¢ HEM(X,A) = Hy™ (X, A).

Proof. The functor (—)¢ : CoSm/k — Sm/k takes equivariant Nisnevich covers to
Nisnevich covers and so induces a morphism of sites (Sm/k)n;s — (C2Sm/k)c, Nis-
This induces a map on cohomology ¢ : H@ v, (X, A(n)) — Hy, (X, A(n)). Here
A(n) is the Nisnevich sheafification of C.Ay.(T"")[—2n], i.e., it is the “usual”
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weight-n motivic complex. Under the isomorphism of Theorem 3.4 this map ¢
is identified with the map ¢ in the statement of the proposition.

There is also a morphism of sites ¢ : (CoSm/k)cynis — (Sm/k)nis, induced
by (=)"® : Sm/k — C3Sm/k. The functor t* is exact and t*A(n) = A(n), see
[HV@15, Lemma 3.19]. We thus have an induced isomorphism ¢ : Hy; (X, A(n)) =
HE nis(X, A(n)); this is an inverse to ¢. O

Proposition 3.16. Let X be a smooth quasi-projective Co-scheme over k. Suppose
that X has free action. For integers m,n, there are isomorphisms

HY™ (X Co, A) < — HE" (X Co, A) —~ HE (X, A),

where m : X — X/CY5 is the quotient. Moreover, when k = C, there are commutative
squares

HIG™ (X)Ca, A) = HES(X/Co, A) ——— HE" (X, 4)

Rec l Rec l Rec l

Ly (X(C)/Co, A) < — HE, (X (C)/Co, 4) — > HE,(X(C), A).

Proof. The first arrow is an isomorphism by Proposition 3.15. By Theorem 3.4,
the second map is identified with the map between equivariant Nisnevich hyperco-
homology groups 7* : Hi% n; (X/C2, A(n)) — HE N (X, A(n)). Since X/Cs has
trivial action we have the isomorphism

HE, nis(X/Co, A(n)) = HR(X/Co,y A(n)).
Under this identification, the isomorphism
HY5(X/Co, A(n)) = He, nis (X, A(n))

of [HVO15, Lemma 3.19] is 7* : HE n;(X/Ca, A(n)) — HE ni (X, A(n)).

When k& = C, we have that X(C)/Cy = (X/C2)(C). The commutativity of
the first square is a specialization of (3.13). The commutativity of the second is
immediate. [

We embed Cy C A(o) via Cy = {£1}. By the equivariant homotopical purity
theorem [HK@15, Theorem 7.6], [Hoyl5, Theorem 3.23], there is an equivariant
motivic weak equivalence

Coy AT ~P(0 & 1)/P(c @ 1)\ Ca.

Since P(c @ 1)\ A(o) CP(c® 1)\ Cy and T ~P(c @ 1)/P(oc @ 1) \ A(o) we have
amap 7' : T° — Cyy AT?, and hence a stable map 7 : S® — Co, .

Remark 3.17. Presumably topological Bredon cohomology is a presheaf with equi-
variant transfers (in the sense of [HV(15, §4]), but establishing this would require
a lengthy digression. For this reason we use the map 7 in the following proposition
rather than transfer maps coming from the theory of presheaves with equivariant
transfers.
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Proposition 3.18. Let E be a motivic Cy-spectrum over C. Write w: Co NE — E
for the projection. Then the diagram below commutes and 77" = 2,

HZ}:(E,A) Lf—jé;*(cz_’_ A E,A) ;ﬂ_ ﬁz}:(E,A)

e e e

Hg, (Rec(E), A) ——> H}, (Coy ARec(E), A) —— Hg, (Rec(E), A).

Proof. The commutativity of the diagram is immediate. It suffices to treat the
case E = S° and to see that 7%(1) = 2. The topological realization of 7 is the
Spanier-Whitehead dual of the projection Coy — S°. In particular 7*(1) = 2 in
HY, (pt.,A). It remains to show that 7*(1) = 2 € Hg’zo(k,é) = A. This follows
from the commutative diagram

A= flg’zo(Cer,A) S ﬁgf(50>é) =A

. %

A=HQ(SOV S0, A) = HOO(S0,A) = A

1R

and that the bottom arrow sends 1 to 2. O

3.4. Thom isomorphisms. Let R be a Cy-equivariant motivic commutative ring
spectrum, X a smooth Cs-scheme over k, and E — X a Cs-equivariant vector
bundle.

Definition 3.19. An R-Thom class (or simply Thom class, when R is understood)
for E is a class u € RG (Th(E)) with the property that for any equivariant map
f:Y — X of smooth Cs-schemes over k, the composition

id®f*u

R (Ys) R (Y1) ® RE (Th(fE)) 25 RS (Th(f*E))

is an isomorphism. Here, A : Th(f*E) — Y, A Th(f*E) is the Thom diagonal.

Proposition 3.20. Let V =a+ bo. There are classes uy € f[é‘;“bma%a (TV,7)

such that

Hé’; (X+, Z) —U(lx Xuy) ﬁé—z&-Qa+2b07*+a+bo (X+ A TV, Z)

is an isomorphism, for any Cs-variety X. Moreover, if ¢ is an automorphism of
the Cy-equivariant vector bundle X x A(V) — X, then

(321) (b*(lx X Uv) = 1X X uy.

Proof. Let uy € I}?j: (T,Z) and u, € ﬁé‘:’”(T",Z) be elements corresponding to
the unit under the suspension isomorphism (3.6). For a representation V = a + bo
define uy = (u1)®(u,)®. This element satisfies the first condition and it remains to
check that (3.21) holds for any equivariant bundle automorphism ¢ of X x A(V).
We will proceed by induction on the dimension of V.

We first consider the case V = o. Write o = a + po, f = b+ go and write

HE (X, 2) (o) = coker (HE (X x A0),2) © HEP(X x (A(0) \ {0)).2)).
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Since Hgf (—,Z) is a presheaf with equivariant transfers (see Section 3.3), if X is
affine then by [HV@15, Proposition 8.3] the map ¢* has a retraction and we have a
natural splitting

(3.22)  HE'(X x (A0)\{0}),2) = HE (X x A(0),Z) & HE (X, Z)(—o).

Consider the cofiber sequence (A(o) \ {0})+ — A(o)+ — T7. The induced long
exact sequences break into (split) short exact sequences

0= HE (A(0),2) S HE (A(0) \ {0}, 2) & HE(17,2) — 0.

The element u, lifts to an element ) € Héz_l’U(A(a) \ {0},Z). We choose u!, so
that under the splitting (3.22), we have u), € Hé‘;_l’g (Spec(k), Z)(—o). Let ¢ be an
automorphism of the equivariant vector bundle X x A(c) over X. By naturality, to
show that ¢*(1x X u,) = 1x X u, for a smooth affine Cy-variety X, we are reduced
to showing

(3.23) ¢o(1x x uy) = (1x X ug) + B,

where 8 is some element in ker(d) and ¢y is the restriction of ¢ to X x A(o) \ {0}.
For any X (not necessarily affine), the group of equivariant linear automorphisms
of X x A(o) over X is (O0%)%2, i.e., an equivariant automorphism is given by
multiplication with an invariant unit. An invariant unit is specified (uniquely) by
an equivariant map X — G,,. By naturality, to verify the relation (3.21) for 1 x X u,
and any automorphism ¢ of X x A(o), it suffices to verify it for X = G, and ¢ the
automorphism of G, x A()\ {0} — G,,, given by multiplication with the canonical
unit ¢ of G,,. In this case, ¢ is the map (pry, u), where prq is the projection to
the first factor and p : G,, x (A(0) \ {0}) = A(o) \ {0} is the multiplication. We
have that ¢§(1g,, x u,)=1Up*(u,) = p*(ul).

From the naturality of the decomposition (3.22) we see that p* restricts to a
map

:U'* . H20‘71,0’(k7z)(_0) — HQUiLU(Gm,Z)(—U)-
Moreover, this map has a splitting induced by e : Spec(k) — G,,, the inclusion at
1€ Gy,

It follows that p*(1g,, x ul) = lg,, xul +~, where v € ker(e*). An easy diagram
chase shows that d(ker(e*)) = 0, and so (3.23) holds. It follows that (3.21) holds
for 1x x u, for any X and any automorphism of X x A(c). A similar (but easier)
argument establishes (3.21) for 1x x u; as well. This takes care of the case when
V' has dimension one.

Now we proceed by induction on the dimension of V. Let V = a + bo be an
n-dimensional representation. Let Aut®2(V) be the presheaf whose value on X is
the group of equivariant bundle automorphisms of X x A(V). It is represented by a
group scheme in C2Sm/k, in particular it is an equivariant Nisnevich sheaf. Under
the isomorphism (3.6), the assignment 1x X uy — ¢*(1x X uy ) is an automorphism
of Hg’zo(X,Z) = HgQNZ-S (X,7Z). This assignment is natural and defines a morphism
of sheaves Aut® (V) — Z*. To check that the image of this map is {1}, we
may assume that X is a point of the equivariant Nisnevich topology. Recall that
for a finite group G, the points of the equivariant Nisnevich topology are of the
form G x g Spec(R) where H C G is a subgroup and R is an essentially smooth
Henselian local k-algebra with H-action, see [HV@15, Theorem 3.14]. For G = Cy,
there are two possibilities, X = Cy x Spec(R) or X = Spec(R), where R is a smooth



TOPOLOGICAL COMPARISON THEOREMS FOR BREDON MOTIVIC COHOMOLOGY 17

local ring with Cs-action. In the first case the claim follows from Proposition 3.14
and that the uy are nonequivariant Thom classes. Now we consider the case that
X = Spec(R), where R is a smooth local ring with Cs-action. The equivariant
automorphisms of X x A(V) are (Autr(Vg))“2. If A is a matrix with entries in R,
write A% for the matrix obtained by applying the involution ¢ to its entries. Under
the identification Endg(Vg) = Mat,, x,(R) the Cy-action is given by
A B A° —(B?)
{c D}H[—(CU) D°

Here, A is an a X a-matrix and B is an b X b-matrix, and a + b = n. It follows that
this matrix is in Mat,, x,,(R)¢? if and only if A and D have coefficients in R“? and
o acts by —1 on the coefficients of B, C.

Let € R and for i # j write E;;(x) for the elementary matrix corresponding

to adding x times row j to row i, i.e., it has x in position (i, j) and is the same as
the identity matrix in all other entries. Then E;;(z) is in GL,(R)®: if

(i) either i,j < a or a <i,j and x € R is invariant, or

(i) i<a,j>aori>a,j<aand or=—zx.
The matrix E;;(x) is equivariantly homotopic to the identity via the equivariant
Al-homotopy t — Eyj(tx).

Let T;; be the elementary matrix corresponding to switching the ¢th and jth
rows. If 4,5 < a then Tj; is in Matnxn(R)Cz. Moreover, in this case there is
an algebraic map Al — GL,(R“?) C GL,(R)“? joining T;; and the diagonal
matrix (—1,1...,1). Thus there is an equivariant A'-homotopy joining T;; and
(—1,1,...,1) in GLy4p(R). Similarly, T;; is equivariantly A'-homotopic to the
identity for ¢,j > a.

Let M = (m;;) be an invertible matrix in Mat,,,, (R)“2. We show that there is

an A'-homotopy
u 0 M 0
M ~p1 [ 0 M } or [ 0 u } .

Here, u € R is an invariant unit and M’ is an invertible (n — 1) X (n — 1)-matrix in
Mat(n,l)x(n,l)(R)CQ. First we assume the entry my; of M is a unit. In this case,
the claim follows by multiplying with the elementary matrices Fji(—my1/mi1),
i > 1 on the left and with Ey;(—mi;/m11), 7 > 1 on the right. If mq; is not a
unit but some m;; is a unit for 4, j < a, then by multiplying by 77; on the left and
Tj1 on the right, we are reduced to the previous case. If all entries m;; of A (i.e.,
i,7 < a) are non-units, we can repeat the previous arguments for the elements of
D, if at least one of its entries is a unit. The only remaining case is when all entries
of A and of D are in the maximal ideal of R. For t € A! we write M, for the
matrix which agrees with M in all positions except (My)11 =t + mq1. This gives a
map Al — Mat,,«,(R)®2. Write M/ for the a x a-matrix consisting of (M;);; for
1,7 < a. The reduction of M; modulo the maximal ideal of R is

-— | M{ B

I, = { % 5 } |
Since M = M, is invertible so is M;. It follows that M, is invertible for all ¢. Now
M, is equivariantly A'-homotopic to M and the previous case applies to M, so we
are done. O
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Recall (3.9) that we have elements €, €', u € H, g’f(k, Z) which determine the com-
mutativity properties of the ring H¢"(X,Z). These elements are ¢ = Y2 (22),
¢ =S7275.(22.,1), and u = 5275, (X2, 1), where 7 : EAE — E A E is the twist
endomorphism.

Proposition 3.24. In Hg’f(k,Z), e=1,¢ =1, and w = —1. In particular, if
x € HEPo"M99(X,Z) and y € HG (X, Z), then

rUy = (=1)*TPs(yUz).

Proof. We have that ﬁé’f(TQ,Z) is a free Hgif(k,Z)—module with basis ug. The
map 77 is induced by the twist automorphism of the vector bundle A% — Spec(k)
and so by Proposition 3.20, 75 (u2) = ug. In particular, 7 = id and it follows that
e = X7275(2%1) = 1, as claimed. The argument for €’ is entirely similar.

Now we compute u. Recall from Section 3.1 the complex Z;,,(0) of presheaves
with transfers. Under the identification of Theorem 3.4 the element u corresponds to
the twist isomorphism Ziop (0) @™ Ziop () = Zitop(0) @1 Ziep(0) in D~ (Cq Cory).
The twist isomorphism of complexes C @ D — D ® C' is given componentwise by
(—1)P? times the twist C? ® DY — D ® CP. The complex Zip(0) @Y Zy,, (o) is
isomorphic to

Zirc,(Ca x C2) 22 7, 0,(Ca) © Zurc, (Ca) 2254 7,
where Z is in degree 0, p : Cy — Spec(k) is the projection, and ¢; : Cy x Co — Co
is the projection to the ith factor. Under this isomorphism, the twist isomorphism
is given respectively in degrees —2, —1, and 0, by —7,, 7, and id.

A chain homotopy between the twist map and —id is given by {s;}, s; = 0,
i#0,—1, and sg = (0,p'), s_1 = AL @ AL,. Here A’ : Cy — Cs x Cs is given by
e oxe, o exoand ptis the transpose of p. Indeed, it is quickly checked that
$—1{(q2, —q1) = Al .gs — Al.qy = =7« +1d and (p. ® p«)so = 2-id. For the remaining
chain homotopy relation, we have that (g2, —q1)s1 + so(px ® p«) is equal to

g A, G A _ id id o tid
poe — @, pipe— @A) T \Gd+m) —me (d+me)—m) T
where m : Cy — (5 is the nontrivial involution. O

Definition 3.25. Let V be a Cy-representation and E — X a Cs-equivariant vector
bundle. Say that E is type V if every point z € X is contained in an invariant open
neighborhood U C X such that E|y is isomorphic, as a Cy-equivariant vector
bundle, to the product bundle U x A(V) — U.

Theorem 3.26. Let X be a smooth Cy-scheme over k, V. =a+bo, and E — X
a Cy-equivariant vector bundle of type V. Then there are Thom classes

th(E) € Ho! P27+ (Th(E), A).

Proof. By assumption, there is a cover X = Uy U --- U U, by open invariant sub-
schemes such that F|y, = U; x A(V). Proceeding by induction on n, we can use
the Mayer-Vietoris long exact sequence to patch the elements 1y, X uy constructed
in the previous proposition. The condition of (3.21) guarantees that they patch
together. O

In the following, A denotes an abelian group.
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Corollary 3.27. Let i : Z — X be a closed immersion of smooth Cy-schemes
over k, with open complement j : U < X and normal bundle Nj. Suppose that
Z = 12%,, with each Z, invariant, and N;|z, 1is of type a, + byo. Then there is a
Gysin long ezact sequence

o @ BT (2, A) — HE (X, A) D HE(UA) -

Proof. By equivariant homotopical purity [HK@15, Theorem 7.6], we have a cofiber
sequence of motivic Cy-spaces

(3.28) U— X — Th(N).

This induces a long exact sequence
co = HEN(Th(N,), A) — HE (X, A) L HE (U, A) — HEPS(Th(NG), A) — -

Note that Th(N;) = V., Th(N;|z,.). Applying the previous theorem to each Th(N;|z, )
identifies the long exact sequence induced by (3.28) with the desired Gysin se-
quence. 0

Remark 3.29. An important case is the following. Let X be a smooth Cs-scheme
and Z a connected component of the fixed point subscheme X2 C X. Then the
fibers of the normal bundle of Z C X are of type codimx(Z)o. Indeed, we have
(T.X)% =T, (X) =T.(Z) for any z € Z, by e.g., [HVQD15, Lemma 8.10].

When k = C, the same construction as in the proof of Theorem 3.26 applies to
topological Bredon cohomology. Moreover, this construction is compatible with the
Betti realization functor Rec : H'(Th(E), A) — H¢, (Th(E)(C), A).

Proposition 3.30. Let k=C and £ — X be a Cg—g]uivariant vector bundle and
suppose th(E) is a Thom class. Then Rec(th(E)) € HE, (Th(E)(C), A) is a Thom
class.

Proof. To show that Rec(th(E)) is a Thom class it suffices to show that i*(th(E))
is a generator of the free H*(Cy/H, A)-module H*(Th(i*E), A), where H C C,
is a subgroup and ¢ : Co/H — X(C) is an equivariant map [May96, XVL.9].
Write V' = a + bo, where i*E = Cy/H x A(V). Then, i*(th(E)) = a(Epvl) in
ﬁéa+2bg’a+bU(Th(i*E),A), for some a € Hg;O(Spec((C),A) = A. Tt follows that

2 ~
i*Rec(th(F)) = a(Xgv 1), which is a generator of Hé‘;*Qb”(Th(i*E((C)),A), and
so Rec(th(E)) is a Thom class. O

4. BREDON COHOMOLOGY AND EQUIVARIANT HIGHER CHOW GROUPS

In [HV@15, Theorem 5.19] we constructed a natural comparison map between
the Bredon motivic cohomology groups and Edidin-Graham’s equivariant higher
Chow groups. In this section we elaborate on the comparison between these two
constructions of equivariant motivic cohomology. Throughout, A denotes an abelian

group.

Proposition 4.1. Let X be a smooth quasi-projective Co-scheme over k. There is
a natural isomorphism

CHE, (X, 2b—a,A) = HE'(X x ECy, A).
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Proof. By definition, CH¢, (X,2b—a, A) = CH®(X x¢, (A(no)\{0}),2b—a, A) for
n sufficiently large, see [EG98, p. 599, 605]. In particular, the value of this latter
group is constant for n > 0. Write U, = A(no) \ {0}. Using the isomorphism
between higher Chow groups and motivic cohomology [Voe02, Corollary 2] together
with Proposition 3.16 we obtain the natural isomorphisms

CH?, (X,2b— a, A) = lim, Hy (X X, Up, A)

~ 1: a,b

= lim, H¢, (X x Uy, A)

~ a,b

= H02 (X X ECQ7A)
For the last isomorphism we have used the Milnor exact sequence

0 — lim) HE' (X x Uy) = HEY (X x EC) — lim, HE' (X x Uy,) — 0,
and the fact that the lim'-term vanishes. (]
The groups H, 52* (X XxECs, A) define the Borel motivic cohomology of X. In light

of the identification above, we view H (X x ECy, A) as a generalized version of
equivariant higher Chow groups (in which the grading is by representations instead
of just integers). By the motivic isotropy separation cofiber sequence (2.7), the
projection map ECy; — S° induces the comparison map between the Bredon

motivic cohomology and the Borel motivic cohomology theories. Their difference
is measured by EC5.

Lemma 4.2. Let X be a smooth, quasi-projective Cy-scheme. Suppose that either
(i) X has free action, (ii) b <0, or (ii) a <1 and A is finite, then
rra+po,b+qo -~ o
He, (XL ANECy, A) =0.
Proof. By Proposition 2.9 we have isomorphisms
HETPoM97 (X, NECy, A) 2 HE (X4 AECy, A).

First we consider the case when X has free action. Then X/G is smooth and
applying Proposition 3.16, the map Hg’zb(X, A) — Hg;b(X x EC5, A) becomes iden-
tified with the natural isomorphism

HYY(X/G, A) = HEP(X G ECy, A)
for all a,b. This establishes the vanishing in case (i).
Now consider the case when X has trivial action. In this case we have
HEY(X x BCo, A) = Hy (X x BCy, A).
The projection map X x BCy — X affords a section and the long exact sequence
associated to the motivic isotropy sequence breaks up into short exact sequences
0— HE(X,A) — HY (X x BCo, A) = HETH (X AECy, A) — 0.
The two left groups vanish whenever b < 0 and so does the third, which establishes

case (ii). The space BCy is the complement of the zero section of the line bundle
O(—2) on P>, see e.g., [Voe03b, Lemma 6.4]. It thus fits into a cofiber sequence

BC; — P> — Th(O(-2))
of motivic spaces. Now we suppose that A is finite. We have, as a consequence

of the Bloch-Kato conjectures, that Hj/’lb(X, A) = 0 for a < 0. Combined with
the sequence in motivic cohomology resulting from the above cofiber sequence, the
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Thom isomorphism, and the projective bundle theorem, we find an isomorphism
Hﬁjlb(X, A) — Hj}tb(X x BC3, A) for a < 0 and A finite.

Now consider an arbitrary smooth Cy-scheme X. The fixed points X2 C X are
smooth and its open complement U = X \ X2 has free action. The previous para-
graphs applied to X2 and U together with the Gysin sequence of Corollary 3.27
and Remark 3.29 yields the result. (|

Theorem 4.3. Let X be a smooth quasi-projective Cy-scheme over k. Then the
natural map

a+po,b+qo a+po,b+qo
HEPPUTI9(X, A) = HEPTPT97(X x ECy, A)
is an isomorphism if either (i) X has free action, (i) b <0, or (iii) and A is finite
a <0. In case (iii) the map is injective if a = 1.

Proof. This follows immediately from the previous lemma and the motivic isotropy
separation cofiber sequence (2.7). O

Remark 4.4. Combining the identification of Proposition 4.1 and the periodicity
of Corollary 5.5 we find that there is a natural map

HEFPov 9o (X, 2/2) — HiP (X x©2 ECy, Z/2)
= CHb+q(Xv2(b+ q) —a _p7Z/2)

which is an isomorphism if (i) X has free action, (ii) b < 0, or (iii) @ < 0. Moreover
in case (iii) the map is an injection for a = 1.

5. PERIODICITY AND BOREL MOTIVIC COHOMOLOGY

In this section we show that the ring Hg"(ECy,Z/2) is periodic with period
(20 — 2,0 —1). It follows that the groups Hg (X x ECy,Z/2) are also periodic.
These form a generalized ” geometric” Borel motivic cohomology theory. The integer
graded portion of these groups is isomorphic to equivariant higher Chow groups,
see Section 4. This periodicity of the generalized Borel motivic cohomology will
play an important role in our comparison theorem between motivic and topological
Bredon cohomology.

We remind the reader that our convention is that (x,#) stands for an integer
bigrading and (%,x) stands for the bigrading determined by representations, see
(1.4). We begin with the cohomology of Cs.

Lemma 5.1. Let A be an abelian group. There is an H ) (k, A)-algebra isomor-
phism
HE(Ca, A) = Hyf (k, A)[s™, 1],

where s € Hg;l’O(C’Q,A) and t € Hg;l’afl(C%A),
Proof. Write (a, 8) = (a+po,b+ qo) and |a + po| = a + p. We have isomorphisms
HEF(Coy A) 5 HEFO PSP N Coy, A) S HEF TP (S10MPIA €y 4y, A)
ﬁHé—O—a—\al,*-&-ﬁ—W(CZ A)'
2 Y=,

the first and last isomorphisms are instances of the suspension isomorphism, and
the middle isomorphism follows from Lemma A.9. This is an isomorphism of free
one-dimensional Hé; (Cq, A)-modules and thus is given by multiplication with an
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invertible element z, g € Hg;la"ﬁ_‘BI(C’g,A). Taking s = xo_1,0and t = To_1,0-1,
we get an H ) (k, A)-algebra map
*,% +1 441 s
Hyy/ (k, A)[sT 151 — HEH(Cy, A),
which is an isomorphism. ([l

Lemma 5.2. The map Cyy — SO induces an isomorphism
HE277 (0, 2/2) = HE>77H (G, 2/2).
Proof. By Theorem 3.4, this map is identified with the map
He, nis (T, 2/2(0)[20]) = HE, nio(Car AT, Z/2(0)[20]).

We have that Z/2(c)[20] = CZ4y.c, (T?)@YZ/2 and by [HV@15, Proposition 5.14],

CiZir.cy (T7) = cone((0")2 @ Z — 7).
We now see that

Hi, i (T, CuZar 0, (T7)) =+ Hisy i (Cog AT, Cllur 0 (7))

is an isomorphism for all ¢ (for example, by applying [HV(15, Lemma 3.19]).
(Il

Lemma 5.3. Let A be an abelian group. There are isomorphisms

Hg’f(ECQ, A) = lim Hgf(A(na) \ {0},4) = A.

Proof. We have Hg’zo(A(na) \{0},4) H%O((A(no') \ {0})/C3, A) = A by Propo-
sition 3.16 and the maps

Hif (A(no) \ {0})/C2, A) = Hyg (A(n + 1)0) \ {0})/C2, A)

are isomorphisms. (Il

Write v = st € Hézﬁ’”*l(k, Z/2) for the element obtained from Lemma 5.1 and
Lemma 5.2. We also write v for the corresponding image in Hg" (EC2,Z/2).

Theorem 5.4. The element v € Hég"‘”""l(ECQ,ZQ) is invertible.

Proof. Consider the equivariant embedding i,, : Co C A(no)\{0} given by including
at {£1}. We show that i,, induces an isomorphism

in s He 2170 (A(no) \ {0}, 2/2) = HE, 27 77(C2, 2/2).

This will imply the theorem as follows. For each n, the elements v—! in H, 62* (Cs,Z/2)
lift uniquely to elements u,, in HZ"(A(no) \ {0},Z/2). The uniqueness of these
lifts implies that {u,} determine elements (u,), in lim, HZ (A(no) \ {0},Z/2).
These in turn lift to an element @, in H(ECy,Z/2). We now find that v U7 €
Hg:zo(ECQ,ZQ) = 7/2 must be equal to 1 since it mapsto 1 € Hg’f(Cg,Z/g) =7/2.

For typographical simplicity we will suppress the coefficients Z/2 of the coho-
mology groups from the notation. We will also write U,, := A(no) \ {0}. Consider
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the comparison of exact sequences, induced by (2.5)

Hé,zl(Un) - Hé]21<U1 X Un) - ﬁé’; (TU A UTL"F) —0

| | |

HEHCy) — HE Uy x Cy) —= HENT7 A Cay) —0.

The quotient U; x¢, U, is the complement of the zero section of the line bundle
L := A(o) x¢c, Uy, on U, /Csy. By Proposition 3.16, the left hand square of the above
diagram is identified with the left hand square of the commutative diagram

H ) (U, [/Cy) — Hy! (Uy x ¢, Uy) — Hy (Th(L)) —= 0

l | |

H ; (Spec(k)) —— Hy (A \ {0}) ——— H} (T) ——0.

The map I:Ti;ll(Th(L)) — I:T/Q\;ll(T) sends the Thom class of L to a generator and so
this map is an isomorphism. In particular Hé; (T ANUpy) — Hé’zl (T ANCay) is an
isomorphism, as desired.

O

Corollary 5.5. Multiplication by v=? € Hé‘i(l_g)’q(l_g)(ECQ,ZQ) induces a nat-
ural isomorphism

ﬁgjpa,b-&-qo(E A (ECy),4,Z/2) = ﬁéaz+2q)+(P72q)o,b+Q(E A(ECs)4,Z/2)
of HZJ:(EC’Q,ZQ) -modules for any motivic Cy-spectrum E.

Remark 5.6. This (20 — 2,0 — 1)-periodicity does not decompose into a (o —1,0)
and a (0 —1,0—1)-periodicity (contrary to an erroneous claim in a previous version
of this paper). We also note that the failure of (o — 1,0 — 1)-periodicity shows that
the condition a < b — ¢ in Proposition 6.4 is unavoidable.

To see the failure of (o — 1,0)-periodicity, consider the exact sequence, where

U, = A(no) \ 0,
HEY (U, 2/2) — HEY (Co x Uy, Z/2) — HEY(S7 AUny, 2/2) — HEY (U, Z/2).

Since Héif(Un,ZQ) = H}\}IO(UTL/CQ7ZQ) = 0 and the lefthand map is an iso-
morphism, we have HégU’O(Un,ZQ) = (. Therefore Hé;U’O(ECQ7ZQ) = 0; in
particular, H"(ECy,Z/2) is not (0 — 1,0)-periodic. Consequently it is also not
(0 = 1,0 — 1)-periodic.

We note as well that Proposition 2.9 immediately implies that the cohomology
of any X, A EC, is periodic in the following sense.

Proposition 5.7. Let X be a smooth Ca-scheme over k and A be a commutative
ring. For all integers a,b,p,q, there are Hé’;(X,A)-module isomorphisms

e (X, ARG, 4) = HE 0797 (X, ABCy, A)

and
HE o007 (X, ANBCy, A) = H 970 0707 (X, ABC, A).
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6. COMPARING MOTIVIC AND TOPOLOGICAL BREDON COHOMOLOGY OVER C

Let X be a smooth variety over a field. The Beilinson-Lichtenbaum conjecture
[SV00, Conjecture 6.8] is the assertion that the map

(6.1) H{ (X, Z/n) — HE(X, 1)
is an isomorphism when p < ¢q and is an injection when p = g + 1. The validity of
this conjecture is a consequence of the Milnor and Bloch-Kato conjectures [Voe03a,

Voell] together with [SV00, Theorem 7.4]. Now if X is a complex variety this can
be rephrased using singular cohomology; topological realization

an isomorphism  if p <g,
(6.2) HEI(X,Z/n) — HY,, (X(C),Z/n) is PrsEL =4
g a monomorphism if p=¢+ 1.
In this section, we establish a Cs-equivariant generalization of the Beilinson-
Lichtenbaum conjecture for smooth complex varieties X with involution. We begin
with a consideration of the Borel part of the Bredon cohomologies.

Lemma 6.3. Let U be a smooth quasi-projective complex Ca-variety with free ac-
tion. Then ‘ _

Rec : He, """ (U, 2/2) — HET (U(C), Z/2),
is an isomorphism if m < n and m +1i < n. It is a monomorphism if m <n+1
and m+1i<n-+1.

Proof. When i = 0 the result holds by (6.2) together with Proposition 3.16. The
result follows in general using induction on ¢ and considering the comparison of
exact sequences obtained from (2.4),

s HerjU’n(U) . Héi‘*’(j-‘rl)ﬂy"(U) . H/T\n4+j+1’n(U) . Hgt;rlJrja,n(U) .

| | | |

m+jo m+(j+1)o m—+j m jo
= HE (U (C) = He V(U (C) = HELT (U(C) ~ HEHHT(U(C) -
O
Proposition 6.4. Let X be a smooth complexr Cs-variety and A a finite abelian
group. Then
Rec : HEP7PH97 (X x ECo, A) — HEP7(X(C) x ECy(C), A),
18
(i) an isomorphism if a <b—gq and a+p <b+q, and
(ii) a monomorphism ifa <b—q+1anda+p<b+q+ 1.

Proof. We first assume that X is quasi-projective. It suffices to assume that
A = 7/0" where / is a prime. Suppose that 2 is invertible in A. Consider the com-
mutative diagram coming from and Proposition 3.14 and Proposition 3.18, where
the coefficient group A has been suppressed

HEP7PH97(X X BCy) s HP" (X x BCy) — = HEIP7 97 (X x ECy)

Rec i Rec \L Rec l

HEP? (X x EC2)(C)) > HEP((X x ECy)(C)) —> HEP7 (X x ECy)(C)).

sing
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The horizontal compositions are multiplication by 2 and so are isomorphisms. By
the Beilinson-Lichtenbaum conjecture (6.2), the middle map is an isomorphism for
a+p < b+ q and an injection for a + p = b+ ¢ + 1. This implies that the same is
thus true of the outer vertical arrows.

It remains to consider the case A = Z/2!. By comparing the exact sequences aris-
ing from the short exact sequence 0 — Z/2"! — 7Z/2* — 7Z/2 — 0 and induction,
we are reduced to the case A = Z/2.

We now assume that A = Z/2 (and continue suppressing the coefficients as
needed). Using the periodicity from Corollary 5.5 we may replace (a + po,b + qo)
by ((a+2q) + (p — 2q)o, b+ q) and we write (m + io,b) for this new bidegree. The
hypothesis on (a + po,b + gqo) implies that (m + ic,b) satisfies the hypothesis of
the previous lemma. The result now follows in this case from the previous lemma
together with the comparison of Milnor exact sequences

0 — lim}, HZ ' 7N(U,) —= HEH N (X x BCy) — lim, HET M (U,) — 0

v \ v
0 = lim,, HZ (U, (C)) = HZH (X x EC2)(C)) = lim, HZH (U, (C)) >0

where U, := X x (A(no) \ {0}), since U, is a smooth quasi-projective variety with
free action.

To deduce the proposition for a general smooth X from the quasi-projective case,
we use that X is locally affine in the equivariant Nisnevich topology, see Remark 2.3.
There are several ways to turn this observation into a formal argument; we proceed
directly as follows. Suppose that we have a cartesian square of smooth C5-complex
varieties

where Y is quasi-projective, ¢ is equivariant étale, U is an invariant open, and the
restriction ¢|y\y has an equivariant section. Then, if the proposition is true for
U it is also true for X. Indeed, this square leads to a distinguished equivariant
Nisnevich square, via standard techniques,

W,(H Y/

]

U——— X,

where Y is open in Y’; in particular, it is quasi-projective. Comparing the resulting
Mayer-Vietoris long exact sequences then shows that under these assumptions, the
proposition holds for X.

Now we let A C X be a dense invariant affine open and Y any quasi-projective
equivariant Nisnevich cover of X. Let 0 = Z,,.1 € Z, C---Z1 C Zy := X \ A be
an equivariant splitting sequence for Y|z,. Set X; = X \ Z; and V; = Y|x,. The
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cartesian square
Yi———Yi

L

Xi— X1

satisfies the conditions of the previous paragraph, and so proceeding by induction
we find that the proposition holds for each Xj;. O

Next we consider the isotropic part of the Bredon cohomologies.

Proposition 6.5. Let X be a smooth compler Co-variety and A a finite abelian
group. Then

Rec : HiP2PH97 (X ANECy, A) — HEP7(X(C)y AEC,(C), A),
is an isomorphism if a < b and an injection if a = b+ 1.

Proof. First we consider the special case when X has trivial action. By the pe-
riodicities supplied by Proposition 5.7 and the corresponding ones in topological
Bredon cohomology, we may assume that p = ¢ = 0.

Since X has trivial action, the map Hg;b(X,A) — H¢, (X(C), A) is naturally
isomorphic to the map Hj;[b(X, A) = HE,,(X(C),A), by Proposition 3.15. In
particular, by the Beilinson-Lichtenbaum conjecture, it is an isomorphism if a < b
and an injection if ¢ = b+1. The map Hg;b(XxECb,A) — Hg, (X(C)xECy(C), A)
is an isomorphism for ¢ < b and an injection for a = b + 1, by the previous
proposition. The proposition thus follows for X with trivial action by comparing
the long exact sequences associated to the motivic isotropy cofiber sequence

(6.6) X, AECy, — X, — X, AEC,.

We now treat the general case. The fixed point scheme X©? is smooth and so
by the equivariant homotopical purity theorem [HK@15, Theorem 7.6], we have a
cofiber sequence

X\ X% = X — Th(N),
where A is the normal bundle of the inclusion X2 C X. By Lemma 4.2, the map
X — Th(N) induces an isomorphism

(6.7) HY? (Th(N) AECy, A) = HEN (X4 AECy, A)

and similarly for the topological Bredon cohomology. Note that X2 is a disjoint
union X2 = LI, Z, of connected smooth varieties with trivial action. We may
apply Theorem 3.26 and Proposition 3.30, together with Remark 3.29 to each NV|z,
in order to obtain the commutative square

HE ™97 (Th(N) ABGCy) — @ Hey @27 0777, ABCy)

| |

HEP? (Th(N(C)) AECy(C)) —> @ Her P77 (Z,(C) ANECy(C)),

where p, = codimx(Z,.). The proposition holds for the right hand map and thus
it holds for the left hand map as well. Applying the isomorphism (6.7) yields the
conclusion of the proposition. [
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Combining the previous two results now implies our equivariant generalization
of the Beilinson-Lichtenbaum conjectures over C.

Theorem 6.8. Let X be a smooth complex Co-variety and A a finite abelian group.
The comparison map

Rec : HE """M7(X, A) — HE (X(C), A)

18
(i) an isomorphism if both a +p < b+ q and a < min{b — ¢, b},
(ii) an injection if botha+p <b+q+1 and a < min{b — ¢,b} + 1.

Proof. This follows by comparing the long exact sequences induced by the motivic
isotropy cofiber sequence Xy A ECy 1 — X — X A EC, together with Proposi-
tion 6.4 and Proposition 6.5. U

Notice that in the case p = ¢ = 0 and X complex variety with trivial Z/2—action
the above theorem reduces to the usual Beilinson-Lichtenbaum conjecture for com-
plex varieties (which we actually used in the proof). (See also (6.2).)

7. COMPARING MOTIVIC AND TOPOLOGICAL BREDON COHOMOLOGY OVER R

Let X be a smooth real variety and write ¥3 = Gal(C/R). The space X(C)
has an ¥s-action. This extends to the topological realization functor Rec s, :
SH(R) — SHy,, see [HO14, Proposition 4.8]. We have Rec, x,(MA) = HA [HO14,
Theorem 4.17] and thus a comparison map relating motivic cohomology and Bredon
cohomology. By [HV12, Corollary 5.11], the Beilinson-Lichtenbaum conjecture (6.1)
for real varieties can be reinterpreted as the statement that the map

an isomorphism if a <b,

a,b a—b+bo .
(71 Hy (X A4) = A, (X(C),4) 1s {a monomorphism if a = b+ 1.
We now consider a smooth real variety X with a Cs-action. The space of complex
points X (C) has two involutions, one coming from complex conjugation and the
other coming from action on the variety X. To avoid confusing these actions, we
write Cy for the group acting algebraically on the real variety X while we write
Y5 = Gal(C/R) for the Galois group and its action is by complex conjugation. Thus
X(C) has an Cy x Yp-action. This extends to the topological realization functor,
see Theorem A.17,

Re(c)z;Z : SH02 (R) — SHsz22~

Write 71 (resp. 72) for the nontrivial element of Cy (resp. of ¥). Write o for
the Cy x ¥so-representation which is defined by letting 7 act by —1 and 75 by the
identity. Write e for the representation which is defined by letting 7 act by the
identity and 75 by —1. The four representations of the Klein group Cy x ¥, are 1,
o, € and o ®e.

The effect of the topological realization functor on spheres is as follows.

Lemma 7.2. We have Rec,x,(S?) ~ S, Rec »,(57) ~ S, Rec,s,(S}) ~ S¢,
and Rec, 5, (S7) ~ S7®¢. Thus

Re@ s (Sa+po,b+q0) ~ S(a—b)+(p—q)a+be+qa®e
) 22 — .
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Proof. The first relation is obvious. The second follows from the cofiber sequence
Cay — S° — S2. We have that S}(C) and S?(C) are equivariantly homotopic to
the unit circle in C*. In the first case, 71(2) = z and 72(z) = Z, and in the second
case 71(z) = 1/z and m(z) = Z. The displayed equalities follow immediately from
these formulae. d

Since Rec 5, (MA) = HA in SHe, x5, , see Theorem A.29, there exists a compar-
ison map

(7.3) Rec s, :Hg;rpa,b+qa(X’A) N Hg‘;i;ip_q)a+be+qg®e(X((C),A)-

Observe that Rec s, (A(0)) = 0+ 0 ®e. Applying Rec s, to the motivic isotropy
cofiber sequence (2.7) yields the cofiber sequence of Cy x ¥a-spaces

Ex,Cop — S° = Ex, C,.
Here Ex, C5 is the Ys-equivariant universal Cy-space, see [May96, VII.1] or [HHRO09,
Definition B.108]. We have Es,Cy = colim,, S"7®¢ A S"?. For any representation
V, the cyclic permutation on S3V is equivariantly homotopic to the identity (e.g.,

a similar argument as in Lemma 2.10 works topologically) and so we conclude the
following.

Proposition 7.4. The unit maps S° — 87, SO — §79¢ induce Co x Lo-equivariant
homotopy egvuivalences EVZ2CQ ~ Eyx,Cy A S? and Ex,Cy ~ Ex,Cy A S7%¢. In
particular, H62X22(E A Es,Cy, A) is o-periodic as well as o @ e-periodic for any
Cy x Yg-equivariant spectrum E.

Since (7.3) is a ring map, Theorem 5.4 implies there is an invertible element
v € HE, 5, (Es,C2,Z/2), the degree of v is 0 — 1 + 0 ® € — e. This immediately
implies the following.
Proposition 7.5. Multiplication by v~ 7 € Hg;g‘gqe_qa@g(Engg,Zﬂ) mduces a
natural isomorphism
ﬁgjﬁgjce+QG®e(E A (E2202)+’ZQ) o~ ﬁéit‘gj(P*Q)U+(c+q)e(E A (E2202)+’M)
of HE, 5, (Ec, 2, Z/2)-modules for any Ca x Xp-spectrum E.

We proceed, as in the previous section, towards our equivariant version of the
Beilinson-Lichtenbaum conjecture over the reals by establishing the following case.

Lemma 7.6. Let U be a smooth quasi-projective real Co-variety with free action.
Then _ 4

Rec : HE W' (U, Z/2) — HE 7 (U(C), 2/2),
is an isomorphism if m < n and m +1i < n. It is a monomorphism if m <n +1
and m+1<n-+1.

Proof. If Y is a Cy x Ya-space, then we have Hé*jffx? (VA = Hg‘:t"(Y/C’Q,A).
Moreover, if Y = X(C), where X is a real variety with free Cy-action, arguing as
in Proposition 3.16, we have a commutative square

Hp " (X, A) HY (X /Cy, A)

o

HE v (X(C), A) —— Hy 7" (X(C)/Ca, A).
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When ¢ = 0 the result thus holds by (7.1). The result follows in general using
induction and considering the comparison of exact sequences obtained from (2.4),

Hgl;rjo',n(U) H}’\ﬂ/{+],n(U)

| | |

o ché—xrg;ne-‘r(j—l)a(U(C)) - ng;r;;ne+ja(U(C)) - Hg12+j*n+na(U((C)) - .
]

Proposition 7.7. Let X be a smooth real variety with Ca-action and A a finite
abelian group. Then the map

HETP7PH97 (X x ECy, A) — He LpPm 07478 (X (C) x Ex, Co, A)
18
(i) an isomorphism if a <b—gq and a+p <b+q, and
(ii) @ monomorphism ifa <b—q+1 anda+p<b+q+1.

Proof. Tt suffices to consider the case of a quasi-projective X by the same argu-
ment as in the second half of Proposition 6.4. It also suffices to consider the case
A = 7Z/2 by the same argument as in Proposition 6.4, using an obvious variant of
Proposition 3.18.

Using Corollary 5.5 and Proposition 7.5, we can replace (a + po,b + go) by
(a+2q+(p—2q)o, b+q) and a—b+(p—q)o+be+qo®e by (a—b—q)+(p—2¢)o+(b+q)e.
For simplicity, we reindex, replacing a + 2¢ + (p — ¢)o by m + ic and b + ¢q by b.
The hypothesis on (a + po, b+ go) implies that (m + io, b) satisfies the hypothesis
of the previous lemma, 7.6.

Considering the comparison of Milnor exact sequences, as in Proposition 6.4, we
see from lemma 7.6 that

(7.8) HE (U, 2/2) — HE 7 (U (C), 2/2)
is an isomorphism for m +4 < b and m < b and a monomorphism for m+i=5b+1
and m < b+ 1. Here U, := X x (A(no) \ {0}). Replacing back m by a + 2¢ and ¢
for p — 2q and b for b + q we get the result.

O

We also have the following;:

Proposition 7.9. Let X be a smooth real variety with Ca-action and A a finite
abelian group. The map

HEP7 0 (X0 ABCs, A) = HE, 8 (X(C)4 A Es, Co, A)
is an isomorphism for a < b and a monomorphism for a = b+ 1.

Proof. In the case of a free Cy-action on X the above map is an isomorphism for
all the indexes because the groups are zero. Consider the comparison of long exact
sequences in cohomology associated to the motivic isotropy cofiber sequence

X, AEC; > X, — X, NECs.

Suppose that X has trivial action. Using Proposition 5.7 and Proposition 7.4, we
may assume that p = 0 and ¢ = 0. Consider the map

HE (X4 NECo, A) — HEPE(X(C)4 AEx,Ca, A).
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Because X has a trivial action, we have that the middle map in the long exact
sequence given by the motivic isotropy cofiber sequence is identified with

Hyv (X, A) — HE "' (X(C),A).

This is an isomorphism if a < b and a monomorphism if a = b+ 1 by the Beilinson-
Lichtenbaum conjecture (7.1).
The other significant map in the diagram is

ﬁé;b(X x ECy, A) — Efg;i;’;e(x (C) x Ex,Cs, A)

which according to Proposition 7.7 is an isomorphism for any a < b and monomor-
phism for any a = b+ 1. This confirms the isomorphism in the statement when the
action is trivial.

The isomorphism in the general case follows as in Proposition 6.5 by considering
the equivariant cofiber sequence for the real variety X

X\ X% 5 X - Th(N),
where N is the normal bundle of the inclusion X¢2 c X. O

Theorem 7.10. Let X be a smooth real variety with Ca-action and A an abelian
group. Then the map

HESPm00 (X, A) = HE ™07 (X (), A)
18
(i) an isomorphism if both a +p < b+ q and a < min{b — ¢, b},
(ii) an injection if both a +p <b+q+1 and a < min{b— q,b} + 1.

Proof. This follows by comparing the long exact sequences induced by the motivic
isotropy cofiber sequence Xy A ECy 1 — X — X A EC, together with Proposi-
tion 7.7 and Proposition 7.9. O

When p = ¢ = 0 and X a smooth real variety with trivial Cs-action the above
theorem reduces to the version of the Beilinson-Lichtenbaum conjecture for a real
variety (see 7.1) established in [HV12]. (Of course this was used to prove the
theorem.)

APPENDIX A. EQUIVARIANT MOTIVIC HOMOTOPY THEORY

Unstable equivariant motivic homotopy theory was first considered by Voevod-
sky [Del09]. A stable version was considered by Hu-Kriz-Ormsby [HKO11] as part
of their work on the completion problem in Hermitian K-theory. General founda-
tions and model structures are constructed in [HK@15] and representability results
for equivariant algebraic K-theory are also established. A general framework for
stable equivariant motivic homotopy theory emphasizing the six functor formalism
is introduced in [Hoy15]. Alternate versions of a homotopy theory for smooth G-
schemes are studied in [Her13] and [CJ14]; however, theories of interest, such as
equivariant algebraic K-theory, are not representable in the homotopy categories
constructed there.

The main results in this paper rely on a Betti or topological realization functor,
which is constructed in this appendix, relating equivariant motivic homotopy and
classical equivariant homotopy theory. We begin by giving a brief but self-contained
construction of a model for the unstable and stable equivariant motivic homotopy
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categories, which is geared towards the construction of the Betti realization func-
tor. We also record the details of the construction of several comparison functors
between equivariant and nonequivariant homotopy categories in this setting. Fi-
nally in the last sections of this appendix we verify that the topological realization
of the Bredon motivic cohomology spectrum is the topological Bredon cohomology
spectrum.

A.1. Unstable equivariant motivic homotopy theory. To keep exposition
streamlined, we restrict attention to the case of a finite group G over a field k. Fur-
thermore we always assume that the order of G is invertible in k. A motivic G-space
over k is defined to be a presheaf of simplicial sets on GSm/k. We write GSpc(k)
and GSpc, (k) respectively for the categories of motivic G-spaces and pointed mo-
tivic G-spaces over k. We are primarily interested in the stable equivariant motivic
homotopy category, and so we only treat the unstable model structure for pointed
motivic G-spaces. The category GSpc, (k) is a symmetric monoidal category via
the pointwise smash product (F' A G)(X) := F(X) A G(X) of motivic G-spaces.

We make use of an equivariant version of the “closed flasque model structure”
introduced in [PPRO9], a variation on the flasque model structure of [Isa05]. This
model structure is particularly well-suited for topological realization.

Let Z = {Z; — X} be a finite collection of closed immersions () — X is allowed)
in GSm/k. Define

Uz .= coeq(H Zp Xx Lyt = HZ,.),

r,r’ T

where the coequalizer is computed in Spc(k) (i.e., UZ is the categorical union of
the Z, C X). Write iz : UZ — X for the resulting monomorphism.

The pushout product 7 [J j of two maps i : A — X and j: B — Y is defined to
be the map AAY [[4,, g X A B = X AY. Define two sets of maps:

(1) I¢ is the set of maps of the form (iz)y O g4, where Z is a finite set of
closed equivariant immersions in GSm/k and ¢ : 9A™ — A" n > 0 is the
standard inclusion.

(2) Je€is the set of maps of the form (iz)4 O g4, where Z is a finite set of closed
equivariant immersions in GSm/k and g : AP S AP o >1,0<i<nis
the standard inclusion.

Definition A.1. Let f: FF — G be a map of pointed motivic G-spaces.
(1) Say that f is a schemewise weak equivalence provided f : F(U) — G(U) is
a weak equivalence of simplicial sets for all U in GSm/k.
(2) Say that f is a closed flasque fibration if it has the right lifting property
with respect to J°.
(3) Say that f is a closed flasque cofibration if it has the left lifting property
with respect to acyclic closed schemewise fibrations.

The schemewise weak equivalences, closed flasque cofibrations, and closed flasque
fibrations define the global closed flasque model structure on GSpc,(k), see e.g.,
[HK@15, Theorem 3.8].

Proposition A.2. The global closed flasque model structure is a simplicial, proper,
cellular, monoidal model structure on GSpcg (k). The sets I¢ and J¢ are respectively
generating cofibrations and acyclic cofibrations.
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For a distinguished equivariant Nisnevich square @ as in (2.2), write Py for the
pushout of A +— B — Y in GSpc(k).

Definition A.3. (1) The closed flasque (equivariant Nisnevich) local model
structure on GSpc, (k) is the left Bousfield localization of the global closed
flasque model structure at the set of maps {(Pg)+ — X4}, where ) ranges
over the set of distinguished equivariant Nisnevich squares. The associated
homotopy category is denoted Hg% (k).

(2) The closed flasque motivic model structure on GSpe, (k) is the left Bous-
field localization of the closed flasque local model structure at the set of
projections (X x Al); — X for all X in GSm/k. For brevity, we refer
to the weak equivalences and fibrations of this model structure as motivic
weak equivalences and motivic fibrations. The associated homotopy cate-
gory is the unstable equivariant motivic homotopy category and is denoted
He o (k).

Theorem A.4. The closed flasque local and closed flasque motivic model structures
are simplicial, proper, cellular, monoidal model structures on GSpc,(k). The iden-
tity functor from the projective model structures to the closed flasque model struc-
tures is a left Quillen equivalence. In particular, the homotopy category He o (k)
coincides with the one defined in [HKD15] (and hence also with the one defined by
Voevodsky in [Del09] ).

Proof. The global closed flasque model structure is left proper (in fact proper) as
well as cellular and so by [Hir03, Theorem 4.1.1] the left Bousfield localization of
this model structure at a set of maps exists (and is again left proper and cellular).
This implies that the above model structures exist, are simplicial, left proper, and
cellular. Right properness follows from the fact that the local projective and motivic
model structures are proper, see [HK(?15, Theorem 4.3].

Every projective cofibration is a closed flasque cofibration and the weak equiv-
alences in the global model structures coincide so that the identity is a Quillen
equivalence between the global model structures, and hence a Quillen equivalence
on the localized model structures.

To show that these are symmetric monoidal model structures we need to check
that if f and g are cofibrations, then the pushout product of f [0 g is also a
cofibration and that it is a weak equivalence if either f or g is an acyclic cofibration.
It suffices to assume that f and g are generating cofibrations. Note that taking
smash products preserve motivic weak equivalences since every object is injective
cofibrant. The pushout product of maps of the form (iz); — X are again of the
same form. The pushout product axiom in simplicial sets therefore implies that
the pushout product of closed flasque cofibrations is again a cofibration. If one of
f or g is a weak equivalence, so is the pushout product because the smash product
preserves equivariant motivic equivalences. O

Remark A.5. It follows from the definitions that F' is motivic fibrant on GSm/k
if and only if the following three conditions hold.

(1) F is fibrant in the global closed flasque model structure.
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(2) F is equivariant Nisnevich excisive, i.e., for any distinguished square in
GSm/k the square

F(X) ——= F(Y)

F(A) — F(B)

is homotopy cartesian.
(3) Fis Al-invariant, i.e., F(X x A') — F(X) is a weak equivalence for all X.

A.2. Hypercohomology and motivic homotopy. Let F be a presheaf of simpli-
cial abelian groups on GSm/k. Write N'F for the associated presheaf of normalized
cochain complexes. Forgetting the group structure, we view F as a pointed motivic
G-space, with 0 as basepoint. There is a natural isomorphism (see e.g., [MV99,
Proposition 2.1.26]) of homotopy classes of maps in Hglf(k:) and sheaf cohomology
groups

(5™ /\X+>]:]Hgfj(k) = Hopis(X, (N Fanis)-

Moreover, if F is equivariant Nisnevich excisive then both of these groups agree
with the homotopy group m, F(X).

In [HV(15] we introduced an equivariant generalization of Voevodsky’s machin-
ery of presheaves with transfers. A presheaf with equivariant transfers is an additive
presheaf on the category G Cory, which has the same objects as GSm/k and whose
maps are given by Cor,(X,Y)%. From the viewpoint of motivic homotopy theory,
a fundamental feature of the transfer structure is that it allows one to construct a
“small” motivic fibrant replacement.

Write Lagnis for a fibrant replacement functor in the equivariant Nisnevich local
model structure of Theorem A.4. If F' is a presheaf of abelian groups recall that
C.F(X) is the simplicial abelian group F(X x A}). By the exponent exp(G) of a
group G we mean the least common multiple of the orders of elements of the group.

Theorem A.6. Suppose that G is abelian group, |G| is coprime to char(k), and k
contains a primitive exp(G)th-root of unity. Let F be a presheaf with equivariant
transfers. Then F — LagnisCs«F is a motivic fibrant replacement functor. In
particular, we have a natural isomorphism

(8™ A X4, Flig ) = Hglyio(X, NCLF).

Proof. By definition LC,F is closed flasque fibrant and equivariant Nisnevich ex-
cisive. It remains to see that LaonisCywF is Al-invariant. We have natural isomor-
phisms

TnLanisCoaF(X) = [S" A Xy, CuFluyis iy = Hopi (X, NCLF).

The Al-invariance of this presheaf follows from [HV@®15, Theorem 8.12] together
with an application of the spectral sequence

HE (X, 1Y) = HEE (X, NCLF),

where H? is the sheafification of the presheaf U — HINC,.F(U). O
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A.3. Adjunctions of motivic spaces. Next we record some motivic analogues of
familiar adjunctions in topology relating G-spaces and ordinary spaces. We begin
with the adjunctions

i:=(=)"":Sm/k = GSm/k: (=) =: ¢,
e:=G x —:Sm/k = GSm/k : (—)° =: p.

Here, (—)¢ simply forgets the action, the underlying scheme of X" is X and it is
considered as a G-scheme with trivial action, and X is the fixed points scheme,
which is smooth since |G| is invertible in &, see e.g., [Edi92, Proposition 3.4]). We
obtain several adjoint pairs of functors on based motivic spaces

: Spe, (k) = GSpe, (k) « i,

oy O = Sl 0.
: Speg (k) = GSpcy (k) : €.,

€ =p* GSpc.(k) = Spey (k) : pa.

Proposition A.7. Each of the pairs (i*,i.), (¢*,Px), (€*,€x), and (p*, ps) are
Quillen adjoints on the closed flasque motivic model structures.

Proof. Each of the functors i, ¢, €, and p commute with fiber products and preserve
closed immersions. It follows that i*, ¢*, €*, and p* preserve generating cofibrations
and generating acyclic cofibrations for the global closed flasque model structure.
These are thus left Quillen adjoints on the global closed flasque model structure.

Both ¢ and e send distinguished Nisnevich squares to distinguished equivariant
Nisnevich squares. The functor p sends distinguished equivariant Nisnevich squares
to distinguished Nisnevich squares and by [Her13, Corollary 3.2.6], ¢ does as well.
Moreover, i, ¢, €, and p all send maps of the form X x A! — X to maps of the same
form. It follows by the universal property of Bousfield localization that the functors
1", ¢*, €', and p* are also left Quillen functors on the closed flasque motivic model
structure.

O

We may now define motivic analogues of the classical change of groups functors.

Definition A.8. Define the
(1) trivial action functor by (—)" := Li*,
(2) G-fized points functor by (—)¢ := Ri,,
(3) induced motivic G-space functor by G A — := Le*,
(4) coinduced motivic G-space functor by F(Gy, —) := Rp,,
(5) underlying motivic space functor by (—)¢ := Re.,.

Note that i, = ¢* and e, = p* are both Quillen left and Quillen right adjoints.
We thus have natural motivic equivalences Ri, = (—)¢ ~ Li, and Re, = (—)¢ ~
Le,.

In summary, we have adjunctions

(=) - Ho(k) = Hga(k) : (5)°,
Gy N—:He(k) 2 Hgo(k): (—),
(=) :Hgo(k) = Ho(k) : F(Gy,—).
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We note that (G4 AX)® ~ ][ X. Indeed, we have e,€*(X) =[] X since this
formula holds for smooth schemes and both sides commute with colimits. If X</
is a cofibrant replacement for X, then we have the weak equivalences (G4 A X)¢ =
Re, Le* (X) =~ Le,Le* (X) =~ e, (X)) = g Xeof which establishes the claim.
The inclusion X¢ — (G4 A X)¢ at the summand corresponding to e € G induces
the map i : G4y AN X¢ = G4 N X.

Lemma A.9. The mapi: G4 A X® = G4 A X is an isomorphism in He o (k).

Proof. We have that G4 A (—)¢ = Le*Le.(—) = Le*Lp*(—). Note that these
commute with homotopy colimits, as does G+ A —. It thus suffices to assume that
X is representable. If Y is a G-scheme, then the map G x Y — G x Y given by
(9,y) — (g, gy) yields the desired equivariant isomorphism. a

A.4. Stable equivariant motivic homotopy theory. Stable model structures
on motivic spectra are constructed in [Jar00], yield the stable motivic homotopy
category. A stable equivariant motivic homotopy category was first constructed in
[HKOL11]. In this paper we will work with model structures for equivariant motivic
spectra by using Hovey’s machinery [Hov01, Section §].

Let V be a representation. The associated motivic representation sphere is the
quotient TV := P(V @ 1)/P(V), where the quotient is taken in the category of
presheaves. It is naturally an object of GSpc, (k). We also write TV := (TV)"\".
Since P(V) — P(V @1) is a closed flasque cofibration, T" is closed flasque cofibrant
motivic G-space. We write pg for the regular representation.

Let K be a pointed motivic G-space. We write hom(K, —) for the right adjoint
of K A —. In particular, Xrec F = TP¢ A F and Qpec F = hom(T?¢ | F).

Definition A.10. A symmetric K-spectrum is a sequence E = (Ey, E1,...) con-
sisting of objects E,, of GSpc, (k) together with the following data

(i) a X,-action on E,,,
(ii) ¥,-equivariant maps o, : B, A K — E, 41,

where the structure maps o,, are required to satisfy the condition that the compos-
ites E,, AN K"? — E, 1, are ¥,, X X,-equivariant for all n,p > 0.

A map F — F of symmetric K-spectra is a collection of ¥,,-equivariant maps
FE,, — F,, which are compatible with the structure maps. Write GSpt%(k‘) for the
category of symmetric K-spectra in GSpc, (k). Now suppose that K is a closed
flasque cofibrant based motivic G-space. The category GSpc,(k) equipped with
the closed flasque motivic model structure is a left proper, cellular, simplicial, sym-
metric monoidal model category, and so we can use [Hov01, Definition 8.7] to define
a stable model structure on the category of symmetric K-spectra. It is again a sym-
metric monoidal model category by [Hov01l, Theorem 8.11]. If K” is another closed
flasque cofibrant based motivic G-space, we write GSpt? (k) for the category
of symmetric (K, K’)-bispectra (i.e., symmetric K’-spectra in GSpty(k)). This is
again equipped with the stable model structure of [Hov01, Section 8.

A symmetric K-spectrum & is fibrant if and only if it is an Qg-spectrum, i.e.,
FE; is motivic fibrant and & — Qi F; 41 is a motivic weak equivalence for all i. By
Theorem 3.4 the Bredon motivic cohomology spectrum MA is an Qprc, -spectrum.

The adjunctions of Section A.3 stabilize.
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Proposition A.11. The adjoint pairs of Section A.3 induce adjoint pairs
(=)™ : SH(k) = SHe(k) : (—)°,
G, N —:SH(k) 2 SHg(k) : (—)°,
(=)¢:SHg(k) = SH(k) : F(G4,—).

The functors (=), and (—)¢ are symmetric monoidal and (—)€ is lax monoidal.
Proof. First we note that we have an equivalence, as tensor triangulated categories

SHe (k) ~ Ho(GSptT. 1ee (K))

where the category GSpt%TpG (k) of symmetric (T, T*<)-bispectra equipped with
the stable model structure as above. Indeed, the model category GSpt%TpG (k) is
isomorphic to GSpt%G,T(k) and the endofunctor — AT on GSptFe (k) is a Quillen
equivalence, since TATP¢ = T*¢ (where pg is the reduced regular representation).
By [Hov01, Theorem 9.1], the stabilization functor (which is symmetric monoidal)
GSptrse (k) — GSpt§pG7T(k) is therefore a left Quillen equivalence.

The monoidal functor i* : Spc, (k) — GSpc, (k) makes GSpc, (k) into a Spc, (k)-
model category in the sense of [Hov99, Definition 4.2.18] and the Quillen functor ¢*
is a Spc,(k)-module functor (see [Hov99, Definition 4.1.7]). By [Hov01l, Theorem
9.3], the Quillen pairs (i*,4.) extends to a Quillen pair on spectra. Combined with
the stablization adjunction, we have the composition of Quillen functors

- %,
SpUF (k) = GSpHR(k) — GSpi v (k)
e TPG

The pair ((—)!%, (—)%) is the induced adjunction on homotopy categories, i.e.,
(=) = L(X%5 0i*) and (—)¢ = R(i, o Qe

The other two adjunctions are attained as follows. We use Spt%m(k) as our
model for SH(k). Note for X in Spc,(k) and Y in GSpc,(k) we have a natural
isomorphism €*(X A p*(Y)) = €*(X) AY. Indeed, this holds when X is in Smk
and Y is in GSm/k and both sides commute with colimits. Since p*(T*¢) = TI¢!,
we have ¢*(X A TIC) = e*(X) ATPe. We also have p*(Y ATP¢) = p*(Y) ATICI.
By [HO14, Lemma 4.1], the adjunctions (e*,e.) and (p*, p«) extend to Quillen
adjunctions on stable model structures

€ 1 Sptoia (k) 2 GSptre (k) : €,
p* 1 GSptTeg (k) = Spt2ia (k) : pa.

We have €, = p* : GSpc, (k) — Spce (k). The prolongations to functors on spectra
are levelwise isomorphic and it is straightforward to verify that they are in fact
isomorphic as spectra. In other words, e, = p* : GSptZ,s (k) — Sptre (k). In
particular, Re, ~ Lp*. The adjunctions (G4 A —, (—)¢) and ((—)¢, F/(G4+,—)) on
the homotopy categories are thus obtained as G4 A — = Le*, F(G4,—) = Rp,, and
(=) =Lp" _

Since i* and p* are symmetric monoidal functors, so are (—)"* and (—)°. Since
(—)% is right adjoint to a symmetric monoidal functor, it is lax monoidal. O
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A.5. Topological realization over C (unstable). If X is a complex variety,
we consider X (C) as a topological space with the Euclidean topology. If X has
a G-action, then X(C) also has a G-action and X +— X(C) defines a functor
GSm/C — GTop. The topological realization functor Re¢ : GSpe, (C) — GTop, is
defined by the Kan extension

Re(C(F) = (chgl‘l)lilA)F(X((C) X A;ﬂop)-ﬁ-

where A}, ) is the standard topological n-simplex, considered with trivial action. It
has a right adjoint K — Singq(K), defined by Sing¢(K)(X) = Hom (X (C), K)
(where Hom(—, —) is the simplicial set of continuous equivariant maps). Equip
GTop, with the model structure where a map X — Y is a weak equivalence or
a fibration if X — Y is a weak equivalence or a fibration for all subgroups of
G, see e.g., [MMO02, Theorem II1.1.8]. The resulting homotopy category Hg o is
the classical unstable equivariant homotopy category. For the corresponding model

structure on G-simplicial sets, see e.g., [DRQ03, §9.2].
Proposition A.12. The adjoint pair

Rec : GSpec, (C) & GTop, : Singc
is a Quillen adjunction and Rec is a symmetric monoidal functor.

Proof. The argument is similar to that given in [PPR09, Theorem A.23]. First we
show that Rec is a left adjoint on the closed flasque model structure. For any finite
collection of closed immersions {Z; — X} in GSm/C, Rec((iz)4+) is the inclusion
of an equivariant subcomplex, and hence an equivariant cofibration. It follows that
Rec sends I¢ to cofibrations in GTop, and J¢ to weak homotopy equivalences in
GTop,. This implies that Singq preserves trivial fibrations as well as fibrations
between fibrant objects. By Dugger’s lemma [Dug01, Corollary A2], Rec is thus a
left Quillen functor on the closed flasque global model structure.

Next we claim that Rec sends equivariant distinguished squares to homotopy
pushouts. By [Her13, Corollary 2.13], the H-fixed points of an equivariant distin-
guished square is a distinguished Nisnevich square in Sm/k. A square in GTop, is a
homotopy pushout if and only if it is so on all fixed points. Since X (C) = X (C)#,
it suffices to show that the square obtained by taking complex points of a distin-
guished Nisnevich square is a homotopy pushout square in topological spaces. This
follows from [DI04, Theorem 5.2], establishing the claim. As A'(C) is equivariantly
contractible, Rec(X,) — Rec((X x Al),) is an equivariant homotopy equivalence.
It follows by the universal property of Bousfield localization that Rec is a left
Quillen functor on the closed flasque motivic model structure.

That Rec is symmetric monoidal is a simple consequence of the fact that there
is a natural equivariant homeomorphism (X x Y)(C) = X(C) x Y (C). O

Proposition A.13. The squares of left adjoints commutes up to natural isomor-
phisms

Ho(C) 2 Heo(C)  Ha(C) L n Hpo(C) Hea(C) 2> H,(C)

s

(
Rec \LReC Rec \L \LRec Rec i lRec
G+/\7 (7)M"Lv ( )e

Hy —— Hg.,, He —— Hg.,, HG704>H--
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Proof. Using the notation from Section A.3, we have a natural isomorphism Rec o
€*(—) 2 G4+ A Rec(—) of functors Spcy(C) — GTop. Indeed, this is clear on
representable motivic spaces and since these functors commute with colimits, this
suffices. Similarly, we have natural isomorphisms Rec o i*(—) = (Rec(—))"* and
Rec o p*(—) = (Rec(—))°. These isomorphisms imply the isomorphisms of derived
functors on the homotopy categories. O
A.6. Topological realization over C (stable). Now we turn our attention to a
stable realization functor. For any real orthogonal representation V' there is a rep-
resentation sphere SV = V,, where (=), denotes the one-point compactification.
Since C[G] = R[G] @ R[G] as real representations, we have Rec(77¢) = §%¢.

If E is a motivic G-spectrum, define the topological S?°¢-spectrum RecE by
(RecE); = RecE; with structure maps

RecE; A 5276 = Rec(E; AT?¢) — RecEiy 1.

The functor Sing extends as well to a functor on S?°¢-spectra. In fact, we obtain
an adjoint pair of functors

Rec : SptZFec (C) = Sptia,, (GTop,) : Singc .
Theorem A.14. The adjoint pairs
Rec : Sptieg (C) 2 Sptgze (GTop,) : Singe,
Rec : Sptre (C)7? 2 Sptie., (GTop,) : Singc
are both Quillen adjoint pairs. Moreover, Rec is symmetric monoidal.

Proof. This is straightforward from Proposition A.12, cf. [PPR09, Theorem A.45].
O

Proposition A.15. The squares of left adjoints commute up to natural isomor-
phisms

SH(C) £2 SHG(C) SH(C) " SHG(C) SHe(C) -~ SH(C)

R,e\[j l l Rec R,e\[j l l Rec RCC l \L RCC
G N (_)triv ( )e

SH —" - SHg, SH — = SHg, SH¢ SH.

Proof. Straightforward using the unstable result in Proposition A.13. O

A.7. Topological realization over R. Write ¥5 = Gal(C/R). If X is a real
variety with G-action, then X (C) is a (G x ¥y)-space, where the a-action is via
complex conjugation. We thus have a functor GSm/R — (G'xX2)Top which induces
the topological realization functor Rec, s, : GSpc,(C) — (G x X3)Top,, defined by
the Kan extension

Reg, s, (F) = (XXCXE)ELF(X((C) X Afop)+-

Its right adjoint is defined by Singc s, (K)(X) = Homg, s, (X(C), K), where K is
a G x Yg-space and X is a smooth real G-variety.

Proposition A.16. The adjoint pair
Rec, 5, : GSpe,(R) = (G x X2)Top, : Singe x,

is a Quillen adjunction and Rec x, is a symmetric monoidal functor.
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Proof. The argument is similar to Proposition A.12. a

Now we turn our attention to a stable realization functor. Since C[G] = R[G x 3]
as real representations, we have Reg(T°¢) = SPex32,

If E is a motivic G-spectrum, define the topological S#¢*>2-spectrum Rec, 5,E
by (Rec,5,E); = Rec, »,E; with structure maps

Rec,zb E; A Rec’zz (SPGXEZ) = ReC,Zz(Ei A TPG) — ReQ 22E¢+1.

The functor Sing extends as well to a functor on SP¢x®2-spectra, adjoint to
REQ y-

Theorem A.17. The adjoint pair
Rec s, : Spt%a C)= Spt?PGXX;Q ((G x 33)Top,) : Singc v,
is a Quillen adjoint pair. Moreover, Rec, s, is symmetric monoidal.

Proof. This is straightforward from Proposition A.16, cf. [PPR09, Theorem A.45].
O

A.8. Symmetric powers. In order to analyze the topological realization of the
Bredon motivic cohomology spectrum, we need to make precise that it is represented
by symmetric powers. In this subsection we introduce and analyze symmetric pow-
ers for motivic G-spaces. This discussion parallels the treatment of symmetric
powers in [Del09], [VoelOa], and [Lev14, Appendix]. Throughout this subsection,
we assume that char(k) = 0.

Write GSm’ /k for the category of smooth, quasi-projective G-schemes over k and
GSpc’ (k) and GSpc, (k) for the corresponding categories of simplicial presheaves
and pointed simplicial presheaves. These can also be given a motivic model struc-
ture as above. The inclusion ¢ : GSm'/k C GSm/k induces an adjoint pair
¢* : GSpc' (k) 2 GSpc(k) : ¢, and similarly for based motivic spaces.

Lemma A.18. The adjunction ¢* : GSpc’' (k) 2 GSpc(k) : ¢, is a Quillen equiva-
lence on motivic model structures. Similarly for based motivic G-spaces.

Proof. This follows easily from the fact that smooth G-schemes are locally affine in
the equivariant Nisnevich topology, see Remark 2.3. (]

Write G'Sch’/k for the category of reduced, quasi-projective G-schemes of finite
type over k. Consider the functor (—)*" : GSch’/k — (X,, x G)Sch’/k which sends
a G-scheme X to the n-fold product X *™, where G acts diagonally and ¥, acts by
permuting the factors. The composition of (—)*™ and the Yoneda embedding gives
us a functor GSch’/k — sPre((X, x G)Sch’/k) and we define II™ (—) to be its left
Kan extension, yielding the functor

1™ : sPre(GSch’/k) — sPre((X, x G)Sch’/k),

and similarly for pointed motivic spaces.

Let N < K be a normal subgroup of a group K and write I' = K/N for the
quotient group. If X is a quasi-projective K-scheme over k then a quotient scheme
X/N exists and the K-action on X induces a I'-action on the scheme X/N. We
write qr n @ KSch'/k — I'Sch/k for the quotient functor, i.e., gk n(X) = X/N.
The functor gk induces an adjoint pair of functors

(qr.n)* : sPre(KSch’/k) = sPre(I'Sch/k) : (gr,N)«
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and similarly for based presheaves. For X in KSpc’(k), define X /N := (qx n)*(X).
If X is represented by a quasi-projective G-scheme X, then X' /N is represented by
X/N.

Let C be a category with finite coproducts and F' a presheaf of sets on C. Say
that F is additive’ provided F() = * and F(X][Y) = F(X) x F(Y) for any
X,Y €C. By [ARO1, Theorem 2.6], a presheaf of sets on C is additive if and only if
the opposite of its category of elements is sifted. In particular an additive presheaf is
canonically a sifted colimit of representable presheaves. Recall that filtered colimits
and reflexive coequalizers are sifted colimits.

Note that a presheaf on GSch’/k is additive if and only if it is sheaf for the
topology generated by covers by G-connected components. The inclusion of the
full subcategory of presheaves i : Pres(GSch’/k) C Pre(GSch’/k) whose objects
are additive presheaves has a left adjoint

ay : Pre(GSch’/k) — Pres(GSch'/k)

given by sheafification (or as a special case of [VoelOb, Lemma 3.8]). Since we do
not work in the category Pres(GSch’/k), we will also simply write a4 again for the
composite a.

Definition A.19. Define the nth symmetric product Sym” : sPre(GSch’/k) —
sPre(GSch’/k) by
Sym™ (&) := T (apX) /2,

The inclusion of categories i : GSm’/k C GSch’/k induces an adjoint pair of

functors

i* : GSpc’ (k) = sPre(GSch’/k) : i,
and similarly for pointed motivic spaces. Note that i, preserves colimits, as these
are computed sectionwise. If X is an object of sPre(GSch’/k), when no confusion
should arise we again write Sym™ (X)) for i,(Sym™ (X)) in GSpc’(k) and also for
@i, (Sym"™ (X)) in GSpc(k).

If X is represented by a scheme X in GSch’/k, then Sym™(X) is represented by
the scheme-theoretic symmetric power Sym™(X). Moreover, Sym"(—) commutes
with sifted colimits.

If (X, ) is an object of sPre, (G'Sch’/k), then Sym” (X)) has a canonical basepoint
given by Sym"(z) and we write Sym{ (X)) for the corresponding pointed motivic
space in GSpc, (k). If X is represented by a pointed scheme X in GSch’/k, then
Sym" (X)) is represented by the scheme-theoretic symmetric power Sym”(X). Note
that Symy (—) commutes with sifted colimits.

Remark A.20. We avoid here any explicit discussion of the derived functors nec-
essary to make this construction Al-invariant. However, consideration of the sym-
metric powers of a coproduct shows that any sensible definition can’t both commute
with all colimits and compute the correct value of quotient spaces. Some amount of
“derived-ness” needs to be baked into the definition. This explains the appearance
of ax in the definition.

We have natural pairings (X*™)/%,, x (X*")/8, — (X*(m+tn)/5 . and
(XXM /8, x (YX")/8, — (X x Y)*™ /%, for X, Y € GSch’/k. These induce

"n [Voel0b] the term radditive is used.
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addition and multiplication maps,

Symy'(X) x Symj (X) RN Symm+"(X) and

Sym™(X) A Sym? (V) £ Sym™™ (X A Y).

Stabilization maps st,41 := 0,1(—, %) : SymZ(X) — Symit!(X) are thus ob-
tained by adding the basepoint. Define
Sym2(X) := colim(X =2 Sym?(X) =25 Sym?3(x) =45 ...)

n

Recall that the group of finite correspondences Corg (Y, X) is the free abelian
group generated by integral closed subschemes Z C Y x X such that Z is finite over
Y and dominates an irreducible component of Y. When G acts on X and Y there is
an induced action on Corg(Y, X). The group of equivariant finite correspondences
is defined to be G Cory (Y, X) := Corg (Y, X)¢. We write Z,. ¢(X) for the presheaf
of equivariant correspondences, Z; ¢(X)(Y) := GCori(¥,X). If A C X is a
closed invariant subscheme we define Zy, ¢(X/A) := Zyr ¢(X)/Zyr,c(A), the group
quotient.

The submonoid Corzf f (Y, X)€ of effective equivariant correspondences consists
of those equivariant correspondences Y nzZ such that all ny; > 0. We write

Zf{ é(X ) for the corresponding presheaf of effective equivariant correspondences.
Let A C X is a closed invariant subscheme and define an equivalence relation ~
on Z{IL(X)(Y) by declaring Z ~ Z' if Z — Z' € Zyc(A)(Y). Now define the
presheaf Zfié(X/A) = Z;{g(X)/ ~. We have that Z; ¢(X) = (Z;{é(X))'*‘ and
Ziyrc(X/A) = (Z;{fG(X/A))‘*‘, where (=)' denotes group completion.

Consider the subset L, (X)(Y) C Corzf 7Y, X) of effective correspondences of

degree n. Write LG (X)(Y) = (L,(X)(Y))¢ for the subset of equivariant corre-
spondences of degree n. Addition of cycles induces a pairing

it LY (X) x LS (X) = LY ;(X)

Now we consider a pointed G-scheme (X,z). The presheaf LS (X) is pointed by

n(Y x ) in LZ(X)(Y). Let A C X be a closed invariant subscheme containing
x € X. Adding the basepoint induces stabilization maps

st =o(—,%): LT (X) = L, (X).
Define the presheaf LG (X/A) to be the coequalizer (in GSpc(k))

(A.21) ﬁ LS (A)x LT ((X) = LG (X) — LS (X/A)
j=0

where the top arrow is induced by the inclusion A C X and addition of cycles and
the bottom map is the composition

G G proj G st G
L7 (A) x L, _;(X) —= Ly_;(X) — L (X).

Note that the presheaf L& (X/A) has a canonical basepoint and the quotient map
LY (X) — LE&(X/A) is a map of based presheaves. The addition map induces
an addition map LY (X/A) x L]G(X/A) — Lﬁj (X/A) and in particular we have
stabilization maps st : LY (X/A) — L§,(X/A) obtained by adding the basepoint.
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Proposition A.22. Let X be a pointed, semi-normal, quasi-projective G-scheme
over k and A C X an invariant closed reduced subscheme containing the basepoint.
There are isomorphisms LG (X) = SymJ(X) in GSpc,(k) which induce isomor-
phisms LG (X/A) = Sym7 (X/A).

Proof. There is a natural isomorphism % : Symy (X) — L,,(X) by [SV96, Theorem
6.8], which is given as follows. Let W,, C Sym™(X) x X be the image of the closed
subscheme X"~ 1! x Ax C X"+ under 7, x idyx, where 7, : X"® — Sym™(X) is
the quotient. If f : Y — Sym"(X) is a map, with Y smooth, then ¥(f) = (f x
idx)*(W,,) is defined to be the pullback cycle. This is an equivariant isomorphism.
Since Sym"(—) commutes with sifted colimits, we can compute Symj (X/A) as the
coequalizer (in GSpc(k))

(A.23) Sym"(AJ] X) = Sym™(X) — Sym((X/A)

where the top arrow is induced by the inclusion A C X and the identity on X while
the bottom arrow is induced by mapping A to the basepoint and the identity on X.
Since Sym"(AJ] X) = ]_[;.L:O Sym? (A) x Sym™ ¥ (X), comparing with (A.21) yields
the isomorphisms LG (X/A) = Sym} (X/A). O

The maps LG (X) — sz,é(X) induce maps LG (X/A) — Z;f,é(X/A) which
are compatible with the stabilization LS (X/A) — LS, ,(X/A). We thus have an
induced map colim,, LG (X/A) — Z:fé(X/A)

Proposition A.24. Let (X, x) be a pointed smooth quasi-projective G-scheme over
k and A C X a closed reduced subscheme which contains the basepoint x € X. Then
we have isomorphisms in GSpc, (k)

Symg®(X/A) <= colim LG (X/A) = Z5 L (X/A).

Proof. The left hand isomorphism follows from the previous proposition. The map
colim,, L, (X;) — Z;f é(X ) is immediately seen to be an isomorphism. The map
f : colim, LE(X/A) — Ztefé(X/A) is surjective and we check injectivity. Let
[(W],[V] € LS (X/A)(Y) and represent them by elements in LS (X)(Y) which we
again write as W, V. We can write W = W4 + W’ and V = V4 + V' uniquely as
a sum of effective cycles with W4, V4 supported on Y x A and no component of
the supports of W/, V' contained in Y x A. If f([W]) = f([V]), then we have that
W' = V'. It follows from the definition of L¢(X/A) that [W] = [V]. O

Proposition A.25. Let X be a smooth quasi-projective G-scheme over k and V
a representation which contains a copy of the trivial representation. Then the map
Sym(TV A Xy) = Ziro(TV A X4) is an equivariant motivic weak equivalence.

Proof. If E is a presheaf of sets, write C, F as usual for the presheaf of simplicial sets
defined by C,,E(Y) = E(Y x A}). The map E — C,FE is an Al-weak equivalence.

Write Fy = Z&L(TV A X,) and Fy = Zypg(TV A Xy) and let ¢ : Fy — Fy
be the group comf)letion. Under the isomorphism of Proposition A.24, the map
in the statement of the proposition is identified with ¢. It suffices to show that
¢ : Co.F1 — C,F5 is a motivic weak equivalence. In fact, we show that if S is a
point for the equivariant Nisnevich topology, then ¢ : C,Fi(S) — C.Fy(S) is a
weak equivalence of simplicial sets. We claim that moC,F;(S) = 0. Granted this,
since ¢ is the group completion of a free commutative monoid, by [FM94, Theorem
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Q4] the map ¢ is a homology equivalence. Since ¢ is a map between simple spaces,
this implies that ¢ is in fact a homotopy equivalence.

It remains to see that moC,F1(S) = 0. We have that S = G x g Spec(R) where
H C G is a subgroup and R is a smooth, local Henselian ring with H-action, see
[HVQA15, Theorem 3.14]. Write py : GSch/k — HSch/k for the functor which
restricts the action. Note that pg (Symg°(Y)) = Syme°(pgY) for any based quasi-
projective G-scheme Y and so for any H-scheme Z

Homgsen/x (G xa Z,Sym® (X)) = Hompgscn /i (Z, Syme® (pu X)).

Thus, replacing G with H and S with Spec(R), we may assume that S is a local
Henselian G-scheme.
Write

Fl = Z[G (P(V @ D)/(B(V 1) \B(1)) A X4)).
First note that since P(V) C P(V @ 1) \ P(1) has an equivariant section, that
ﬂoC*Fl(S) Q WQO*F{(S)

(In fact, C.F1(S) and C.F](S) are weakly equivalent, but the weaker statement is
enough for our purposes here.) Therefore, it suffices to show that moC,F}(S) = 0.
An element of CyF](S) is represented by an effective invariant cycle > n;Z; on
A%, x P(V & 1) such that Z; is finite over S and has nontrivial intersection with
A x P(1).

Let Z be an element of Co F{(S) and > n;Z; € Zfﬁé(P(VGBl) x X)(S) an element
representing Z, as in the previous paragraph. Since the Z; are finite over S, they
are local. Since Z; has nontrivial intersection with P(1)sxx the closed points are
supported in P(1)gx x and Z; are contained in the open A(V)sxx CP(V @ 1)sxx
(where P(1)gxx = Osxx in A(V)sxx). By assumption, V contains a copy of the
trivial representation so we can write V=1 V’. Consider the equivariant map
¢ : Al x A(V)sxx — A(V)sxx given by (¢, (z;),y) = ((z; —t),y). Let ® be the
cycle on A x A(V)gxx obtained by pull-back of Z along ¢. Then ® € Cy F}(S)
and has the property that ®|p = Z and ®|; is supported in (P(V & 1) \ P(1))sxx
(the closed points lie in {1}sxx € A(V)sxx). Thus Z =0 in moC,Fy(S5). O

A.9. Realization of Eilenberg-MacLane spectra. Our next goal is to show
that the topological realization, in both the complex and real case, of the Bredon
motivic cohomology spectrum MA is the topological Bredon cohomology spectrum
(for the constant Mackey functor A). The construction of the motivic G-spectrum
MZ is spelled out in detail in Section 3.2 for the case G = C5 and the construction
for a general finite group G is similar. In brief, we set MZ,, = Z; ¢(T™¢) and
structure maps are defined by MZ, A T?¢ — MZ, A Zrq(T?P¢) — MZ,, ., the
first map being induced by the inclusion TP¢ — Z.q(TP) together with the
addition-of-cycles map.

Lemma A.26.

(1) Let V' be a complex representation which contains a trivial summand. For
any X in GSch/C the natural map

LRec(TV A X4) = SV O A X(C),

is an equivariant equivalence in GTop,.
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(2) Let V be a real representation which contains a trivial summand. For any
X in GSch/R the natural map

LRec, s, (TV A X1) = SV A X(C)4
is an equivariant equivalence in (G x ¥g)Top,.

Proof. We treat the complex case, the real case is similar.

Over a field of characteristic zero there are equivariant resolutions of singularities,
see e.g., [Kol07, Proposition 3.9.1]. We may thus find a simplicial scheme Xo — X
over X such that X2 — X is a proper cdh-hypercover for every subgroup H C G.
We have | Xo|? = |X| and since V# #£ 0, it follows from [VoelOc, Theorem 4.2]
that the map (TV A |Xo|2)# — (TV A X1)H is a motivic weak equivalence in
Spc, (C). Therefore the map LRec(TV A|X,|1) — SV (© AX(C), is an equivariant
weak equivalence in GTop,.

Since each X, is smooth, LRec(TV A|X4|1) ~ SV(OA|X(C),|;. To complete the
proof it remains to show that SV(© A|X(C).|; — SY(© AX(C), is an equivariant
weak equivalence. It suffices to show that this map is a weak equivalence on all
fixed points. Note that X (C) = X(C)¥. Applying (—)¥ to the map above we
obtain the map SV IA|XH (C),|s — S2V*IAXH(C),. Since XH(C)s — XH(C)
is a proper hypercover, it is a universal cohomological descent hypercover [Del74,
5.3.5]. It follows that HZ, (| X™(C)s|, A) = H;,,,(X7(C), A) is an isomorphism
for all abelian groups A. It follows that S2IV"I A [ XH(C), | — S2V"I A XH(C),
is a homology isomorphism. Since |V | > 1, these are simply connected spaces and
thus this homology isomorphism is a weak equivalence. [

Lemma A.27. (1) Let W,V be complex representations with V' containing a
trivial summand and X a smooth quasi-projective complex variety with G-
action. Then forn >0,

LRec(E7v Symg (Xrw X)) = Egvo Symy (Zgwo X(C)4)

is an equivariant weak equivalence in G'Top,.
(2) Let W,V be real representations with V' containing a trivial summand and
X a smooth quasi-projective real variety with G-action. Then for n > 0,

]LRG(C, pI (ETV Symf(ETW X+>) — st(c) Sym?(ZSW(C) X(C)+)
is an equivariant weak equivalence in (G X ¥o)Top,.

Proof. We treat the complex case, the real case is similar. From (A.23), we see that
LRec, 5, (E7vSymg (Xrw X)) is the homotopy coequalizer of

LRec, 5,(SvSym™(AJ]Y)) = LRec, 5, (S7vSym™(Y)).

The result now follows from Lemma A.26.
O

Corollary A.28.

(1) Let X be a smooth quasi-projective complex variety with G-action. For any
n,m > 0 the natural map

LRec(X70c Symg (Eie X)) = Eg20e Symg (5 X (C) 1)

18 a stable equivariant equivalence.
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(2) Let X be a smooth quasi-projective real variety with G-action. For any
n,m > 0 the natural map

LRec, 5, (5706 Symg (570c X +)) = Xg2s6 Symg (Xigzoq X (C) )
s a stable equivariant equivalence.
Define
(S50 X5 = (SymiP (X, ), Sym® (Sroe X ), SymS® (S0 X, ), )
with obvious structure maps.

Theorem A.29. There is an isomorphism Rec(MA) = HA in SHqg, for any
abelian group A. Similarly, there is an isomorphism Rec s, (MA) = HA in SHexy, -

Proof. We treat the complex case. The real case is similar.

Since MA = MZ A MA and HA = HZ A M A, where M A is a Moore spectrum
for A, and LRec(MA) = MA, it suffices to establish the result for A = Z. The
map (55¢ (5°))5// — MZ is a stable equivalence by Proposition A.25.

It follows from [dS03, Proposition 3.7] that the spectrum {ZS?"¢}, 5 is a S2P6-
spectrum model for HZ. It follows from [Dug05, Proposition A.6] that the natural
map (X2, (SN .= {Sym(Dgenee SO)} — {ZS276 Y, 5 is an equivariant sta-
ble equivalence. It thus suffices to see that LReg (255 (5°))5 — (225 P (5O))el !
is a stable equivalence.

We have the natural isomorphism colim,, (X35, E,)[—n] = E in SH(G), where
Din] is the shifted T*¢-spectrum given by (D[n]); = D;—,. Similarly, we have
the natural isomorphism colim,, (3%, F},)[—n] = F in SHg. Since LRec preserves
homotopy colimits and shifts, the result follows from Corollary A.28. ]
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