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ABSTRACT
�e part-whole relationship routinely �nds itself in many dis-
ciplines, ranging from collaborative teams, crowdsourcing, au-
tonomous systems to networked systems. From the algorithmic
perspective, the existing work has primarily focused on predicting
the outcomes of the whole and parts, by either separate models
or linear joint models, which assume the outcome of the parts has
a linear and independent e�ect on the outcome of the whole. In
this paper, we propose a joint predictive method named PAROLE
to simultaneously and mutually predict the part and whole out-
comes. �e proposed method o�ers two distinct advantages over
the existing work. First (Model Generality), we formulate joint
part-whole outcome prediction as a generic optimization prob-
lem, which is able to encode a variety of complex relationships
between the outcome of the whole and parts, beyond the linear
independence assumption. Second (Algorithm E�cacy), we pro-
pose an e�ective and e�cient block coordinate descent algorithm,
which is able to �nd the coordinate-wise optimum with a linear
complexity in both time and space. Extensive empirical evaluations
on real-world datasets demonstrate that the proposed PAROLE (1)
leads to consistent prediction performance improvement by mod-
eling the non-linear part-whole relationship as well as part-part
interdependency, and (2) scales linearly in terms of the size of the
training dataset.

KEYWORDS
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1 INTRODUCTION
�e great Greek philosopher Aristotle articulated more than 2,000
years ago that “the whole is greater than the sum of its parts”. �is
is probably most evident in teams, which, through appropriate
synergy, promise a collective outcome (i.e., team performance)
that is superior than the simple addition of what each individ-
ual team member could achieve (i.e., individual productivity). For
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Figure 1: Prediction error comparison on Movie dataset.
Lower is better. Best Viewed in Color. �e right two bars are
the proposed methods, which encode the non-linear part-
whole relationship and the non-linearity with part-part in-
terdependency respectively.

example, in the scienti�c community, the new breakthrough is in-
creasingly resulting from the teamwork, compared with individual
researcher’s sole endevour [20]; in professional sports (e.g., NBA),
the peak performance of a grass-root team is o�en a�ributed to
the harmonic teamwork between the team players rather than the
individual player’s capability. Beyond teams, the part-whole rela-
tionship also routinely �nds itself in other disciplines, ranging from
crowdsourcing (e.g., Community-based �estion Answering (CQA)
sites [23]), collective decision-making in autonomous system (e.g.,
a self-orchestrated swarm of drones1), to reliability assessment of a
networked system of components [4, 24].

From the algorithmic perspective, an interesting problem is to
predict the outcome of the whole and/or parts [7]. In organiza-
tional teams, it is critical to appraise the individual performance,
its contribution to the team outcome as well as the team’s overall
performance [15]. In the emerging �eld of the “science of science”,
the dream of being able to predict breakthroughs, e.g. predicting the
likelihood of a researcher making disruptive contributions and fore-
seeing the future impact of her research products (e.g., manuscripts,
proposals, system prototypes) pervades almost all aspects of mod-
ern science [5]. In Community-based �estion Answering (CQA)
sites, predicting the long-term impact of a question (whole) and its
associated answers (parts) enables users to spot valuable questions
and answers at an early stage. Despite much progress has been

1CBS 60 minutes report: h�p://www.cbsnews.com/news/
60-minutes-autonomous-drones-set-to-revolutionize-military-technology/
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made, the existing work either develop separate models for predict-
ing the outcome of whole and parts without explicitly utilizing the
part-whole relationship [10, 14], or implicitly assume the outcome
of the whole is a linear sum of the outcome of the parts [23], which
might oversimplify the complicated part-whole relationships (e.g.,
non-linearity).

�e key to address these limitations largely lies in the answers
to the following questions, i.e., to what extent does the outcome of
parts (e.g., individual productivity) and that of the whole (e.g., team
performance) correlated, beyond the existing linear, independency
assumption? How can we leverage such potentially non-linear and
interdependent ‘coupling’ e�ect to mutually improve the prediction
of the outcome of the whole and parts collectively? �is is exactly
the focus of this paper, which is highly challenging for the following
reasons. First (Modeling Challenge), the relationship between the
parts outcome and whole outcome might be complicated, beyond
the simple addition or linear combination. For example, the authors
in [22] empirically identi�ed a non-linear correlation between the
impacts of questions and the associated answers, that is, the impact
of a question is much more strongly correlated with that of the
best answer it receives, compared with the average impact of its
associated answers. However, how to leverage such non-linear
relationship between the parts and whole outcome has largely re-
mained open. For teams, the team performance might be mainly
dominated by a few top-performing team members, and/or be hin-
dered by one or more struggling team members (i.e., the classic
Wooden Bucket �eory, which says that “A bucket (whole) can only
�ll with the volume of water the shortest plank (parts) allows”).
Moreover, the composing parts of the whole might not be indepen-
dent with each other. In a networked system, the composing parts
are connected with each other via an underlying network. Such
part-part interdependency could have a profound impact on both
the part outcome correlation as well as each part’s contribution
to the whole outcome. How can we mathematically encode the
non-linear part-whole relationship as well as part-part interdepen-
dency? Second (Algorithmic Challenge), the complicated part-whole
relationship (i.e., non-linearity and interdependency) also poses an
algorithmic challenge, as it will inevitably increase the complexity
of the corresponding optimization problem. How can we develop
scalable algorithms whose theoretic properties are well-understood
(e.g., the convergence, the optimality, and the complexity)?

To address these challenges, in this paper, we propose a joint
predictive model named PAROLE to simultaneously and mutually
predict the part and whole outcomes. First, model generality, the
proposed model is �exible in admi�ing a variety of linear as well
as non-linear relationships between the parts and whole outcomes,
including maximum aggregation, linear aggregation, sparse aggrega-

tion, ordered sparse aggregation and robust aggregation. Moreover, it
is able to characterize part-part interdependency via a graph-based
regularization, which encourages the tightly connected parts to
share similar outcomes as well as have similar e�ect on the whole
outcome. Second, algorithm e�cacy, we propose an e�ective and
e�cient block coordinate descent optimization algorithm, which
converges to the coordinate-wise optimum with a linear complexity.

�e main contributions of the paper can be summarized as fol-
lows:

Table 1: Table of symbols

Symbols De�nition
Fo , Fp feature matrices for whole and part entities
yo , yp impact vectors for whole and part entities

O = {o1,o2, . . . ,ono } set of whole entities
P = {p1,p2, . . . ,pnp } set of part entities

ϕ(·) whole to parts mapping function
Gp the network connectivity among part entities
aij the contribution of part pj to whole oi

no/np number of whole/part entities
Agg(·) the function that aggregates parts outcome
ei predicted whole outcome using whole feature

vs. predicted whole outcome using aggregated
parts outcome

• Models. We propose a joint predictive model (PAROLE) that is
able to admit a variety of linear as well as non-linear part-whole
relationships and encode the part-part interdependency.

• Algorithms and Analysis. We propose an e�ective and ef-
�cient block coordinate descent optimization algorithm that
converges to the coordinate-wise optimum with a linear com-
plexity in both time and space.

• Empirical Evaluations. We conduct extensive empirical stud-
ies on several real-world datasets and demonstrate that the pro-
posed PAROLE achieves consistent prediction performance im-
provement and scales linearly. See Fig. 1 for some sampling
results.
�e rest of the paper is organized as follows. Section 2 formally

de�nes the Part-Whole Outcome Prediction problem. Section 3
introduces the proposed PAROLE model and section 4 presents the
optimization algorithm with analysis. �e empirical evaluation
results are given in Section 5. A�er reviewing related work in
Section 6, we conclude the paper in Section 7.

2 PROBLEM DEFINITION
�e main symbols are summarized in Table 1. We use bold capital
le�ers (e.g., A) for matrices and bold lowercase le�ers (e.g, w) for
vectors. We index the elements in a matrix using a convention
similar to Matlab, e.g., A(:, j) is the jth column of A, etc. �e vector
obtained by sorting the components in non-increasing order of
x is denoted by x↓. Such sorting operation can be de�ned by a
permutation matrix Px, i.e., Pxx = x↓. We use Km+ to denote the
monotone non-negative cone, i.e., Km+ = {x ∈ Rn : x1 ≥ x2 ≥
. . . xn ≥ 0} ⊂ Rn+. Similarly, we use Km for the monotone cone.

We consider predicting the outcome for both the whole and their
composing parts. Fig. 2 presents an illustrative example, which aims
to predict the popularity (e.g., Facebook likes) of a particular movie
(whole) and the popularities of the participating actors/actresses
(parts). We denote the set of whole entities by O = {o1,o2, . . . ,ono },
and denote the set of part entities by P = {p1,p2, . . . ,pnp }, where
no and np are the number of the whole and parts, respectively.
To specify the part-whole associations, we also de�ne a mapping
function ϕ that maps a whole entity to the set of its composing
parts, e.g., ϕ(oi ) = {pi1 ,pi2 , . . . ,pini } (i.e., the edges between a
movie and actors/actresses in Fig. 2). Note that the two sets ϕ(oi )
and ϕ(oj ) might have overlap. In the example of movies as whole
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entities, one actor could participate in multiple movies. Let Fo be
the feature matrix for the whole entities, where the ith row Fo (i, :)
is the feature vector for the ith whole entity. Similarly, let Fp be
the feature matrix for the part entities, where the jth row Fp (j, :)
is the feature vector for the jth part entity. �e outcome vector of
the whole entities is denoted as yo and the outcome vector of the
part entities is denoted as yp . In addition, we might also observe
a network connectivity among the part entities, denoted as Gp .
In the movie example, the network Gp could be the collaboration
network among the actors/actresses (the connections among the
actors/actresses in Fig. 2).

With the above notations, we formally de�ne our Part-Whole
Outcome Prediction problem as follows:

Problem 1. Part-Whole Outcome Prediction

Given: the feature matrix for the whole/part entities Fo /Fp , the out-
come vector for the whole/part entities yo /yp , the whole to
part mapping function ϕ, and the parts’ network Gp

(op-

tional);

Predict: the outcome of new whole and parts’ entities.

Movie (Whole)

Actor/Actress (Part)

𝐹𝑝(1, : )

𝐹𝑝(2, : )

𝐹𝑝(3, : )

𝐹𝑝(4, : )𝐹𝑝(5, : )

𝐹𝑜(1, : ) 𝐹𝑜(2, : )

𝑱𝒑𝒑

𝑱𝒑𝒐

𝑱𝒑

𝑱𝒐

Figure 2: An illustrative example of part-whole outcome
prediction where movies are the whole entities and the ac-
tors/actresses are the part entities. �e four shadowed el-
lipses correspond to the key sub-objectives in our proposed
PAROLE model (Eq. (1), Sec. 3.1.).

3 PROPOSED MODEL – PAROLE
In this section, we present our joint predictive model PAROLE to
simultaneously and mutually predict the outcome of the whole
and parts. We �rst formulate it as a generic optimization problem,
and then present the details on how to instantiate the part-whole
relationship and part-part interdependency, respectively.

3.1 A Generic Joint Prediction Framework
In order to fully embrace the complexity of the part-whole and
part-part relationship, our joint predictive model should meet the
following desiderata.

First (part-whole relationship), the outcome of the whole and
that of the parts might be strongly correlated with each other. For
example, the team outcome is usually a collective e�ort of the

team members. Consequently, the team performance is likely to
be correlated/coupled with each individual’s productivity, which
might be beyond a simple linear correlation. �is is because a
few top-performing team members might dominate the overall
team performance, or reversely, a few struggling team members
might drag down the performance of the entire team. Likewise, in
scienti�c community, a scientist’s reputation is generally built by
one or a few of her highest-impact work. Our joint predictive model
should have the capability to encode such non-linear part-whole
relationships, so that the prediction of the parts outcome and that
of the whole can mutually bene�t from each other.

Second (part-part interdependency), the composing parts of a
whole entity might be interdependent/interconnected via an un-
derlying network, e.g., the collaboration network among the ac-
tors/actresses. �e part-part interdependency could have a pro-
found impact on the part-whole outcome prediction performance.
�at is, not only might the closely connected parts have similar
e�ect on the whole outcome, but also these parts are very likely to
share similar outcomes between themselves. �erefore, it is desir-
able to encode the part-part interdependency in the joint model to
boost the prediction performance.

With these design objectives in mind, we propose a generic
framework for the joint predictive model as follows:

min
wo,wp

J = 1
no

no∑
i=1
L[f (Fo (i, :),wo ), yo (i))]︸                                    ︷︷                                    ︸

Jo : predictive model for whole entities

+
1
np

np∑
i=1
L[f (Fp (i, :),wp ), yp (i))]︸                                    ︷︷                                    ︸

Jp : predictive model for part entities

+
α

no

no∑
i=1

h(f (Fo (i, :),wo ),Agg(ϕ(oi )))︸                                          ︷︷                                          ︸
Jpo : part-whole relationship

+
β

np

np∑
i=1

np∑
j=1

G
p
i jд(f (F

p (i, :),wp ), f (Fp (j, :),wp ))︸                                                        ︷︷                                                        ︸
Jpp : part-part interdependency

+ γ (Ω(wo ) + Ω(wp ))︸                  ︷︷                  ︸
Jr : parameter regularizer

(1)

where the objective function is a sum of �ve sub-objective functions.
�e �rst two sub-objectives Jo and Jp (the two blue shadowed
ellipses in Fig. 2) minimize the training loss for whole and parts
outcome predictions, where f (·, ·) is the prediction function param-
eterized by wo and wp . �e prediction function could be either
linear or non-linear; and L(·) is a loss function, e.g., squared loss
for regression or logistic loss for classi�cation. �e core of the
objective function is the third term Jpo (the green shadowed el-
lipse in Fig. 2) and the fourth term Jpp (the pink shadowed ellipse
in Fig. 2). Jpo characterizes the part-whole relationship, where
Agg(·) is a function that aggregates the predicted outcomes of all
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the composing parts for the whole to a single outcome, e.g., max-
imum, summation/mean or more complicated aggregations; and
h(·) function measures the correlation between the predicted whole
outcome and the aggregated predicted parts outcome. In Jpp , the
function д(·) characterizes the relationship of the predicted out-
comes of parts i and j based on their connectivity G

p
i j , such that

tightly connected parts would share similar outcomes. Lastly, Jr
regularizes wo and wp to prevent over��ing. �e regularization
parameters α , β and γ are used to balance the relative importance
of each aspect.

Remarks: Depending on the speci�c choices of the aggregation
function Agg(·) and the h(·) function, the proposed model in Eq. (1)
is able to admit a variety of part-whole relationships, which we
elaborate below.

3.2 Modeling Part-Whole Relationships
Overview. In this subsection, we give the instantiations for a
variety of part-whole relationships. For each whole entity oi , de�ne
ei as follows:

ei = Fo (i, :)wo − Agg(oi ) (2)

which measures the di�erence between the predicted whole out-
come using whole features (i.e., Fo (i, :)wo ) and predicted whole
outcome using aggregated parts outcome (i.e., Agg(oi )). Our pro-
posed model will be able to characterize a variety of part-whole
relationship, by using (a) di�erent aggregation functions Agg(·)
with augmented regularizations; and (b) di�erent loss functions on
ei (e.g., squared loss or robust estimator).

Maximum aggregation. Let us �rst consider using maximum
as the aggregation function, which can model the correlation be-
tween the whole outcome and the maximum parts outcome. Given
that the max function is not di�erentiable, we propose to approxi-
mate it with a di�erentiable function that will largely facilitate the
optimization process. In details, we propose to use the smooth “so�”
maximum function, which was �rst used in economic literature for
consumer choice [17]: max(x1,x2, . . . ,xn ) ≈ ln(exp(x1)+exp(x2)+
. . . + exp(xn )), where the maximum is approximated by summing
up the exponential of each item followed by a logarithm. With this,
we de�ne the maximum aggregation function as follows:

Agg(oi ) = ln(
∑

j ∈ϕ(oi )
exp(Fp (j, :)wp )) (3)

which approximates the maximum predicted parts outcome. �e
part-whole relationship with maximum aggregation can be formu-
lated as follows:

Jpo =
α

2no

no∑
i=1

e2
i (4)

where we use the squared loss to measure the di�erence between
the predicted whole outcome and the predicted approximated max-
imum parts outcome.

For the remaining part-whole relationships, we instantiate Agg(oi )
using a linear function as follows:

Agg(oi ) =
∑

j ∈ϕ(oi )
aijF

p (j, :)wp (5)

where each aij is the weight of a particular part j’s contribution to
the whole oi ’s outcome. De�ning ai as the vector whose compo-
nents are aij , j ∈ ϕ(oi ) and by imposing (i) di�erent loss functions
on ei , and/or (ii) di�erent norms on ai , we can model either linear
or nonlinear part-whole relationships.

Linear aggregation. In this scenario, the whole outcome is
a weighted linear combination of the parts outcome, where the
weights determine each individual part’s contribution to the whole
outcome. �e intuition of linear aggregation is that , in contributing
to the �nal whole outcome, some parts play more important roles
than the others. �is part-whole relationship can be formulated as
follows:

Jpo =
α

2no

no∑
i=1

e2
i (6)

where we use the squared loss to measure the di�erence between
the whole outcome and the aggregated parts outcome.

Remark: this formulation generalizes several special part-whole
relationships. �e expression that “the whole is the sum of its parts”

is a special case of Eq. (6) where various aij is 1, which we refer to
as Sum in the empirical study. �e average coupling formulated
in [23] is also its special case with aij =

1
|oi | . Instead of �xing the

weights, Eq. (6) allows the model to learn to what extent each part
contributes to the prediction of the whole outcome. Nonetheless, in
all these variants, we have assumed that the part outcomes always
have a linear e�ect on the whole outcome.

Sparse aggregation. �e above linear aggregation assumes that
each part would contribute to the whole outcome, which might
not be the case as some parts have li�le or no e�ect on the whole
outcome. �is scenario can be seen in large teams, where the team
performance could be primarily determined by a few members, who
could either make or break the team performance. To encourage
such a sparse selection among the composing parts of a whole
entity, a natural choice is to introduce the l1 norm on the vector
ai [18]:

Jpo =
α

no

no∑
i=1
(12e

2
i + λ |ai |1) (7)

where the l1 norm can shrink some part contributions to exactly
zero and the parameter λ controls the degree of sparsity.

Ordered sparse aggregation. In some cases, the team perfor-
mance (i.e., the whole outcome) is determined by not only a few
key members, but also the structural hierarchy between such key
members within the organization. To model such parts perfor-
mance ranking in addition to the sparse selection, we adopt the
ordered weighted l1 norm (OWL) [25] that is able to give more
weights to those parts with bigger e�ect on the whole outcome.
Such part-whole relationship can be formulated as follows:

Jpo =
α

no

no∑
i=1
(12e

2
i + λΩw(ai )) (8)

where Ωw(x) =
∑n
i=1 |x |[i]wi = wT |x|↓ is the ordered weighted l1

norm, where |x |[i] is the i-th largest component of the vector |x|
and w ∈ Km+ is a vector of non-increasing non-negative weights.

Robust aggregation. In all the above formulations, we model
the di�erence between the whole outcome and the aggregated parts
outcome using squared loss, which is prone to outlying parts/wholes.
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To address this issue, we employ robust regression models [9] to
reduce the e�ect of outliers as follows:

Jpo =
α

no

no∑
i=1

ρ(ei ) (9)

where ρ(·) is a nonnegative and symmetric function that gives
the contribution of each residual ei to the objective function. In
this paper, we consider two robust estimators, namely Huber and
Bisquare estimators as follows:

PPPPPPPMethod
Case |e | ≤ t |e | > t

Huber ρH (e) 1
2e

2 t |e | − 1
2 t

2

Bisquare ρB (e) t 2
6

{
1 − [1 − ( et )2]3

} t 2
6

where the value t is a tuning constant. Smaller t values have more
resistance to outliers.

3.3 Modeling Part-Part Interdependency
As mentioned in Sec. 3.1, the part-part interdependency, if exists,
can play two roles in the part-whole outcome predictions, i.e.,
closely connected parts would (A) have similar e�ect on the whole
outcome and (B) share similar part outcomes between themselves.

A -�e e�ect on the whole outcome: the closely connected
parts might have similar impact on the whole outcome. It turns
out we can use the same method to model such a part-part e�ect
for various aggregation methods in Sec. 3.2. Let us take sparse

aggregation as an example and instantiate the term Jpo in Eq. (1)
as follows:

Jpo =
α

no

no∑
i=1


1
2e

2
i + λ |ai |1 +

1
2

∑
k,l ∈ϕ(oi )

G
p
kl (a

i
k − a

i
l )

2
 (10)

where if the two parts k and l of oi are tightly connected, i.e., Gp
k,l

is large, then the di�erence between their impacts on the whole
outcome, aik and ail , is small.

B -�e e�ect on the parts’ outcomes: the tightly connected
parts might share similar outcomes themselves. Such parts outcome
similarity can be instantiated by a graph regularization as follows:

Jpp =
β

2np

np∑
i=1

np∑
j=1

G
p
i j (F

p (i, :)wp − Fp (j, :)wp )2 (11)

where tightly connected two parts i and j with largeGp
k,l is encour-

aged to be closer to each other in the output space, i.e., with similar
predicted outcomes.

4 OPTIMIZATION ALGORITHM
In this section, we propose an e�ective and e�cient block coordi-
nate descent optimization algorithm to solve the joint prediction
framework in Eq. (1), followed by the convergence and complexity
analysis.

4.1 Block Coordinate Descent Algorithm
�e proposed Eq. (1) is general, being able to admit a variety of
di�erent separate models (Jo and Jp ) as well as part-whole rela-
tionship (Jpo ). Let us �rst present our algorithm to solve a speci�c

instance of Eq. (1) by instantiating it using linear predictive func-
tions, squared loss and sparse aggregation as follows:

min
wo,wp

1
2no

no∑
i=1
(Fo (i, :)wo − yo (i))2 + 1

2np

np∑
i=1
((Fp (i, :)wp − yp (i))2

+
β

2np

np∑
i=1

np∑
j=1

G
p
i j (F

p (i, :)wp − Fp (j, :)wp )2 + γ2 (‖w
o ‖22 + ‖w

p ‖22 )

+
α

no

no∑
i=1


1
2e

2
i + λ |ai |1 +

1
2

∑
k,l ∈ϕ(oi )

G
p
kl (a

i
k − a

i
l )

2


(12)
In the formulation, we identify three coordinate blocks, namely wo ,
wp and various aij . We propose a block coordinate descent (BCD)
algorithm to optimize Eq. (12) by updating one coordinate block
while �xing the other two.

1. Updatingwo while �xing others: Observing that only Jo ,
Jpo and Jr are functions of wo , we have

∂J
∂wo =

∂Jo
∂wo +

∂Jpo
∂wo +

∂Jr
∂wo

=
1
no
(Fo )′(Fowo − yo ) + γwo +

α

no
(Fo )′(Fowo −MFpwp )

(13)

where M is a no by np sparse matrix with M(i, j) = aij , for j ∈ ϕ(oi ).
We then update wo as wo ← wo − τ ∂J

∂wo , where τ is the step size.
2. Updating wp while �xing others: �e sub-objective func-

tions that are related to wp are Jp , Jpp , Jpo and Jr . �erefore,

∂J
∂wp =

∂Jp
∂wp +

∂Jpp
∂wp +

∂Jpo
∂wp +

∂Jr
∂wp

=
1
np
(Fp )′(Fpwp − yp ) + β

np
(Fp )′LpFpwp + γwp

− α

no
(Fp )′M′(Fowo −MFpwp )

(14)

where Lp is the Laplacian of the graph Gp [1]. Similarly, wp can
be updated by wp ← wp − τ ∂J

∂wp .
3. Updating aij while �xing others: Let us �x a whole oi and

the sub-problem with respect to ai becomes:

min
ai

1
2e

2
i + λ |ai |1 +

1
2

∑
k,l ∈ϕ(oi )

G
p
kl (a

i
k − a

i
l )

2
(15)

Observing that the sub-problem is a composite of a non-smooth
convex function (λ |ai |1) and a di�erentiable convex function (the
remaining terms), we update ai using the proximal gradient descent
method [2]. We �rst take a gradient step by moving ai along the
negative direction of the derivative of the smooth part w.r.t. ai , as
follows:

z = ai − τ [ei (−Fp (ϕ(oi ), :)wp ) + Lpi ai ] (16)

where Lpi is a shorthand notation for the Laplacian of the subgraph
Gp (ϕ(oi ),ϕ(oi )). Next, we compute the proximal-gradient update
for the l1 norm using so�-thresholding as ai ← Sτ λ(z), where the
so�-thresholding operator is de�ned as follows:

[St (z)]j = sign(zj )(|zj | − t)+, (17)
where we use (x)+ as a shorthand for max{x , 0}.
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We will cycle through the above three steps to update the three
coordinate blocks until convergence. �e algorithm is summarized
in Algorithm 1.

Algorithm 1 PAROLE - Part-Whole Outcome Predictions
Input: (1) the feature matrix for whole/part entities Fo/Fp ,

(2) outcome vector for the whole/part entities yo/yp ,
(3) the whole to parts mapping function ϕ,
(4) the part-part network Gp (optional),
(5) parameters α , β,γ , λ,τ .

Output: Model parameters wo and wp .
1: Initialize wo and wp and aj , j ∈ ϕ(oi ), i = 1, . . . ,no
2: while Not converged do
3: Update wo ← wo − τ ∂J

∂wo

4: Update wp ← wp − τ ∂J
∂wp

5: Update ai via proximal gradient descent for i = 1, . . . ,no

Remarks: we want to emphasize that Algorithm 1 provides a
general optimization framework that not only works for the formu-
lation with sparse aggregation in Eq. (12), but is also applicable to
the other part-whole relationships introduced in Sec. 3.2. �e only
di�erence is that, since Jpo varies for each part-whole relation-
ship, its derivatives w.r.t. the coordinate blocks would also change.
Next, for each of the other part-whole relationships, we give their
derivative or proximal gradient w.r.t. the three coordinate blocks.

1. Maximum aggregation: the derivatives of Jpo w.r.t. wo

and wp are as follows:

∂Jpo
∂wo =

α

no

no∑
i=1

ei (Fo (i, :))′

∂Jpo
∂wp =

α

no

no∑
i=1

ei ·
∑
j ∈ϕ(oi )(F

p (j, :))′ỹpi∑
j ∈ϕ(oi ) ỹ

p
i

where we denote ỹpi = exp(Fp (j, :)wp ).
2. Linear aggregation: the derivatives of Jpo w.r.t. wo and wp

are the same as in the sparse aggregation case. Its derivative w.r.t.
ai is same as in Eq. (16) without the following proximal-gradient
update.

3. Ordered sparse aggregation: the only di�erence from the
sparse aggregation lies in the proximal-gradient update for the OWL
norm, which can be computed as follows [25]:

proxΩw
(v) = sign(v) �

(
PT|v |projRn+ (projKm (|v|↓ −w))

)
(18)

In the above equation, to compute proxΩw
(v), we �rst compute

the Euclidean project of (|v|↓ −w) onto Km using the linear time
pool adjacent violators (PAV) algorithm [16]. �is is followed by
a projection onto the �rst orthant by a clipping operation. �e
resulting vector is sorted back according to the permutation matrix
P |v | and then element-wisely multiplied by the signs of v.

4. Robust aggregation: we compute the gradient of Jpo using
chain rule as follows:

∂Jpo
∂wo =

α

no

no∑
i=1

∂ρ(ei )
∂ei

∂ei
∂wo ,

∂Jpo
∂wp =

α

no

no∑
i=1

∂ρ(ei )
∂ei

∂ei
∂wp

∂Jpo
∂ai

=
α

no
[ ∂ρ(ei )
∂ei

∂ei
∂ai
+ Lpi ai ]

where ∂ei
∂wo = Fo (i, :)′, ∂ei

∂wp = −
∑
j ∈ϕ(oi ) ajF

p (j, :)′, and ∂ei
∂ai
=

−Fp (ϕ(oi ), :)wp ; and the gradient of the Huber and Bisquare esti-
mator can be computed as follows:

PPPPPPPMethod
Case |e | ≤ t |e | > t

Huber ∂ρH (e)
∂e e t · sign(e)

Bisquare ∂ρB (e)
∂e e[1 − (e/t)2]2 0

4.2 Proofs and Analysis
In this subsection, we analyze the proposed PAROLE algorithm in
terms of its convergence, optimality and complexity.

First, building upon the proposition from [19], we have the fol-
lowing theorem regarding the proposed Algorithm 1, which says
that under a mild assumption, it converges to a local optimum (i.e.,
coordinate-wise minimum) of Eq. (12).

Theorem 4.1. (Convergence and Optimality of PAROLE). As long
as −γ is not an eigenvalue of α+1

no Fo
′
Fo or 1

np F
p′Fp + βFp

′LpFp +
α
no F

pM′MFp , Algorithm 1 converges to a coordinate-wise mini-
mum point.

Proof. Omi�ed for brevity. �

Next, we analyze the complexity of Algorithm 1, which is sum-
marized in Lemma 4.2.

Lemma 4.2. (Complexity of PAROLE). Algorithm 1 takesO(T (nodo+
npdp +mpo +mpp )) time for linear aggregation, maximum aggre-

gation, sparse aggregation, and robust aggregation, and it takes
O(T (nodo + npdp + Cnpdp + mpp )) for ordered sparse aggrega-

tion, where do and dp are the dimensionality of the whole and
part feature vectors, mpo =

∑
i |ϕ(oi )| is the number of associ-

ations between the whole and parts and mpp is the number of
edges in the part-part network, T is the number of iterations,
C = maxi log(|ϕ(oi )|) is a constant. �e space complexity for Al-
gorithm 1 is O(nodo + npdp +mpo +mpp ) for all the part-whole
relationships.

Proof. Omi�ed for brevity. �

Remarks: suppose we have a conceptual part-whole graph G =
{O,P}, which has no nodes for the whole entities and np nodes for
the part entities,mpo links from whole nodes to their composing
parts nodes andmpp links in the part-part networks. �e Lemma 4.2
says that PAROLE scales linearly w.r.t. the size of this part-whole
graph in both time and space.
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Table 2: Summary of Datasets.

Data Whole Part # of whole # of part
Math �estion Answer 16,638 32,876
SO �estion Answer 1,966,272 4,282,570

DBLP Author Paper 234,681 129,756
Movie Movie Actors/Actresses 5,043 37,365

5 EXPERIMENTS
In this section, we present the empirical evaluation results. �e
experiments are designed to evaluate the following aspects:
• E�ectiveness: how accurate is the proposed PAROLE algorithm

for predicting the outcomes of parts and whole?
• E�ciency: how fast and scalable is the proposed PAROLE algo-

rithm?
5.1 Datasets
�e real-world datasets used for evaluations are as follows:

CQA. We use Mathematics Stack Exchange (Math) and Stack
Over�ow (SO) data from [23]. �e questions are whole and answers
are parts both with voting scores as outcome. For each question,
we treat all the answers it receives as its composing parts. �e
extracted features are described in [23].

DBLP. DBLP dataset provides the bibliographic information of
computer science research papers. We treat authors as whole with
h-index as outcome and papers as parts with citation counts as
outcome. For each author, his/her composing parts are the papers
s/he has co-authored. Paper features include temporal a�ributes
and author features include productivity and social a�ributes.

Movie. We crawl the metadata of 5,043 movies with budget in-
formation2 from IMDb website. �e meta information includes
movie title, genres, cast, budget, etc. We treat movies as whole
and the actors/actresses as parts both with the number of Face-
book likes as the outcome. For each movie, we treat its cast as the
composing parts. Movie features include contextual a�ributes and
actors/actresses features include productivity and social a�ributes.

�e statistics of these datasets are summarized in Table 2. For
each dataset, we �rst sort the whole in chronological order, gather
the �rst x percent of whole and their corresponding parts as training
examples and always test on the last 10% percent of whole and their
corresponding parts. �e percentage of training x could vary. �e
root mean squared error (RMSE) between the actual outcomes and
the predicted ones is adopted for e�ectiveness evaluation. �e
parameters are set for each method on each dataset via a grid
search.

Repeatability of experimental results: all the datasets are publicly
available. We will release the datasets and code of the proposed
algorithms through authors’ website a�er the paper is published.
�e experiments are performed on a Windows machine with four
3.5GHz Intel Cores and 256GB RAM.
5.2 E�ectiveness Results
We compare the e�ectiveness of the following methods:

(1) Separate: train a linear regression model for parts and
whole separately.

(2) Sum: a joint model with Sum part-whole relationship.
(3) Linear: our PAROLE with linear aggregation.

2h�p://www.the-numbers.com/movie/budgets/all

(4) Max: our PAROLE with maximum aggregation.
(5) Huber: our PAROLE with robust Huber estimator.
(6) Bisquare: our PAROLE with robust Bisquare estimator.
(7) Lasso: our PAROLE with sparse aggregation.
(8) OWL: our PAROLE with ordered sparse aggregation.

A - Outcome prediction performance: the RMSE results of
all the comparison methods for predicting the outcomes of parts
and whole on all the datasets are shown from Fig. 3 to Fig. 6. We
draw several interesting observations from these results. First,
all the joint prediction models outperform the separate model in
most cases, which suggests that the part outcome indeed has a
profound impact on the whole outcome, and vice versa. Second,
among the joint prediction models, in general, the linear methods
(Sum and Linear) are not as good as the non-linear counterparts
(Max, Huber, Bisqaure, Lasso and OWL), and in some cases (Fig. 3b,
Fig. 5b), the linear joint models are even worse than the separate
method, which indicates that the part-whole relationship is indeed
more complicated than the linear aggregation. �ird, among the
non-linear methods, a consistent observation across all the datasets
is that Lasso and OWL are the best two methods in almost all the
cases. �is suggests that the whole outcome is mostly dominated
by a few, o�en high-performing, parts.

B -�e e�ect of part-part interdependency: in the proposed
joint prediction model, we have hypothesized that the part-part
interdependency might help boost the predictions in two ways,
i.e., regularizing the parts’ contribution to the whole outcome as
well as part outcome correlation. Here, we verify and validate
to what extent these two aspects contribute to the performance
gain, when such part-part interdependency information is available.
Fig. 7 shows the results of Lasso on the Movie dataset with 50%
training data. �e network among the parts, i.e., actors/actresses,
is their collaboration network. �e “PAROLE-Basic” does not use
the network information. �e “PAROLE-GraphForWhole” applies
the graph regularization on the parts’ contribution to the whole,
which brings a 8% overall prediction error reduction. On top of that,
“PAROLE-GraphForWhole&Parts” uses the graph regularization on
the parts’ outcome, which brings a 14.5% decrease in the overall
prediction error.

C - Convergence analysis: Fig. 8 shows the objective function
value vs. the number of iterations on the SO dataset usingOWLwith
5% training data. As we can see, the proposed PAROLE algorithm
coverges very fast, a�er 25-30 iterations.

D - Sensitivity analysis: to investigate the parameter sensitiv-
ity, we perform parametric studies with the two most important
parameters in PAROLE, i.e., α that controls the importance of part-
whole relationship and β that controls the importance of part-part
interdependency on the parts outcome. �e bowl shaped surface in
Fig. 9 suggests that the proposed model can achieve good perfor-
mance in a large volumn of the parameter space.

5.3 E�ciency Results
Fig. 10 shows the running time of all the proposed methods with
varying size of training data (no + np + mpo ). We can see that
all the proposed methods scale linearly, which is consistent with
Lemma 4.2. OWL takes the longest time due to the additional
sorting operation in the proximal-gradient update for the OWL
norm.
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(a) RMSE of question outcome prediction.
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(b) RMSE of answer outcome prediction.
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(c) Overall RMSE.
Figure 3: RMSE comparisons on Math. Best viewed in color. From le� to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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(a) RMSE of question outcome prediction.
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(b) RMSE of answer outcome prediction.
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(c) Overall RMSE.
Figure 4: RMSE comparisons on SO. Best viewed in color. From le� to right: Separate, Sum, Linear,Max,Huber, Bisquare, Lasso
and OWL.

1 2 3 4
0

0.5

1

1.5

Percentage of Training

R
oo

t M
ea

n 
Sq

ua
re

d 
Er

ro
r

RMSE of Authors

 

 

Separate
Sum
Linear
Max
Huber
Bisquare
Lasso
OWL

(a) RMSE of author outcome prediction.
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(b) RMSE of paper outcome prediction.
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(c) Overall RMSE.
Figure 5: RMSE comparisons on DBLP. Best viewed in color. From le� to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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(a) RMSE of movie outcome prediction.
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(b) RMSE of actors/actress outcome predic-
tion.
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Figure 6: RMSE comparisons on Moive. Best viewed in color. From le� to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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Figure 7: Performance gain analysis on Movie.
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Figure 10: Scalability plot on SO.

6 RELATED WORK
Very few studies have quantitatively examined the part-whole rela-
tionships for the purpose of prediction. In CQA sites, empirical stud-
ies have shown a strong correlation between the question voting
score and the average/maximum answer voting score [22]. Based
on this observation, a joint predictive model that leverages ques-
tion/answer coupling is proposed that is also able to capture the
dynamics of the community posts [23]. Related to the part-whole
relationship, there is a large body of literature on the collaborative
teams. Along the line of team outcome prediction, the iBall [10]
model focuses on the long-term impact forecasting of scholarly
entities that exploits domain heterogeneity; going beyond the point
prediction, the iPath [14] model aims to predict the pathway to im-
pact. �ough all the above predictive models can admit non-linear
prediction functions for each separate model, they still assume a
linear relationship between di�erent models (e.g., part vs. whole).

On team formation and outcome optimization, the seminal work
in [8] aims to form a team that can cover the required skill sets
with strong team cohesion. Some recent work has been focusing
on �nding a good candidate to replace a team member [11] and
enhance the team performance by allowing several enhancement
operations, including re�nement and expansion [13]. A visual inter-
active system is developed allowing users to explore and optimize
teams [3, 12]. From the multi-task learning [6, 21] perspective, our
method explicitly models two types of potentially non-linear task
relatedness, i.e., part-whole relationship and part-part interdepen-
dency.

7 CONCLUSION
In this paper, we propose a joint predictive model PAROLE to si-
multaneously and mutually predict the parts and whole outcomes.
First, model generality, the proposed model is able to (i) admit a
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variety of linear as well as non-linear relationship between the parts
and whole outcome and (ii) characterize part-part interdependency.
Second, algorithm e�cacy, we propose an e�ective and e�cient
block coordinate descent optimization algorithm that converges
to the coordinate-wise optimum with a linear complexity in both
time and space. �e empirical evaluations on real-world datasets
demonstrate that (i) by modeling the non-linear part-whole rela-
tionship and part-part interdependency, the proposed method leads
to consistent prediction performance improvement, and (ii) the
proposed algorithm scales linearly w.r.t. the size of the training
data. In the future, we would like to explore the dynamics of the
proposed model as well as the hierarchy in the parts (i.e., the parts
of the parts).
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