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ABSTRACT = Separate
The PART-WHOLE relationship routinely finds itself in many dis- 025 Sum
ciplines, ranging from collaborative teams, crowdsourcing, au- e S Lasso
tonomous systems to networked systems. From the algorithmic 0.2 ]
perspective, the existing work has primarily focused on predicting BLasso w/ part-part interdependency
0.15

the outcomes of the whole and parts, by either separate models
or linear joint models, which assume the outcome of the parts has
a linear and independent effect on the outcome of the whole. In
this paper, we propose a joint predictive method named PAROLE
to simultaneously and mutually predict the part and whole out-
comes. The proposed method offers two distinct advantages over
the existing work. First (Model Generality), we formulate joint
PART-WHOLE outcome prediction as a generic optimization prob-
lem, which is able to encode a variety of complex relationships
between the outcome of the whole and parts, beyond the linear
independence assumption. Second (Algorithm Efficacy), we pro-
pose an effective and efficient block coordinate descent algorithm,
which is able to find the coordinate-wise optimum with a linear
complexity in both time and space. Extensive empirical evaluations
on real-world datasets demonstrate that the proposed PAROLE (1)
leads to consistent prediction performance improvement by mod-
eling the non-linear part-whole relationship as well as part-part
interdependency, and (2) scales linearly in terms of the size of the
training dataset.
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1 INTRODUCTION

The great Greek philosopher Aristotle articulated more than 2,000
years ago that “the whole is greater than the sum of its parts”. This
is probably most evident in teams, which, through appropriate
synergy, promise a collective outcome (i.e., team performance)
that is superior than the simple addition of what each individ-
ual team member could achieve (i.e., individual productivity). For
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Figure 1: Prediction error comparison on Movie dataset.
Lower is better. Best Viewed in Color. The right two bars are
the proposed methods, which encode the non-linear part-
whole relationship and the non-linearity with part-part in-

terdependency respectively.

example, in the scientific community, the new breakthrough is in-
creasingly resulting from the teamwork, compared with individual
researcher’s sole endevour [20]; in professional sports (e.g., NBA),
the peak performance of a grass-root team is often attributed to
the harmonic teamwork between the team players rather than the
individual player’s capability. Beyond teams, the part-whole rela-
tionship also routinely finds itself in other disciplines, ranging from
crowdsourcing (e.g., Community-based Question Answering (CQA)
sites [23]), collective decision-making in autonomous system (e.g.,
a self-orchestrated swarm of dronesl), to reliability assessment of a
networked system of components [4, 24].

From the algorithmic perspective, an interesting problem is to
predict the outcome of the whole and/or parts [7]. In organiza-
tional teams, it is critical to appraise the individual performance,
its contribution to the team outcome as well as the team’s overall
performance [15]. In the emerging field of the “science of science”,
the dream of being able to predict breakthroughs, e.g. predicting the
likelihood of a researcher making disruptive contributions and fore-
seeing the future impact of her research products (e.g., manuscripts,
proposals, system prototypes) pervades almost all aspects of mod-
ern science [5]. In Community-based Question Answering (CQA)
sites, predicting the long-term impact of a question (whole) and its
associated answers (parts) enables users to spot valuable questions
and answers at an early stage. Despite much progress has been

o 60 minutes report: http://www.cbsnews.com/news/
60-minutes-autonomous-drones-set-to-revolutionize-military-technology/
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made, the existing work either develop separate models for predict-
ing the outcome of whole and parts without explicitly utilizing the
part-whole relationship [10, 14], or implicitly assume the outcome
of the whole is a linear sum of the outcome of the parts [23], which
might oversimplify the complicated part-whole relationships (e.g.,
non-linearity).

The key to address these limitations largely lies in the answers
to the following questions, i.e., to what extent does the outcome of
parts (e.g., individual productivity) and that of the whole (e.g., team
performance) correlated, beyond the existing linear, independency
assumption? How can we leverage such potentially non-linear and
interdependent ‘coupling’ effect to mutually improve the prediction
of the outcome of the whole and parts collectively? This is exactly
the focus of this paper, which is highly challenging for the following
reasons. First (Modeling Challenge), the relationship between the
parts outcome and whole outcome might be complicated, beyond
the simple addition or linear combination. For example, the authors
in [22] empirically identified a non-linear correlation between the
impacts of questions and the associated answers, that is, the impact
of a question is much more strongly correlated with that of the
best answer it receives, compared with the average impact of its
associated answers. However, how to leverage such non-linear
relationship between the parts and whole outcome has largely re-
mained open. For teams, the team performance might be mainly
dominated by a few top-performing team members, and/or be hin-
dered by one or more struggling team members (i.e., the classic
Wooden Bucket Theory, which says that “A bucket (whole) can only
fill with the volume of water the shortest plank (parts) allows”).
Moreover, the composing parts of the whole might not be indepen-
dent with each other. In a networked system, the composing parts
are connected with each other via an underlying network. Such
part-part interdependency could have a profound impact on both
the part outcome correlation as well as each part’s contribution
to the whole outcome. How can we mathematically encode the
non-linear part-whole relationship as well as part-part interdepen-
dency? Second (Algorithmic Challenge), the complicated part-whole
relationship (i.e., non-linearity and interdependency) also poses an
algorithmic challenge, as it will inevitably increase the complexity
of the corresponding optimization problem. How can we develop
scalable algorithms whose theoretic properties are well-understood
(e.g., the convergence, the optimality, and the complexity)?

To address these challenges, in this paper, we propose a joint
predictive model named PAROLE to simultaneously and mutually
predict the part and whole outcomes. First, model generality, the
proposed model is flexible in admitting a variety of linear as well
as non-linear relationships between the parts and whole outcomes,
including maximum aggregation, linear aggregation, sparse aggrega-
tion, ordered sparse aggregation and robust aggregation. Moreover, it
is able to characterize part-part interdependency via a graph-based
regularization, which encourages the tightly connected parts to
share similar outcomes as well as have similar effect on the whole
outcome. Second, algorithm efficacy, we propose an effective and
efficient block coordinate descent optimization algorithm, which
converges to the coordinate-wise optimum with a linear complexity.

The main contributions of the paper can be summarized as fol-
lows:
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Table 1: Table of symbols

‘ Symbols ‘ Definition
F° FP feature matrices for whole and part entities
yo, yP impact vectors for whole and part entities
O ={01,02,...,0n,} | setof whole entities
P ={p1,p2,..- ,Pn,,} set of part entities
() whole to parts mapping function
GP the network connectivity among part entities
a} the contribution of part p; to whole o;
no/np number of whole/part entities
Agg(+) the function that aggregates parts outcome
e predicted whole outcome using whole feature
vs. predicted whole outcome using aggregated
parts outcome

e Models. We propose a joint predictive model (PAROLE) that is
able to admit a variety of linear as well as non-linear part-whole
relationships and encode the part-part interdependency.
Algorithms and Analysis. We propose an effective and ef-
ficient block coordinate descent optimization algorithm that
converges to the coordinate-wise optimum with a linear com-
plexity in both time and space.

Empirical Evaluations. We conduct extensive empirical stud-
ies on several real-world datasets and demonstrate that the pro-
posed PAROLE achieves consistent prediction performance im-
provement and scales linearly. See Fig. 1 for some sampling
results.

The rest of the paper is organized as follows. Section 2 formally
defines the PART-WHOLE OUTCOME PREDICTION problem. Section 3
introduces the proposed PAROLE model and section 4 presents the
optimization algorithm with analysis. The empirical evaluation
results are given in Section 5. After reviewing related work in
Section 6, we conclude the paper in Section 7.

2 PROBLEM DEFINITION

The main symbols are summarized in Table 1. We use bold capital
letters (e.g., A) for matrices and bold lowercase letters (e.g, w) for
vectors. We index the elements in a matrix using a convention
similar to Matlab, e.g., A(:, j) is the j* h column of A, etc. The vector
obtained by sorting the components in non-increasing order of
x is denoted by x|. Such sorting operation can be defined by a
permutation matrix Py, i.e., Pxx = x|. We use K+ to denote the
monotone non-negative cone, i.e., Kpy = {x € R" : x1 > x3 >
...Xp 2 0} C R}. Similarly, we use Ky, for the monotone cone.
We consider predicting the outcome for both the whole and their
composing parts. Fig. 2 presents an illustrative example, which aims
to predict the popularity (e.g., Facebook likes) of a particular movie
(whole) and the popularities of the participating actors/actresses
(parts). We denote the set of whole entities by O = {01, 02,...,0n,},
and denote the set of part entities by # = {p1,p2, ..., pn,}, where
no and np are the number of the whole and parts, respectively.
To specify the part-whole associations, we also define a mapping
function ¢ that maps a whole entity to the set of its composing
parts, e.g., $(0i) = {pi),Pi»-- -, Pi,, } (Le., the edges between a
movie and actors/actresses in Fig. 2). Note that the two sets ¢(0;)
and ¢(0;) might have overlap. In the example of movies as whole
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entities, one actor could participate in multiple movies. Let F° be
the feature matrix for the whole entities, where the i* row F°(i, :)
is the feature vector for the i" whole entity. Similarly, let F* be
the feature matrix for the part entities, where the j* h row FP(j, 1)
is the feature vector for the ji" part entity. The outcome vector of
the whole entities is denoted as y° and the outcome vector of the
part entities is denoted as y?. In addition, we might also observe
a network connectivity among the part entities, denoted as GP.
In the movie example, the network G could be the collaboration
network among the actors/actresses (the connections among the
actors/actresses in Fig. 2).

With the above notations, we formally define our PART-WHOLE
OuTtcoME PREDICTION problem as follows:

PROBLEM 1. PART-WHOLE OUTCOME PREDICTION

Given: the feature matrix for the whole/part entities F° /FP, the out-
come vector for the whole/part entities y°/yP, the whole to
part mapping function ¢, and the parts’ network GP (op-
tional);

Predict: the outcome of new whole and parts’ entities.

Figure 2: An illustrative example of part-whole outcome
prediction where movies are the whole entities and the ac-
tors/actresses are the part entities. The four shadowed el-
lipses correspond to the key sub-objectives in our proposed
PAROLE model (Eq. (1), Sec. 3.1.).

3 PROPOSED MODEL - PAROLE

In this section, we present our joint predictive model PAROLE to
simultaneously and mutually predict the outcome of the whole
and parts. We first formulate it as a generic optimization problem,
and then present the details on how to instantiate the part-whole
relationship and part-part interdependency, respectively.

3.1 A Generic Joint Prediction Framework

In order to fully embrace the complexity of the part-whole and
part-part relationship, our joint predictive model should meet the
following desiderata.

First (part-whole relationship), the outcome of the whole and
that of the parts might be strongly correlated with each other. For
example, the team outcome is usually a collective effort of the
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team members. Consequently, the team performance is likely to
be correlated/coupled with each individual’s productivity, which
might be beyond a simple linear correlation. This is because a
few top-performing team members might dominate the overall
team performance, or reversely, a few struggling team members
might drag down the performance of the entire team. Likewise, in
scientific community, a scientist’s reputation is generally built by
one or a few of her highest-impact work. Our joint predictive model
should have the capability to encode such non-linear part-whole
relationships, so that the prediction of the parts outcome and that
of the whole can mutually benefit from each other.

Second (part-part interdependency), the composing parts of a
whole entity might be interdependent/interconnected via an un-
derlying network, e.g., the collaboration network among the ac-
tors/actresses. The part-part interdependency could have a pro-
found impact on the part-whole outcome prediction performance.
That is, not only might the closely connected parts have similar
effect on the whole outcome, but also these parts are very likely to
share similar outcomes between themselves. Therefore, it is desir-
able to encode the part-part interdependency in the joint model to
boost the prediction performance.

With these design objectives in mind, we propose a generic
framework for the joint predictive model as follows:

min .7 = ni Z; LIFEG, ), w®), y°(i))]

Jo: predictive model for whole entities

p
+ % 3 LIFEP G, wP), P ()]
i=1

Jp: predictive model for part entities

2 P, ). W), Agg(9(01) (1)
%=1

Jpo: part-whole relationship

np np
" % DGR g(FEP (o) wP). P (). wP)
i=1j=1

Jpp: part-part interdependency
+ y(Qw) + Q(wP))
e ————
Jr: parameter regularizer

where the objective function is a sum of five sub-objective functions.
The first two sub-objectives J, and J} (the two blue shadowed
ellipses in Fig. 2) minimize the training loss for whole and parts
outcome predictions, where f (-, -) is the prediction function param-
eterized by w° and w”. The prediction function could be either
linear or non-linear; and £(-) is a loss function, e.g., squared loss
for regression or logistic loss for classification. The core of the
objective function is the third term Jp, (the green shadowed el-
lipse in Fig. 2) and the fourth term Jp, (the pink shadowed ellipse
in Fig. 2). Jpo characterizes the part-whole relationship, where
Agg(-) is a function that aggregates the predicted outcomes of all
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the composing parts for the whole to a single outcome, e.g., max-
imum, summation/mean or more complicated aggregations; and
h(-) function measures the correlation between the predicted whole
outcome and the aggregated predicted parts outcome. In Jp,, the
function g(-) characterizes the relationship of the predicted out-
comes of parts i and j based on their connectivity G‘f] such that
tightly connected parts would share similar outcomes. Lastly, J
regularizes w° and w? to prevent overfitting. The regularization
parameters «, §§ and y are used to balance the relative importance
of each aspect.

Remarks: Depending on the specific choices of the aggregation
function Agg(-) and the h(-) function, the proposed model in Eq. (1)
is able to admit a variety of part-whole relationships, which we
elaborate below.

3.2 Modeling Part-Whole Relationships

Overview. In this subsection, we give the instantiations for a
variety of part-whole relationships. For each whole entity o;, define
e; as follows:

e; = FO(>i,)w® — Agg(o;) )

which measures the difference between the predicted whole out-
come using whole features (i.e., F°(i,:)w°) and predicted whole
outcome using aggregated parts outcome (i.e., Agg(o;)). Our pro-
posed model will be able to characterize a variety of part-whole
relationship, by using (a) different aggregation functions Agg(-)
with augmented regularizations; and (b) different loss functions on
e; (e.g., squared loss or robust estimator).

Maximum aggregation. Let us first consider using maximum
as the aggregation function, which can model the correlation be-
tween the whole outcome and the maximum parts outcome. Given
that the max function is not differentiable, we propose to approxi-
mate it with a differentiable function that will largely facilitate the
optimization process. In details, we propose to use the smooth “soft”
maximum function, which was first used in economic literature for
consumer choice [17]: max(x1, Xz, . . ., xp) =~ In(exp(x1)+exp(x2)+
...+ exp(xy)), where the maximum is approximated by summing
up the exponential of each item followed by a logarithm. With this,
we define the maximum aggregation function as follows:

Agglo) =In( Y exp(FP(j, )wP))
j€p(o:)

®)

which approximates the maximum predicted parts outcome. The
part-whole relationship with maximum aggregation can be formu-
lated as follows:

no

D @

i=1

24

jiw - 2no

where we use the squared loss to measure the difference between
the predicted whole outcome and the predicted approximated max-
imum parts outcome.

For the remaining part-whole relationships, we instantiate Agg(o;)
using a linear function as follows:

Agglo) = Y alFP(j)wP
j€P(0:)

®)
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where each a’ is the weight of a particular part j’s contribution to
the whole 0;’s outcome. Defining a; as the vector whose compo-
nents are a’, j € ¢(0;) and by imposing (i) different loss functions
on e;, and/or (ii) different norms on a;, we can model either linear
or nonlinear part-whole relationships.

Linear aggregation. In this scenario, the whole outcome is
a weighted linear combination of the parts outcome, where the
weights determine each individual part’s contribution to the whole
outcome. The intuition of linear aggregation is that, in contributing
to the final whole outcome, some parts play more important roles
than the others. This part-whole relationship can be formulated as
follows:

(6)
i=1

where we use the squared loss to measure the difference between

the whole outcome and the aggregated parts outcome.

Remark: this formulation generalizes several special part-whole
relationships. The expression that “the whole is the sum of its parts”
is a special case of Eq. (6) where various a;. is 1, which we refer to
as Sum in the empirical study. The average coupling formulated
in [23] is also its special case with aji. = L Instead of fixing the

0i
weights, Eq. (6) allows the model to learn| to| what extent each part
contributes to the prediction of the whole outcome. Nonetheless, in
all these variants, we have assumed that the part outcomes always
have a linear effect on the whole outcome.

Sparse aggregation. The above linear aggregation assumes that
each part would contribute to the whole outcome, which might
not be the case as some parts have little or no effect on the whole
outcome. This scenario can be seen in large teams, where the team
performance could be primarily determined by a few members, who
could either make or break the team performance. To encourage
such a sparse selection among the composing parts of a whole
entity, a natural choice is to introduce the /; norm on the vector
a; [18]:

a A1
Tpo = - ;<5ef +2ail) )
where the /1 norm can shrink some part contributions to exactly
zero and the parameter A controls the degree of sparsity.

Ordered sparse aggregation. In some cases, the team perfor-
mance (i.e., the whole outcome) is determined by not only a few
key members, but also the structural hierarchy between such key
members within the organization. To model such parts perfor-
mance ranking in addition to the sparse selection, we adopt the
ordered weighted /; norm (OWL) [25] that is able to give more
weights to those parts with bigger effect on the whole outcome.
Such part-whole relationship can be formulated as follows:

no
oo = == ;@eﬁ +20u(a) ®
where Qw (x) = X7, |xljwi = WT|X|l is the ordered weighted [;
norm, where |x|[;} is the i-th largest component of the vector |x|
and w € K+ is a vector of non-increasing non-negative weights.

Robust aggregation. In all the above formulations, we model
the difference between the whole outcome and the aggregated parts
outcome using squared loss, which is prone to outlying parts/wholes.
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To address this issue, we employ robust regression models [9] to
reduce the effect of outliers as follows:

no
a
Tpo = - Zl ples)

where p(-) is a nonnegative and symmetric function that gives
the contribution of each residual e; to the objective function. In
this paper, we consider two robust estimators, namely Huber and
Bisquare estimators as follows:

©)

Case le| <t le| > t
Method o= ¢
Huber pg(e) %ez tle| — %tz
. 2 2
Bisquare pp(e) % {1 -[1- (%)2]3} %

where the value ¢ is a tuning constant. Smaller ¢ values have more
resistance to outliers.

3.3 Modeling Part-Part Interdependency

As mentioned in Sec. 3.1, the part-part interdependency, if exists,
can play two roles in the part-whole outcome predictions, i.e.,
closely connected parts would (A) have similar effect on the whole
outcome and (B) share similar part outcomes between themselves.

A - The effect on the whole outcome: the closely connected
parts might have similar impact on the whole outcome. It turns
out we can use the same method to model such a part-part effect
for various aggregation methods in Sec. 3.2. Let us take sparse
aggregation as an example and instantiate the term Jp, in Eq. (1)
as follows:

@
Tpo = 2.

i=1

1 1
Ze? + Alaj|y + =

5€i (10)

Z Gi’z(ai - “5)2
k,Ieg(oi)

where if the two parts k and [ of o; are tightly connected, i.e., Gz !
is large, then the difference between their impacts on the whole
outcome, a;< and af, is small.

B - The effect on the parts’ outcomes: the tightly connected
parts might share similar outcomes themselves. Such parts outcome
similarity can be instantiated by a graph regularization as follows:

np np

Tpp = ZZGP (FP(i, ywP — FP(j, ) )wP)? (11)
i=1 j=1
where tightly connected two parts i and j with large Gi ; 1s encour-

aged to be closer to each other in the output space, i.e., with similar
predicted outcomes.

4 OPTIMIZATION ALGORITHM

In this section, we propose an effective and efficient block coordi-
nate descent optimization algorithm to solve the joint prediction
framework in Eq. (1), followed by the convergence and complexity
analysis.

4.1 Block Coordinate Descent Algorithm

The proposed Eq. (1) is general, being able to admit a variety of
different separate models (J, and Jp) as well as part-whole rela-
tionship (Jpo). Let us first present our algorithm to solve a specific
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instance of Eq. (1) by instantiating it using linear predictive func-
tions, squared loss and sparse aggregation as follows:

min, Z(F“(z W -y (z>)2+—2<<FP<z JwP —yP(0)”
p Mp
* o ZZGP (FP(i)wP — FP(j,ywP)? + L Z U3 + [P 3)
i=1j=
+%Z %e?+l|a,~|1+% > G j(al - aly?

i=1

k,legp(o;)
(12)

In the formulation, we identify three coordinate blocks, namely w?,
w? and various aj.. We propose a block coordinate descent (BCD)
algorithm to optimize Eq. (12) by updating one coordinate block
while fixing the other two.

1. Updating w° while fixing others: Observing that only 75,
Jpo and J; are functions of w°, we have

0F _ 0Js  0Fpo , 35

Owe ~ Iw°  Iw°  OwP° (13)
1

= —(F) (FOw° — y°) + yw® + — (F°)(F'w® — MFPw?)
No no

where M is a n,, by np sparse matrix with M(i, j) = aj., for j € ¢(0;).
We then update w° as w° «— w° — 7%, where 7 is the step size.
2. Updating w” while fixing others: The sub-objective func-
tions that are related to w? are jp jpp, %o and ;. Therefore,
0F _99p  9Ipp , 9Ipo 0Ty
owp ﬁwf’ owP ' owP | dwP

= —(Fp) (FPwP —yp)+ b (Fp) LPFPwP + ywP
np

(14)
- —(FP)’M’(F"w" - MFPwP)
no

where L7 is the Laplacian of the graph G? [1]. Similarly, w” can
9

) -7 a“{i

3. Updating a; while fixing others: Let us fix a whole o; and

be updated by w” «— w’

the sub-problem with respect to a; becomes:

1o 1 P (i iy
minze; + Aajli + = Z Gy lay —ap)
k.le¢(o;)

(15)

Observing that the sub-problem is a composite of a non-smooth
convex function (A|a;|1) and a differentiable convex function (the
remaining terms), we update a; using the proximal gradient descent
method [2]. We first take a gradient step by moving a; along the
negative direction of the derivative of the smooth part w.r.t. a;, as
follows:

(16)

where Lf is a shorthand notation for the Laplacian of the subgraph
GP(¢(0;), #(0;)). Next, we compute the proximal-gradient update
for the /1 norm using soft-thresholding as a; < S;(z), where the
soft-thresholding operator is defined as follows:

[St(2)]; = sign(z;)(|zj] - 1)+,

where we use (x)+ as a shorthand for max{x, 0}.

z = a; — tlei(-FP($(0:), )wP) + LTa;]

17)
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We will cycle through the above three steps to update the three
coordinate blocks until convergence. The algorithm is summarized
in Algorithm 1.

Algorithm 1 PAROLE - Part-Whole Outcome Predictions

Input: (1) the feature matrix for whole/part entities F°/FP,
(2) outcome vector for the whole/part entities y°/y?,
(3) the whole to parts mapping function ¢,
(4) the part-part network GP (optional),
(5) parameters a, f,y, A, 7.
Output: Model parameters w° and w?.
1: Initialize w® and w” and a;,j € ¢(0;),i =1,...,n
2: while Not converged do

3 Update w9 «— w° — Tg‘z
0.7
4 Update wP « wP — 7 5<%
5 Update a; via proximal gradient descent fori =1,...,n,

Remarks: we want to emphasize that Algorithm 1 provides a
general optimization framework that not only works for the formu-
lation with sparse aggregation in Eq. (12), but is also applicable to
the other part-whole relationships introduced in Sec. 3.2. The only
difference is that, since Jj, varies for each part-whole relation-
ship, its derivatives w.r.t. the coordinate blocks would also change.
Next, for each of the other part-whole relationships, we give their
derivative or proximal gradient w.r.t. the three coordinate blocks.

1. Maximum aggregation: the derivatives of Jpo w.r.t. w°
and w” are as follows:

i=1

a%o a G o/ Y

e = ne ;exF (i.)

0p0 _ @ {4, Liep)™UF;
oWl o Zjegion Vs

where we denote )”rf = exp(FP(j, :)wP).

2. Linear aggregation: the derivatives of Jpo w.rt. w® and w”
are the same as in the sparse aggregation case. Its derivative w.r.t.
a; is same as in Eq. (16) without the following proximal-gradient
update.

3. Ordered sparse aggregation: the only difference from the
sparse aggregation lies in the proximal-gradient update for the OWL
norm, which can be computed as follows [25]:

proxq_(v) = sign(v) © (PlTv‘projRZ (projg,, (vl — w))) (18)

In the above equation, to compute proxg_(v), we first compute
the Euclidean project of (|v|| — w) onto %, using the linear time
pool adjacent violators (PAV) algorithm [16]. This is followed by
a projection onto the first orthant by a clipping operation. The
resulting vector is sorted back according to the permutation matrix
P|y| and then element-wisely multiplied by the signs of v.
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4. Robust aggregation: we compute the gradient of o using
chain rule as follows:

0Tpo _ a Z dplei) dei  0Jpo _ a <A dplei) dei
ow°  n, L de ow°’  OwP  n, & dep OwP
N/ dp(e;) de;
po _ & P(ez)ﬁ+£gai]
da; no de; Oa; !
where g‘f]’; = F°(i,:), % = = Yjeg(o) 4 F(J,2), and g—;z =

—FP(§(0;), :)w?; and the gradient of the Huber and Bisquare esti-
mator can be computed as follows:

Case le| < ¢t le| > t
Method el= ¢
Huber a’%e(e) e t - sign(e)
Bisquare % e[1—(e/t)?]? 0

4.2 Proofs and Analysis

In this subsection, we analyze the proposed PAROLE algorithm in
terms of its convergence, optimality and complexity.

First, building upon the proposition from [19], we have the fol-
lowing theorem regarding the proposed Algorithm 1, which says
that under a mild assumption, it converges to a local optimum (i.e.,
coordinate-wise minimum) of Eq. (12).

THEOREM 4.1. (Convergence and Optimality of PAROLE). As long
as —y is not an eigenvalue of ";—?FO/F" or %FP/FP + ﬁFP'.LPFP +
%FP M’MF?, Algorithm 1 converges to a coordinate-wise mini-
mum point.

ProoF. Omitted for brevity. O

Next, we analyze the complexity of Algorithm 1, which is sum-
marized in Lemma 4.2.

LEmMA 4.2. (Complexity of PAROLE). Algorithm 1 takes O(T(nodo+
npdp + mpo + mpyp)) time for linear aggregation, maximum aggre-
gation, sparse aggregation, and robust aggregation, and it takes
O(T(nodo + npdp + Cnpdy + myyp)) for ordered sparse aggrega-
tion, where d, and dp are the dimensionality of the whole and
part feature vectors, mpo = 3; |¢(0;)| is the number of associ-
ations between the whole and parts and my, is the number of
edges in the part-part network, T is the number of iterations,
C = max; log(|¢(0;)|) is a constant. The space complexity for Al-
gorithm 1 is O(nodo + npdp + mpo + myy) for all the part-whole
relationships.

ProOF. Omitted for brevity. O

Remarks: suppose we have a conceptual part-whole graph G =
{0, P}, which has n, nodes for the whole entities and n,, nodes for
the part entities, mp, links from whole nodes to their composing
parts nodes and my,, links in the part-part networks. The Lemma 4.2
says that PAROLE scales linearly w.r.t. the size of this part-whole
graph in both time and space.
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Table 2: Summary of Datasets.

Data Whole Part # of whole | # of part
Math || Question Answer 16,638 32,876
SO Question Answer 1,966,272 | 4,282,570
DBLP Author Paper 234,681 129,756
Movie Movie Actors/Actresses 5,043 37,365

5 EXPERIMENTS

In this section, we present the empirical evaluation results. The
experiments are designed to evaluate the following aspects:

o Effectiveness: how accurate is the proposed PAROLE algorithm
for predicting the outcomes of parts and whole?

o Efficiency: how fast and scalable is the proposed PAROLE algo-
rithm?

5.1 Datasets

The real-world datasets used for evaluations are as follows:

CQA. We use Mathematics Stack Exchange (Math) and Stack
Overflow (SO) data from [23]. The questions are whole and answers
are parts both with voting scores as outcome. For each question,
we treat all the answers it receives as its composing parts. The
extracted features are described in [23].

DBLP. DBLP dataset provides the bibliographic information of
computer science research papers. We treat authors as whole with
h-index as outcome and papers as parts with citation counts as
outcome. For each author, his/her composing parts are the papers
s/he has co-authored. Paper features include temporal attributes
and author features include productivity and social attributes.

Movie. We crawl the metadata of 5,043 movies with budget in-
formation? from IMDb website. The meta information includes
movie title, genres, cast, budget, etc. We treat movies as whole
and the actors/actresses as parts both with the number of Face-
book likes as the outcome. For each movie, we treat its cast as the
composing parts. Movie features include contextual attributes and
actors/actresses features include productivity and social attributes.

The statistics of these datasets are summarized in Table 2. For
each dataset, we first sort the whole in chronological order, gather
the first x percent of whole and their corresponding parts as training
examples and always test on the last 10% percent of whole and their
corresponding parts. The percentage of training x could vary. The
root mean squared error (RMSE) between the actual outcomes and
the predicted ones is adopted for effectiveness evaluation. The
parameters are set for each method on each dataset via a grid
search.

Repeatability of experimental results: all the datasets are publicly
available. We will release the datasets and code of the proposed
algorithms through authors’ website after the paper is published.
The experiments are performed on a Windows machine with four
3.5GHz Intel Cores and 256GB RAM.

5.2 Effectiveness Results
We compare the effectiveness of the following methods:

(1) Separate: train a linear regression model for parts and
whole separately.

(2) Sum: a joint model with Sum part-whole relationship.

(3) Linear: our PAROLE with linear aggregation.

http://www.the-numbers.com/movie/budgets/all
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(4) Max: our PAROLE with maximum aggregation.

(5) Huber: our PAROLE with robust Huber estimator.

(6) Bisquare: our PAROLE with robust Bisquare estimator.
(7) Lasso: our PAROLE with sparse aggregation.

(8) OWL: our PAROLE with ordered sparse aggregation.

A - Outcome prediction performance: the RMSE results of
all the comparison methods for predicting the outcomes of parts
and whole on all the datasets are shown from Fig. 3 to Fig. 6. We
draw several interesting observations from these results. First,
all the joint prediction models outperform the separate model in
most cases, which suggests that the part outcome indeed has a
profound impact on the whole outcome, and vice versa. Second,
among the joint prediction models, in general, the linear methods
(Sum and Linear) are not as good as the non-linear counterparts
(Max, Huber, Bisqaure, Lasso and OWL), and in some cases (Fig. 3b,
Fig. 5b), the linear joint models are even worse than the separate
method, which indicates that the part-whole relationship is indeed
more complicated than the linear aggregation. Third, among the
non-linear methods, a consistent observation across all the datasets
is that Lasso and OWL are the best two methods in almost all the
cases. This suggests that the whole outcome is mostly dominated
by a few, often high-performing, parts.

B - The effect of part-part interdependency: in the proposed
joint prediction model, we have hypothesized that the part-part
interdependency might help boost the predictions in two ways,
i.e, regularizing the parts’ contribution to the whole outcome as
well as part outcome correlation. Here, we verify and validate
to what extent these two aspects contribute to the performance
gain, when such part-part interdependency information is available.
Fig. 7 shows the results of Lasso on the Movie dataset with 50%
training data. The network among the parts, i.e., actors/actresses,
is their collaboration network. The “PAROLE-Basic” does not use
the network information. The “PAROLE-GraphForWhole” applies
the graph regularization on the parts’ contribution to the whole,
which brings a 8% overall prediction error reduction. On top of that,
“PAROLE-GraphForWhole&Parts” uses the graph regularization on
the parts’ outcome, which brings a 14.5% decrease in the overall
prediction error.

C - Convergence analysis: Fig. 8 shows the objective function
value vs. the number of iterations on the SO dataset using OWL with
5% training data. As we can see, the proposed PAROLE algorithm
coverges very fast, after 25-30 iterations.

D - Sensitivity analysis: to investigate the parameter sensitiv-
ity, we perform parametric studies with the two most important
parameters in PAROLE, i.e., « that controls the importance of part-
whole relationship and f that controls the importance of part-part
interdependency on the parts outcome. The bowl shaped surface in
Fig. 9 suggests that the proposed model can achieve good perfor-
mance in a large volumn of the parameter space.

5.3 Efficiency Results

Fig. 10 shows the running time of all the proposed methods with
varying size of training data (no + ny + mp,). We can see that
all the proposed methods scale linearly, which is consistent with
Lemma 4.2. OWL takes the longest time due to the additional
sorting operation in the proximal-gradient update for the OWL
norm.
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Root Mean Squared Error

(a) RMSE of question outcome prediction. (b) RMSE of answer outcome prediction.
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Figure 3: RMSE comparisons on Math. Best viewed in color. From left to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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(a) RMSE of question outcome prediction. (b) RMSE of answer outcome prediction.
Figure 4: RMSE comparisons on SO. Best viewed in color. From left to right: Separate,
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(a) RMSE of author outcome prediction.

1

1 15 2 3
Percentage of Training

RMSE of Authors

I Separate

[——JHuber
[ sisquare
I | asso

N owL
1 2 3
Percentage of Training

Root Mean Squared Error

Root Mean Squared Error

(b) RMSE of paper outcome prediction.
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Figure 5: RMSE comparisons on DBLP. Best viewed in color. From left to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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(a) RMSE of movie outcome prediction.
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(b) RMSE of actors/actress outcome predic-
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Figure 6: RMSE comparisons on Moive. Best viewed in color. From left to right: Separate, Sum, Linear, Max, Huber, Bisquare,
Lasso and OWL.
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Figure 9: RMSE with varying o and f of Lasso on Movie.

6 RELATED WORK

Very few studies have quantitatively examined the part-whole rela-
tionships for the purpose of prediction. In CQA sites, empirical stud-
ies have shown a strong correlation between the question voting
score and the average/maximum answer voting score [22]. Based
on this observation, a joint predictive model that leverages ques-
tion/answer coupling is proposed that is also able to capture the
dynamics of the community posts [23]. Related to the part-whole
relationship, there is a large body of literature on the collaborative
teams. Along the line of team outcome prediction, the iBall [10]
model focuses on the long-term impact forecasting of scholarly
entities that exploits domain heterogeneity; going beyond the point
prediction, the iPath [14] model aims to predict the pathway to im-
pact. Though all the above predictive models can admit non-linear
prediction functions for each separate model, they still assume a
linear relationship between different models (e.g., part vs. whole).
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Figure 10: Scalability plot on SO.

On team formation and outcome optimization, the seminal work
in [8] aims to form a team that can cover the required skill sets
with strong team cohesion. Some recent work has been focusing
on finding a good candidate to replace a team member [11] and
enhance the team performance by allowing several enhancement
operations, including refinement and expansion [13]. A visual inter-
active system is developed allowing users to explore and optimize
teams [3, 12]. From the multi-task learning [6, 21] perspective, our
method explicitly models two types of potentially non-linear task
relatedness, i.e., part-whole relationship and part-part interdepen-
dency.

7 CONCLUSION

In this paper, we propose a joint predictive model PAROLE to si-
multaneously and mutually predict the parts and whole outcomes.
First, model generality, the proposed model is able to (i) admit a
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variety of linear as well as non-linear relationship between the parts
and whole outcome and (ii) characterize part-part interdependency.
Second, algorithm efficacy, we propose an effective and efficient
block coordinate descent optimization algorithm that converges
to the coordinate-wise optimum with a linear complexity in both
time and space. The empirical evaluations on real-world datasets
demonstrate that (i) by modeling the non-linear part-whole rela-
tionship and part-part interdependency, the proposed method leads
to consistent prediction performance improvement, and (ii) the
proposed algorithm scales linearly w.r.t. the size of the training
data. In the future, we would like to explore the dynamics of the
proposed model as well as the hierarchy in the parts (i.e., the parts
of the parts).
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