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ABSTRACT KEYWORDS

Latent factor models have become a prevalent method in recom-
mender systems, to predict users’ preference on items based on the
historical user feedback. Most of the existing methods, explicitly
or implicitly, are built upon the first-order rating distance principle,
which aims to minimize the difference between the estimated and
real ratings. In this paper, we generalize such first-order rating dis-
tance principle and propose a new latent factor model (HOORAYSs)
for recommender systems. The core idea of the proposed method is
to explore high-order rating distance, which aims to minimize not
only (i) the difference between the estimated and real ratings of the
same (user, item) pair (i.e., the first-order rating distance), but also
(ii) the difference between the estimated and real rating difference
of the same user across different items (i.e., the second-order rating
distance). We formulate it as a regularized optimization problem,
and propose an effective and scalable algorithm to solve it. Our
analysis from the geometry and Bayesian perspectives indicate that
by exploring the high-order rating distance, it helps to reduce the
variance of the estimator, which in turns leads to better general-
ization performance (e.g., smaller prediction error). We evaluate
the proposed method on four real-world data sets, two with ex-
plicit user feedback and the other two with implicit user feedback.
Experimental results show that the proposed method consistently
outperforms the state-of-the-art methods in terms of the prediction
accuracy.
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1 INTRODUCTION

In recent years, researchers have devoted great efforts to the de-
velopment of recommender systems in many real-world applica-
tions [4, 6, 11]. The key task of recommender systems is to predict
the users’ preference on items. Collaborative filtering (CF) methods
and content-based methods have been widely used to achieve this
task. For example, matrix factorization [11] takes ratings as input
and outputs the latent vectors for users and items; it becomes a
popular base for recommender systems, largely due to its great suc-
cess at the Netflix Prize. To further improve the recommendation
accuracy, Wang et al. [20] propose the collaborative topic regres-
sion (CTR) rating model to incorporate item content; Ma et al. [12]
model social trust (Sorec) by incorporating social relationships and
ratings. The combination of CTR and Sorec is also explored [2, 17].

A line of existing work has focused on employing different types
of data (e.g., ratings, item content, social relationships, etc.) so as
to make more informed and accurate recommendations. In this
work, we focus on an orthogonal line work, i.e., the optimization
formulation aspect.

From the optimization viewpoint, most of the existing methods,
explicitly or implicitly, are built upon the first-order rating distance
principle. That is, these methods seek for an ‘optimal’ latent rep-
resentations for users and items, which minimize the differences
between the estimated and real ratings of the same (user, item) pair.
Conceptually, minimizing the first-order distance (between the real
rating to estimated rating) can be viewed as a self-calibration pro-
cess. However, the solution space of the optimization problem could
be large, especially when the available user feedback information
is sparse, which might result in a biased estimator for the latent
vectors of users and items.

In this paper, we generalize the first-order distance principle and
propose to leverage the high-order distance to improve the recom-
mendation performance. The core idea of the proposed method is
to explore high-order rating distance, which aims to minimize not
only (i) the difference between the estimated and real ratings of the
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same (user, item) pair (i.e., the first-order rating distance), but also
(ii) the difference between the estimated and real rating difference
of the same user across different items (i.e., the second-order rating
distance). We hypothesize that by exploring high-order distance,
it will help shrink the solution space of the corresponding opti-
mization problem. By doing so, the variance of the estimator (i.e.,
the latent representations of users and items) could be mitigated,
which will in turn lead to better generalization performance (e.g., a
smaller prediction error).

The main contributions of this paper include:

e New Model and Algorithm that embrace the high-order
rating distance in the latent factor methods for recom-
mender systems. The proposed model HOORAYs can han-
dle both explicit and implicit user feedback, as well as the
case when content information is available. The proposed
algorithm is able to find local optima with a linear time
complexity.

e Analysis from both the geometric perspective and the
Bayesian perspective for the proposed model, which pro-
vides key insight on how the high-order distance reduces
the variance, and how to generalize the high-order distance
based optimization to other recommendation models.

e Experimental evaluations on four real-world data sets
showing the effectiveness of the proposed method. For ex-
ample, the proposed method outperforms the best competi-
tors by up to 24.3% improvement in terms of the prediction
accuracy.

The rest of the paper is organized as follows. In Section 2, we
present the problem statement. In Section 3, we describe the pro-
posed model with the geometric interpretation, Bayesian inter-
pretation, and algorithm analysis. In Section 4, we present the
experimental results. In Section 5, we review the related work.
Finally, we conclude the paper in Section 6.

2 PROBLEM STATEMENT

In this section, we provide the problem statement and some back-
ground knowledge of our proposed model.

2.1 The Recommendation Problem

In recommender systems, the two kinds of fundamental elements
are users and items. We assume there are M users and N items in
the recommender system. We denote the latent vectors for users as
U = {u;}]2,, and the latent vectors for items as V = {v; }J’.’:l. The
length of these latent vectors is K. The observed ratings are usually
denoted as R = {r;j|rij € [1,rmax]}, where r;; represents the rating
that user i gives to item j, and the value rp,;4x is the scale of rating
in the target recommender system (e.g., 5 stars on MovieLens).

Based on the above notations, we define the target problem as
follows

ProOBLEM 1. The Recommendation Problem

Given: (1) the set of existing ratings R from users to items, (2)
a user i, and (3) an item j;
Find: the estimated rating 7;j from useri to item j.

As we can see from the definition, the input of our problem
includes the existing ratings. Our focus is on the optimization aspect
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instead of employing more types of data, although the proposed
method can be similarly applied when more types data are available.
The goal is to predict the unobserved ratings from users to items,
and we can directly obtain the ratings as long as we have learned
the latent vectors U and V.

2.2 Latent Factor Models: Matrix Factorization

Inrecent years, matrix factorization based collaborative filtering [11]
becomes one of the most popular methods to solve the recommen-
dation problem. In the view of matrix factorization, the users and
items could be represented by factors in the same latent factor space.
For example, user i is represented by a latent factor vector u;, and
item j is represented by a latent factor vector v;. So we predict the
rating that user i gives to item j with the inner product of the two
corresponding latent factor vectors

Fi j = ulT’Uj (1)
We use the observed ratings to learn the latent factor vectors. Com-
monly, we minimize the following optimization function

@)

where square loss is used as the loss function, and R is the set of
the observed ratings.

2.3 Model Variance Reduction

From statistical learning perspective, a good estimator (e.g., latent
vectors in our recommendation problem) should have small pre-
diction errors (PE) on both training and the new data. With the
bias-variance decomposition [5], the expected prediction error is
the sum of three terms: the irreducible errors, Bias, and Variance

PE = o2 + Bias® + Variance (3)
It is well known that the local curvature can be picked up to fit the
training data when the model becomes more complex. However,
such a complex model suffers from the high variance, and hence to a
high PE when estimating on the new data (overfitting). To deal with
the overfitting in Eq. (1), researchers added ridge constraints (i.e.,
L2-regularization) on the parameters u; and v; by controlling their
sum of squares, so that the original unconstrained optimization
problem becomes

m n

minimize Z (rl-j—uiij)2 s.t. Z:(u,')2 < tu,Z(vj)Z <ty (4
rij€R i=1 Jj=1

where t, > 0 and ¢, > 0. The above optimization problem can be

re-written as

m n
L= (ij—u] o)+ 2 ) wll? + Ao D llojl? - (5)
rij€R i=1 j=1

where A, and A, are the parameters to control the L2 regulariza-
tion terms. With the proper A, and A, Eq. (5) balances bias and
variance to reach the lower PE.
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3 HIGH-ORDER OPTIMIZATION OF RATING
DISTANCE

In this section, we describe the proposed HOORAYs model (Subsec-
tion 3.1). Then, we analyze why the proposed model can reduce the
variance of the estimator from two different perspectives, including
geometric interpretation (Subsection 3.2) and Bayesian interpreta-
tion (Subsection 3.3). Finally, we present a brief algorithm analysis
in terms of its optimality and complexity (Subsection 3.4).

3.1 The HoOORAYs Model

The core idea of HOORAYs is to use high-order rating distance
to reduce the variance of the estimator (i.e., the latent factors for
users and items) by shrinking the solution space of the optimization
problem in Eq. (4). The intuition is as follows. By optimizing the
first-order distance, we basically want to find a good estimator
which matches a user’s preference on each of the observed items.
By introducing the additional high-order distance, we require the
learnt latent factors to also capture the subtle preference difference
of a user across different item pairs.

In particular, the error between the real rating r;; and the esti-
mated rating 7;; in Eq. (4) can be treated as the distance between
two ratings. In addition the rating distance of < rjj,7;; > pair,
other rating errors from different kinds of pairs (e.g., < rjj, 7i; >,
< rijs,rij >, and so on) can also be measured as rating distances.
These rating distances have their own meaning in the context of
recommender systems. For example, the distance between r;j» and
rij (denoted by D) means the real difference between item j and
item j” under user i; the distance between r;y and 7;; (denoted by
D) means the estimated difference between item j and item j’ under
user i after estimating 7;;. Furthermore, when r;; is fixed for both
D and D, we can measure the distance between D and D. The error
between D and D reflects the accuracy of learned latent vectors
of user i and item j. This error is the distance between two rating
distances, and we call this distance of distance as second-order
rating distance.

As we can see, both first-order and second-order distances reflect
the learned latent vectors of user/items. If we add second-order
rating distance to the optimization problem in Eq. (4) as an addi-
tional constraint, we could further reduce the variance of the latent
vectors of users/items in recommender systems. The optimization
problem of our proposed HOORAYs is written as below

minimize Z (rij — uiij)Z

rij€R

m n
12 32
s.t.Z(u,) < tu,Z(v]) <ty
i=1

=

T 2
Z Z Lijiry (o (u; vj, rirjr) = o(rij, rirjr))" =0

rij Tty

(6)

where o(x,y) = 1/(1 + e~ *~9)) and Iijirjy = 1if ratings r;; and
rij exist with i’ = i A j* # j\V i’ # i A\ j* = j. The optimization
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problem with second-order rating distance constraint can be re-
written as follow

m n
argmin " (rij — ] 0;)% + Au Y luill® + Ao Y llojll®
Unve ri i=1 j=1 )
+ A4 Z Z Lijirjr (o (u] vj,rijr) = o (rij,riryr))?
Tij Titj

where Ay is the parameter to control the effect of second-order
rating distance.

Speed Gear. Since the complexity of second-order distance in
Eq. (7) is roughly O(IR|(|Ry| + |Ro)), we propose to speedup the
model learning process based on two key observations: (i) the rating
scale is usually small for recommender systems (e.g., 1-5 stars), and
(ii) the contributions of different ratings from other users/items are
equal to each other if they share the same rating value. Hence, the
loss function in Eq. (7) could be re-written as

m n
; T 2 2 2
argmin ) (rij = u] 0))” + Ay D il + Ao D llojl]
U*v* =1 j=1

Tij i
Tmax (8)
+ha Y D19 (0] vjr) = o(rijr))?
rij r=1

where 145 is the maximal rating value (e.g., rmax = 5 in Movie-
Lens), and [Qr,;,rlis the total number of ratings that the user i rated
to other items with value r or the item j received from other users
with value r.

Update Rules. We use stochastic gradient descent to optimize
Eq. (8). In detail, we alternatively optimize U, V in each iteration.
In each iteration, we take the partial derivatives of Eq. (8) with
respect to u; and v;, which lead to the following update rules

T
u; = Ayu; + (rij —u; v;)v;j

Ymax

+ g Z 1Qr;,r (0 (rij, ryowlvj, r(1 - ol vj, r))v;  (9)
r=1
- a(uirvj, r2(1 - cr(uiij, r))vj)

T
vj = Apvj + (rij — u; vj)u;

Ymax

+ha D19 e (rig Yo (u] vj, ) (1= o(u] vj, M)u; - (10)
r=1
- O'(UiT‘Uj, 7)2(1 - a(uiTUj, r))u;)

We summarize our fast learning algorithm in Alg. 1, where « is
the learning rate, V is the partial derivative operator, and we use
stochastic gradient descent method to learn the parameters.

3.2 Geometric Interpretation of HOORAYs

Here we present the geometric interpretation of the proposed
HoORAYs. By adding the constraint of second-order rating dis-
tance to the optimization problem in Eq. (4), the solution space to
U and V can be further shrunk, which leads to the decrease on
variance.

The illustrative example in Fig. 1 shows how the constraint of
second-order rating distance could shrink the original solution
space. Suppose that the latent factor space is 2-dimensional, and
each user/item has its place, which is presented as the latent vector
in the space. In Fig. 1(a), taking user i and item j for example
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(a) The solution space of matrix factorization

Ui Vj =Tij Ui Vj =Tij

(b) The solution space with the constraint of second-order (c) The solution space with the constraint of second-order
rating distance (before optimization)

rating distance (after optimization)

Figure 1: The illustrative example of applying the constraint of second-order rating distance to matrix factorization. We can
see that second-order distance further shrinks the solution space, which means to reduce variance of prediction error for the
optimization problem. Notice that, the second-order distance will also shrink the solution space on the other side, for clarify,

we do not indicate that in the figure.

Algorithm 1: Learning HOORAYs

Input: the set of observed ratings R, and the maximal rating
scale rmax
Output: latent vectors of users U, latent vectors of items V'
1 initialize U, V

2 repeat

3 for rij € Rdo

4 forr « 1,...,rmax do

5 for f < 1,....,k do

6 update u; ¢ < u; f — aVy, , as defined in
Eq. (9)

7 update v ¢ « v f — aVy, - as defined in
Eq. (10)

s until convergence;
9 return U*, V*

and by assuming that v; and r;; are given, we want to find u;
by first-order rating distance (e.g., matrix factorization). Ideally,
ulij = rjj exists for the perfect u;, and this line could be plotted
in the space. As shown in Fig. 1(a), any point in this line is a
solution to u;, and all points satisfy the best condition to r;;. Then,
we allow the error to u;, e.g., |uiij - rij| < e. With the two
paralleled lines ul.ij = rij + € and uiij = rjj — € (two red lines
in Fig. 1(a)), any point inside the two bounded lines is a solution
that satisfies to the error €. Now, we consider another item j’ with
the given v into the space, and the solution space of u; is then
bounded by the four red lines in the Fig. 1(a). In Fig. 1(b), the
black point is the origin of the latent factor space, and the length of
perpendicular distance from origin to line uiij = rjj is rjj when
u; is normalized. r; s denoted as a black line segment, can also
measured in the space. After coinciding line segment r;j- to line
segment r;;, several second-order distances appear. In Fig. 1(b), the
second-order distance between r;; and r;j» is denoted as D. Based
on the two worst estimated 7;; bounded by €, we could point out
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two second-order distances between 7;; and r;; as D inFig. 1(b). By
the constraint of |D — D| = 0, the error bounds would shrink from
both sides. Ideally, as the optimization problem in Eq. (6) reaches
the optima, the shaded area will be compressed by the constraint of
second-order rating distance. Shrinking the solution space reduces
the variance (e.g., almost half of original solution space is shrunk
in Fig. 1(c)), and might reduce the prediction error (PE) of the rating
model in Eq. (1).

3.3 Bayesian Interpretation of HOORAYs

In addition to the geometric interpretation, we present our proposed
HoORAYs from Bayesian perspective. Minh et al. [14] presented
a probabilisitic model for matrix factorization. In probabilistic
matrix factorization, they assumed that ratings are generated by
a specific generative process. In order to leverage information
from content (e.g., reviews, tags), researchers used topic modeling
approaches to extract latent topics from items. Collaborative topic
regression (CTR) model was proposed by Wang et al. [20] to deal
with recommendation problem by considering the merit of both
probabilistic topic modeling and collaborative filtering.

The proposed HOORAYs can apply to both MF and CTR. Take
CTR model as the rating model, The graphical model of HOORAYs
is shown in Fig. 2. We treat the constraint of second-order distance
as an observed random variable after observing the rating. Next,
instead of simply using the distance between the real r;; and esti-
mated 7;; as the optimization target in CTR, we optimize over the
second-order distance d;;;» which is the distance between the real
rating distance (between r;; and ;) and the estimated rating dis-
tance (between 7;; and ry j). The generative process of HOORAYs
is as follows

e For each user i, draw the latent vector u; ~ N (0, /1;111()
e For each item j
- Draw topic proportions 6; ~ Dirichlet(x)
— Draw the latent offset €; ~ N (0, AZMK) and set
the item latent vector as vj = €; + 0;
- For each word wjp,,,
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R: # ratings user u to item i

D: # distances

w: observed word
3: topic of word w
0: topic distribution

Ry observed rating from
user u’ to item i’

Djjyj: observed distance
between R and Ry

@ Topic modeling @ Matrix factorization (® High-order distance

Figure 2: The probabilistic graphical model of HOORAYs.

* Draw topic assignment zj,,, ~ Mult(6;)
# Draw word wjp,, ~ Mult(f;;, )
e For each pair of user and item, draw the rating

~ N@ulvj,c i =

e For each second-order rating distance of r;; vs. ryjr (i’ =
iNj #jVi"#iAJj =j), draw the distance

T -1
dijiryy ~ N(o(u; vj,rirjr), A;")

where N (x|y, 0?) is the Gaussian distribution with mean y and
variance o2, I is the K * K identity matrix, the function g is the
sigmoid function where o(x,y) = 1/(1 + e~=¥), and cij is the
confidence parameter for the rating r;;, which is introduced by
Wang et al. [20] to solve the one-class collaborative filtering problem
with implicit feedback. Specifically, we set c;; a higher value if
rij = 1, and we give c;j a lower value if r;; = 0.

The conditional distribution over the observed high-order dis-
tance is

m n m n
P(DIR, U, V, A3} nﬂﬂﬂ/\((a(ui%j, ro ) AT (1)
LNV A

where Iy = 1 if ratings rj; and ryjp exist with i’ = i A\ j* #
jVi’ # i \j = j. Then, we have the following equation for
the posterior probability of the latent vectors of HOORAYs by the
Bayesian inference

p(U,VID,R,C,Ag, Ay, Av)
12
& p(DIR Ag)p(RIU. V. C)p(U1A)p(0lo) (12)

Given the topic parameter f, computing the full posterior of u;,
vj, and 0; directly is intractable. Here, we develop an EM-style
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algorithm to learn the maximum a posteriori estimates. Notice that,
maximizing the posterior in Eq. (12) is equivalent to maximizing
the complete log likelihood of 8, U, V, R and D, given Ay, Ao, A4,
C,and f.

P n
z*:—leu Ui — 7”21 - 07 (v - 0))
i= =
n W
Z Z log( Zejkﬁk anw)
J=1nw=1 (13)
A RS T, )y2
_?Z Z |Qrij,r|(o'(rt],r) O'(ui Uj,r))
rij r=1
cii
- Z %(rij - uj v))?
rij

where 145 is the maximal rating value (e.g., rmax = 5 in Movie-
Lens), and |Qy,;, r| is the total number of ratings that the user i rated
to other items with value r or the item j received from other users
with value r.

We use stochastic gradient ascent to optimize Eq. (13). In detail,
we iteratively optimize U, V, and the topic proportions 6. Given
the current estimate of 6;, we could find optima of U and V via
similar equations to Eq. (9) and Eq. (10). Given the current U and
V, we update the topic proportions 6 as follows. We first define
q(zjn,, = k) = $jn, k> and then separate the items that contain 0;
and apply Jensen’s inequality as follows

Ao
L) = =70 - 0) T (vj - 6))

+ > Bin k(08 0k iy, — 108 Djn k) (19)
nyw=1 k
= L(Gj,q)j)
Let®; = (¢j"wk)r‘;‘;x:1§,k:1' L(0;) has a tight lower bound L(6;, ®;).

Analytically, we cannot optimize 0;. Hence, we use projection gra-
dient approach to optimize the other parameters U, V, 6;.N, and
¢1:N- After estimating U, V, and ¢, we could optimize  as follows

Biow < D > $ink[Win,, = w] (15)
Jonw

After the optimal parameters U*, V*, 07
each rating r;; can be estimated as

~ s\T %
j = ()" v

*
N and f* are learned,

(16)
3.4 Algorithm Analysis

In this part, we analyze the effectiveness and efficiency of our
algorithms.

The effectiveness of the proposed HOORAYs is summarized in
Lemma 3.1. Overall, it finds local optima in the solution space of
the latent vectors from users and items. The proposed optimization
problem (Eq. (8)) is not convex wrt the coefficients (u;, v;), and
such a local minimum is acceptable in practice.

LEmMA 3.1 (Effectiveness of HOORAYS). Fixing the ratings in
R, HOORAYS finds the local minimum for the optimization problem
in Eq. (8).
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Table 1: The statistics of the four data sets.

Data Lastfm | Delicious | MovieLens | Google Play
#users 1,892 1,867 2,113 170,781
#items 17,632 69,226 10,197 104,061
#tags 11,946 53,388 13,222 N/A
#taggings || 186,479 | 437,593 | 47,957 N/A

#words N/A N/A N/A 10,569
#reviews N/A N/A N/A 3,367,435
#ratings/hits 92,834 104,799 855,598 3,367,435
rating Scale [1] [1] [0.5-5] [1-5]

Proor SkeTCH. If we fix either the U matrix or the V matrix, the
optimization problem becomes convex and the corresponding step
in Alg. 1 can find the global optima. Next, based on the alternating
procedure of learning parameters U and V in Alg. 1, we have that
Alg. 1 finds a local minimum for the optimization problem in Eq. (8).

The time complexity of the proposed HOORAYSs is summarized
in Lemma 3.2. This Lemma shows that HOORAYS requires linear
time for learning latent vectors of users and items (e.g., step 3-7 in
Alg. 1); and it scales linearly wrt the number of observed ratings in
the training phase (e.g., step 2-7 in Alg. 1).

LEmMA 3.2 (Time Complexity of HOORAYSs). Fixing the set of
ratings R, and rpmqx, HOORAYS requires O(|R|) time for each iteration
inAlg. 1

Proor. For each iteration in Alg. 1, we need O(|R|) time for
the loop that starts from step 3. The time cost for the loop that
starts from step 4 is rmqx, and step 5-7 costs O(k) time for updating
parameters. Therefore, the total time cost of the iteration of step 2-7
is O(IR| - rmax - k - m), where m is the maximum iteration number
for Alg. 1. Notice that, 7;;4x, k and m are small constants, so the
total time cost of Alg. 1 can be written as O(|R]). O

4 EXPERIMENTS

In this section, we present the experimental evaluations. All the
experiments help us to answer the following questions:

e How accurate is the proposed method compared to the
state-of-the-art methods?

e How efficient is the proposed method compared to the
state-of-the-art methods? How scalable is the proposed
method?

e How do the parameters affect the performance of our
model?

4.1 Experimental Setup

4.1.1 Data Sets. In this paper, we use four real-world data sets,
i.e., Google Play, MovieLens, Lastfm, and Delicious. The first data
set was collected by Chen et al. [3], and the other three data sets
were provided by Cantador et al. [1]. Table 1 shows the statistics
of the four data sets. For the Lastfim and Delicious data, the user
feedback is implicitly given by listening to a song (on Lastfm) and
bookmarking an item (on Delicious), respectively. Following typical
implicit feedback setting, we set the user rating as 1’ if the implicit
feedback is observed, and ’0’ otherwise. For the MovieLens and
Google Play data, there are explicit ratings from users to items.
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The rating scale is [0.5 ~ 5] with step 0.5 for MovieLens data,
and [1 ~ 5] with step 1 for Google Play data. As for the content
information, we use the aggregated review content in the first data
set. We follow standard processing steps including stop-words
removal, short-words removal, low-frequency words removal, high-
frequency words removal, and stemming. For the other three data
sets, we directly use the tag information on items as content input.

4.1.2  Evaluation Metrics. In this paper, we use the following
four evaluation metrics. Specially, we use Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) for the case of explicit
feedback, and use Recall@N and Area Under the Curve (AUC) for
the case of implicit feedback. In other words, RMSE and MAE are
used for the Google Play and MovieLens data, and they are defined
as

Driyer(Fij —rij)?
IT|
ZrizeT |Fij — rijl
IT|
where T is the set of ratings to be evaluated as the test set.

Recall@N and AUC are used for Lastfm and Delicious. For a
given user, Recall@N is defined as the ratio between the number
of items that the user likes in Top N ranking list, and the total
number of items that the user likes; AUC indicates the probability
that a randomly chosen observed example is ranked higher than a
randomly chosen unobserved example. For these two metrics, we
average them over all the users as the final result.

RMSE =

MAE =

4.1.3 Compared methods. In the experiment section, we use
HoORAYs to denote the proposed model that considers content in-
formation, and use HOORAYs to denote the proposed model with-
out content information. We compare our methods (HoORAYs( and
HoORAYs) with some state-of-the-art recommendation algorithms
including probabilistic matrix factorization (PMF) [14], collabora-
tive topic regression (CTR) [20], and Bayesian personalized ranking
(BPR) [18]. Note that BPR is specially designed for the implicit
feedback, and we only compare with BPR in the implicit feedback
case. As for parameters, the dimension of the latent vectors is set to
200 for the proposed methods and all the competitors. The reported
results come from the best parameters tuned for each model. For
HoORAYsy and HOORAYs, we set « = 0.01, A, = 0.1, and A, = 0.1
(Av = 0.5 for Google Play), where « is the learning rate. Since A4 is
more sensitive to data, we set Ay = 0.01 on Google Play and Movie-
Lens data sets, A; = 0.1 on Lastfm data, and A5 = 5 on Delicious
data.

For all the four data sets, we randomly select 75% of the user
feedback as training data, the use the remaining data as test set.

4.1.4  Reproducibility of experiments. All the datasets are pub-
licly available. All the parameter settings are stated in the previous
subsection. We will release the code of the proposed algorithm
through the first author’s website” upon the publication of the

paper.

4.2 Evaluation Results

Here, we present the experimental results.

“http://moon.nju.edu.cn/people/jingweixu/



KDD 2017 Research Paper

Table 2: The comparisons of RMSE results on Google Play
and MovieLens data. The proposed methods (HoORAYs, and
HoORAYs) outperform the compared methods.

Data set PMF CTR | HoORAYsy | HOORAYs
Google Play || 1.2958 | 1.2842 1.2747 1.2733
MovieLens 0.7764 | 0.7724 0.7645 0.7620

Table 3: The comparisons of MAE results on for Google Play
and MovieLens data. The proposed methods (HoORAYs; and
HoORAYs) outperform the compared methods.

Data set PMF CTR | HoORAYsy | HOORAYs
Google Play || 1.0132 | 0.9997 0.9855 0.9827
MovieLens 0.5977 | 0.5952 0.5814 0.5808
03
0285 orm

—a-HoORaYs
-o-HoORaYs

{;—HOORaVsO
-o-HoORaYs |

10 20 30 40 50

20 30 40 50

(a) Lastfm data (b) Delicious data

Figure 3: The comparisons of Recall@N results on lastfm
and Delicious data.The proposed methods outperform the
compared methods on both data sets.

Explicit user feedback. We first show the performance of the
proposed methods for explicit feedback. Table 2 and Table 3 show
the results on Google Play and MovieLens with RMSE and MAE,
respectively.

We can first observe from the tables that, the proposed HOORAYs,
and HOORAYs significantly outperform PMF and CTR in terms of
both RMSE and MAE. For example, in Table 2, HOORAYs achieves
0.85% and 1.35% improvement over the best competitor (CTR) wrt
RMSE on Google Play and MovieLens, respectively. As for the MAE
metric in Table. 3, HOORAYs outperforms the best competitor (CTR)
by 1.70% v.s. 2.42% on Google Play and MovieLens, respectively.

Second, we can see that HOORAYs, also outperforms CTR on
both data sets, although CTR considers content information while
HoORAYs does not. This indicates the importance of using high-
order distance during the optimization process.

Third, the performance on the MovieLens data is better than that
on the Google Play data. This is due to the fact that the Google Play
data is much sparser than the MovieLens data (0.02% sparsity on
Google Play and 3.97% sparsity on MovieLens).

Overall, the above results indicate that the proposed methods are
more accurate than the compared methods for the case of explicit
feedback, and that the high-order rating distance plays an important
role for improving the prediction accuracy of recommendation.

531

KDD’17, August 13-17, 2017, Halifax, NS, Canada

Table 4: The comparisons of AUC results on Lastfm and
Delicious data. The proposed methods (HoORAYs; and
HoORAYs) outperform the compared methods on both data
sets.

Dataset || PMF | CTR | BPR | HOORAYsy | HOORAYs
Lastfm 0.880 | 0.897 | 0.896 0.905 0.905
Delicious || 0.644 | 0.657 | 0.655 0.663 0.667
15 - 140
145 —r g‘zo
100
w 14 é 80
= E
T35 g e
AN 2 4
—— 20

0
10 20 30 40 50 60 70 80 90 100
Percentage of ratings in training set

5 10 15 20 25 0 35
iterations

(a) Efficiency evaluation on Google Play

data, x-axis is #iterations and y-axis is

RMSE.

(b) Scalability evaluation on Google Play
data, x-axis is time cost and y-axis is rat-
ings used for training.

Figure 4: Efficiency and scalability evaluation on Google Play
data.

Implicit user feedback. Next, we present the results of the
proposed methods for the implicit feedback case. We compare the
proposed methods with PMF, CTR, and BPR, and show the results
in Fig. 3 and Table 4.

In Fig. 3, we show the Recall results with top N from 10 to 50 with
fixed step 5. As we can see, the two proposed methods HOORAYsg
and HOORAYs significantly outperform the compared methods
in all cases on both Lastfm and Delicious data. In Fig. 3(a), both
HoORAYsy and HOORAYs are consistently better than the best
competitors on Lastfm with 7% improvement on average. In Fig. 3(b),
the proposed methods outperform the compared methods especially
when number of N is small. For example, when N is 15, HOORAYs,
and HOORAYs achieve 21.7% and 24.3% improvement over the best
competitor. Overall, the proposed methods outperform the best
competitors with averagely 12.6% improvement in this series of
evaluation.

Similar results are observed in Table 4 which shows the AUC
scores. Specially, we can observe that HOORAYs( outperforms the
BPR method. This again indicates the usefulness of the proposed
high-order distance minimization as BPR uses an AUC-like opti-
mization target. We also notice that the results on Lastfm is better
than that on Delicious. Again, this is due to the data sparsity (0.08%
sparsity on Delicious v.s. 0.28% sparsity on Lastfm).

Together with the results in Table 2, Table 3, Table 4, and Fig. 3,
we can conclude that the proposed methods outperform the com-
pared methods in both explicit feedback case and implicit feedback
case. Moreover, the proposed methods can outperform the com-
pared methods even when the content information is unavailable.

Efficiency and Scalability. Next, we present the results of the
proposed methods in terms of efficiency and scalability. All the
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(a) The effects of A, and A, (b) The effects of A4

Figure 5: The effects of A,, 1y, and A; of the proposed
HoORAYs with Recall@50 on Lastfm data.
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(a) The effects of A, and A, (b) The effects of A4

Figure 6: The effects of 1,, 1y, and A; of the proposed
HoORAYs with Recall@50 on Delicious data.
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(a) The effects of A, and A, (b) The effects of A4

Figure 7: The effects of A,, 1y, and A; of the proposed
HoORAYs on MovieLens data.

experiments are run on a Macbook Pro. The machine has four
2.5GHz Intel i7 Cores and 16 GB memory.

In Fig 4(a), we show the efficiency of HOORAYs on Google
Play data. Compared to MF and CTR, the RMSE of the proposed
HoORAYs decreases faster than that of the other two methods. Es-
pecially after 13th iteration, HOORAYsS still keeps high gradient
descent ratio, and the RMSE value reaches the bottom as fast as MF
and CTR do. Compared to MF and CTR, the proposed model reveals
the equivalent ability in terms of efficiency in practice. Fig 4(b)
presents the scalability evaluation for HOORAYs on Google Play
data. We plot the wall-clock time of each iteration with different
number of ratings in training set. As we can see from the figures,
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Figure 8: The effects of 1,, 1y, and 1; of the proposed
HoORAYs on Google Play data.
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Figure 9: The effects of the latent vector dimension K of
the proposed HOORAYs with Recall on Lastfm and Delicious
data sets.

our proposed HOORAYs scales linearly when number of ratings
increases.

Study of Parameters. Finally, we conduct a parameter study
of the proposed methods. We first study the parameters of 1, A4,
and ;. We use Recall@50 as an example, and plot the results on
Lastfm and Delicious data in Fig. 5 and Fig. 6, respectively. As we
can see from the figures, HOORAYs can achieve best performance
when A, = A, = 0.1 for both data sets. As for 1;, HOORAYs is
sensitive to this parameter, and it achieves the best performance
with different A, for different data sets. In practice, we suggest to
set Ay, = Ay = 0.1 by default, and tune the A; parameter when
using the proposed models. For the effects of parameters on data
set with explicit feedback, we study the parameters of 1, A, and
Aq on MovieLens and Google Play data, and the results are plotted
In Fig. 7 and Fig. 8. For MovieLens data, HOORAYs have the best
performance when A, = A, = 0.1 in Fig 7(a). As for A in Fig 7(b),
HoORAYs can achieve good performance when 1; < 0.05. As a
result, we select A; = 0.01 in our evaluation. As we can see from
Fig. 8(a), HOORAYSs can achieve best performance when 1, = 0.1
and A, = 0.5. For A, we can find the similar results in Fig. 8(b) to
the results on MovieLens data. In practice, we select 15 = 0.01 for
the evaluation.

Another parameter of the proposed method is the latent vec-
tor’s dimension K. Fig. 9 presents the effects of K with Recall@N
on Lastfm and Delicious data. We vary the size of K with K =
10, 20, 50, 100, 150, 200. In general, as shown in Fig. 9(a) and Fig. 9(b),
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a larger K usually brings better performance before it overfits the
data set. Fig. 9(a) shows the performance with different K selection
on Lastfm data. We can also observe from the figures that, the Recall
performance improves significantly when we increase K from 10
to 100, and the improvement becomes minor when K is larger than
100. In practice, we suggest to set K between 100 and 200 for the
proposed HOORAYs.

5 RELATED WORK

In this section, we briefly review some related work.

Collaborative filtering approaches with user feedback as input
have been widely used in recommender systems [7, 10, 11, 14]. For
example, matrix factorization methods [11, 14] take ratings as input,
and learn the latent vectors of users and items for recommenda-
tion. To improve recommendation accuracy, side information is
also widely explored. For example, Wang et al. [20] and McAuley
and Leskovec [13] incorporate content information; Ma et al. [12]
and Tang et al. [19] incorporate social relationships; Chen et al. [2]
and Purushotham et al. [17] consider both content and social infor-
mation.

While many recommendation algorithms are designed for ex-
plicit user feedback, several researchers put their focus on case
of implicit user feedback. For example, Rendle et al. [18] propose
Bayesian personalized ranking to optimize the rankings instead
of ratings. Formulating the problem as one-class collaborative
filtering, traditional approaches are also adapted for implicit feed-
back [8, 15, 16], and side information is also considered in this
one-class setting [23, 24].

Different from and orthogonal to most of the existing recom-
mendation methods, we propose a new regularized optimization
problem by involving high-order rating distance as the constraint
for shrinking the solution space. By reducing the variance, the bet-
ter recommendation accuracy could be reached. Similar strategies
are also explored in some related problems. For example, Rendle
et al. [18] and Kabbur et al. [9] propose an AUC-like optimization
function. Our high-order optimization problem is different from the
AUC-like optimization as we use the other existing ratings to shrink
the solution space while AUC focuses on the order of observed-
unobserved examples; additionally, we have experimentally shown
that the proposed method outperforms BPR with same input. This
work generalizes the rating comparison strategy [21, 22], which
can be viewed as a second-order rating distance, primarily designed
for the cold-start case. Moreover, it also justifies the rationality
behind the higher-order rating distance from two complementary
perspectives (the geometric vs. Bayesian interpretations).

6 CONCLUSION

In this paper, we have proposed a high-order optimization of rating
distance for recommender systems HOORAYs to further reduce the
solution space of latent vectors for users and items. The proposed
HoORAYs model used second-order rating distance as the constraint
to the optimization problem. HOORAYs can be applied for both
explicit and implicit user feedback. We presented a geometric
interpretation to show how HOORAYs helps reduce the variance of
the estimated latent factors. Based on the Bayesian interpretation,
we further explained the HOORAYs from the generative model
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perspective. By connecting to CTR rating model, our HOORAYS can
naturally handle the case when content information is available.
The experimental evaluations on four real-world data sets show that
the proposed method consistently outperforms the state-of-the-art
methods in terms of prediction accuracy.
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