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ABSTRACT
Attributed subgraph matching is a powerful tool for explorative
mining of large attributed networks. In many applications (e.g., net-
work science of teams, intelligence analysis, �nance informatics),
the user might not know what exactly s/he is looking for, and thus
require the user to constantly revise the initial query graph based
on what s/he �nds from the current matching results. A major bot-
tleneck in such an interactive matching scenario is the e�ciency,
as simply rerunning the matching algorithm on the revised query
graph is computationally prohibitive. In this paper, we propose
a family of e�ective and e�cient algorithms (FIRST) to support
interactive attributed subgraph matching. There are two key ideas
behind the proposed methods. The �rst is to recast the attributed
subgraph matching problem as a cross-network node similarity
problem, whose major computation lies in solving a Sylvester equa-
tion for the query graph and the underlying data graph. The second
key idea is to explore the smoothness between the initial and re-
vised queries, which allows us to solve the new/updated Sylvester
equation incrementally, without re-solving it from scratch. Exper-
imental results show that our method can achieve (1) up to 16×
speed-up when applying on networks with 6M+ nodes; (2) preserv-
ing more than 90% accuracy compared with existing methods; and
(3) scales linearly with respect to the size of the data graph.

KEYWORDS
Interactive attributed subgraph matching; cross-network similarity;
Inexact matching

1 INTRODUCTION
Many real networks often accompany with rich node and/or edge
attribute, including the demographic information for users on a
social network (i.e., node attribute), the transaction types on a �nan-
cial transaction network (i.e., edge attribute), the expertise of team
members as well as the communication channels between them
on a collaboration network (i.e., both node and edge attributes).
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Attribute subgraph matching [21, 27] is the key for many explo-
rative mining tasks, i.e., to help identify user-speci�c patterns from
such attributed networks, and has become an integral part of some
emergent visual graph analytic platforms [6]. To name a few, in
network science of teams, attributed subgraph matching is the
cornerstone to help form a team of experts with desired skills of
each member as well as the communication pattern between team
members (i.e., example-based team formation) [15, 16]; in �nance
informatics, it is a powerful tool to identify suspicious transaction
patterns (e.g., money laundry ring) [27]; in intelligence analysis and
law enforcement, it can help end-analyst generate valuable leads
(e.g., a suspicious terror plot, the master-criminal mind, etc.)[26].

Despite that tremendous progress has been made (See Section 5
for a review), most, if not all, of the existing attributed subgraph
matching algorithms requires the user accurately knows what s/he
is looking for, in other words, to provide an accurate query graph.
However, in some application scenarios, the end-user might only
have a vague idea on her search intent at the beginning and thus
needs to constantly revise and re�ne her initial query graph. Fig-
ure 1 represents an illustrative example of such interactive matching
process.

On the left side of Figure 1 is the input data (attributed) data
network1, and on the right side we illustrate a procedure of team
formation in an interactive style. Let us assume skill A to skill
D stands for programming, databases, machine learning and vi-

sualization, respectively, and the edge attribute 1 to 3 represents
three di�erent communication approaches. We have the follow-
ing interactive matching process. (1) At the beginning, the user
only knows s/he wants to form a team of size 3, with two skills
(e.g., programming and machine learning) and the team should
be led by the machine learning expert, and therefore s/he issues a
line query (Q1). (2) After the user sees the initial matching graph
(M1), s/he realizes that the project only needs one programmer;
but in the meanwhile it requires another expert in databases and
better communication between all the team members. Therefore,
s/he issues a revised clique query (Q2). (3) After seeing the corre-
sponding updated matching subgraph (M2), s/he decides to expand
the team size by adding an additional expert in data visualization
to help databases expert. Thus, s/he expands the previous query
graph by adding an additional link and node (Q3). (4) After s/he
sees the updated matching result (M3), s/he �nds that having too
many communications (i.e., over-communications) between the
team members might hurt the team productivity. Thus, s/he revises
the query graph again (Q4), to keep only vital communications

1In this paper, we use the terms ‘graph’ and ‘network’ interchangeably.
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Figure 1: An illustrative example of interactive attributed subgraph matching. Best viewed in color.

between the key team members. Finally the user �nds the ideal
team (M4).

In such an interactive setting, a major bottleneck is the compu-
tational e�ciency. This is because simply re-running the matching
algorithms on the revised query graph from scratch might be com-
putationally too costly as such algorithms require either building an
index of the underlying data graph (e.g., [25]) or a costly iterative
process during the query stage (e.g., [21, 27]).

To address these limitations, we propose a family of e�ective
and e�cient algorithms (FIRST) to support interactive attributed
subgraph matching scenario. There are two key ideas behind the
proposed methods. The �rst is to recast the attributed subgraph
matching problem as a cross-network node similarity problem. This
formulation allows us to simultaneously encode topology consis-
tency and attribute consistency in a coherent optimization problem,
whose major computation lies in solving a Sylvester equation for
the query and the underlying data graph [29]. The second key
idea is to explore the smoothness between the initial and revised
queries, which means that the revised query can often be viewed
as a perturbed version of the previous query graph. For example
in Figure 1, the third query graph (Q3) can be viewed as perturbed
version of the second query (Q2) with an additional node with one
additional link. It turns out this observation enable us to solve the
new/updated Sylvester equation incrementally, without re-solving
it from scratch. The proposed FIRST algorithms enjoy a linear time
complexity with respect to the input data network size. We conduct
extensive experiments on real-world datasets, which show that the
proposed method leads to up to 16× speed-up with more than 90%
accuracy.

The rest of paper is organized as follows. Section 2 formulates
the problem of interactive attributed subgraph matching. Section 3
presents our proposed FIRST algorithms. Section 4 presents the
experimental results on real-world datasets. We review the related
work in Section 5 and conclude the paper in section 6.

2 PROBLEM DEFINITION
Table 1 summarizes the main symbols and notation used throughout
the paper. We use bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., s), and lowercase letters (e.g.,
α ) for scalars. We use the calligraphic letter G to represent an
attributed network, i.e., G = (A,NA,EA), where A is the adjacency
matrix, NA and EA are the node and edge attribute matrices of G,
respectively. We use the subscript q to denote the corresponding
notations for the query graph (i.e., Q = (Aq ,Nq ,Eq )), and ˜ to
denote the corresponding notation after the user modi�es the initial
query (i.e., Q̃ = (Ãq , Ñq , Ẽq ) is the revised query graph). Likewise,
the initial and updated similarity matrix are denoted by s and s̃.
The initial matching subgraph and the updated matching subgraph
are denoted byM and M̃ respectively. Additionally, We use ˆ to
denote the approximate version of vectors or matrices in this paper
(e.g., ŝ, Ŵsym , etc.).

The node attribute matrix of input networks N is de�ned as
N =

∑K
p=1 Np

A ⊗ Np
q where K is the number of distinct node labels.

Np
A and Np

q are diagonal matrices in which Np
A(a,a) = 1 if the

node a in network G has node attribute k and otherwise it is equal
to 0. The edge attribute matrix of input networks E is de�ned as
E =

∑L
l=1 ElA ⊗ Elq where L is the number of distinct edge labels.

ElA and Elq are n × n and k × k matrices respectively. ElA(a,b) = 1 if
the edge (a,b) in network G has edge attribute l and otherwise it is
equal to 0. For example, for the initial query graph (Q1) in Fig. 1, we
have N1

q(1, 1) = 1, N2
q(1, 1) = 0, E1q(1, 2) = 1 and E2q(1, 2) = 0, etc.

For the revised query graph, we have E1q(2, 3) = 1 and N3
q(3, 3) = 1,

etc.
With these notations, the interactive attributed subgraph match-

ing problem can be formally de�ned as:

Problem 1. Interactive Attribute Subgraph Matching.

Given: (1) an undirected attributed network G, (2) an undirected

initial query graph Q, (3) the initial matching subgraphM, (4) the
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revised query graph Q̃;
Output: the updated matching subgraph M̃.

For the team formation example in Figure 1, between stage-1 and
stage-2, the line query (Q1) and the clique query (Q2) are the initial
and the revised query graphs, respectively; and M1 and M2 are the
corresponding initial and revised matching subgraph, respectively.
Between stage-2 and stage-3, the clique query (Q2) will be treated
as the initial query graph, and Q3 becomes the new revised query
graph, so on and so forth.

Table 1: Symbols and De�nition
Symbols De�nition
G = {A,N,E} an attributed network
Q, Q̃ initial and revised query network
M, M̃ initial and updated matching subgraph
A, Aq the adjacency matrix of the attributed data network and query graph

NA/Nq, EA/Eq the node and edge attribute matrix of the network/query graph
n, k # of nodes in G and Q

m1,m2 # of edges in G and Q
P ,L # of the node and edge labels
a,b node/edge indices of G
x ,y node/edge indices of Q
p, l node/edge label indices
I an identity matrix
H k × n prior alignment preference
S k × n similarity matrix
r , t reduced ranks
α the parameter, 0 < α < 1

s = vec(S) vectorize a matrix S in column order
Q = mat(q,n2,n1) reshape vector q into an n2 × n1 matrix in column order

Wsym symmetrically normalize matrix W
D = diag(d) diagonalize a vector d

⊗ Kronecker product
� element-wise matrix product

abs() absolute value
‖ · ‖F Frobenius norm
and() AND operation

3 FAST INTERACTIVE ALGORITHMS
In this section, we �rst review an existing network alignment algo-
rithm, which provides the base for our proposed algorithm. Then,
we present our algorithms (FIRST) in di�erent scenarios, e.g., re-
vising the topology/node attributes/edge attributes in the query
graph, whether the input data network has both node and edge
attributes, etc.

3.1 Preliminaries
Generally speaking, in attributed subgraph matching, we want to
�nd a subgraph from the input data network G that maximizes
some "goodness" function with regard to the query graph Q [27]
. Here, our idea is to recast it as a cross-network node similarity
problem. To be speci�c, let S be a k ×n non-negative cross-network
node-similarity matrix, where S(i, j) measures the cross-network
similarity between the ith query node in Q and the jth node in G
(i.e., to what extent the jth node in G matches the ith query node).

In order to �nd the cross-network node similarity matrix S, we
adopt a recent network alignment algorithm [29], which naturally
encodes both the topological and attribute consistency between
two networks (the data network and the query graph in our setting)
in the following Sylvester equation (please refer to [29] for the full
details).

s = αWsyms + (1 − α)h (1)

where s = vec(S), h = vec(H) and H is a k × n matrix of prior
similarity knowledge. Wsym = D−1/2WD−1/2 is the symmetrical
normalization of W and W can take three possible forms according
to the availability of the attribute information in the networks [29],
including

(i) Wsym = A ⊗ Aq: if only adjacency matrix is available;
(ii) Wsym = N(A ⊗ Aq)N: if the adjacency matrix and node

attributes are available but edge attributes are missing;
(iii) Wsym = N[E � (A ⊗ Aq)]N: if the adjacency matrix, node

and edge attributes are all available.
And D is the diagonal degree matrix of W. For example, if both
node and edge attributes are available (Wsym being type (iii)), D is
computed by:

D = diag(
K∑

k,k′=1

L∑
l=1
(Nk

A(E
l
A � A)Nk′

A 1) ⊗ (Nk
q (Elq � Aq )Nk′

q 1)) (2)

where K and L are the number of di�erent node and edge labels
respectively.

The solution of Eq. (1) can be obtained by either an iterative
procedure or a closed-form formula. And the closed-form solution
can be further approximated (and sped up) by using low-rank ap-
proximation on the two input networks. However, none of these
solutions is applicable in the interactive setting. This is because: (1)
for the iterative solution, each iteration requires O(min(km1,nm2)
time complexity and it might take many iterations to compute the
similarity matrix S only for the initial query network, let alone for
the interactively updated query networks, and (2) for the closed-
form solution, its O(n3k3) time complexity, or even its approxi-
mate solution, is still computationally too costly if user frequently
changes the queries.

The common key ideas behind our upcoming proposed algorithm
FIRST are that: (1) we recast the attributed subgraph matching prob-
lem as a cross-network node similarity problem (i.e., to compute the
matrix S in Eq. (1)), and (2) by exploring the smoothness between
the initial query and updated queries, we can solve the Sylvester
equation incrementally. In our paper, we assume that the data net-
work G and the prior preference H remain unchanged during the
interactive process. In practice, the size of the query network is
often much smaller than that of the data network, i.e. k � n.

3.2 Handling Node Attribute
In this subsection we consider the scenario in which node attribute
is available but edge attribute is missing in both network and query
graph. We discuss two cases: (A) only revising the topology of the
query graph and (B) only revising node attribute of the query graph.
First we present Algorithm 1 to solve the case where only topology
is changed.
A - Topology Change. Based on our problem formulation and
assumptions, in the interactive scenario the updated similarity
vector s̃ after query modi�cation can be expressed as follows:

s̃ = (1 − α)(I − αW̃sym )−1h (3)

where W̃sym = D−1/2N(A ⊗ Aq)ND−1/2. Since only the topology
of the updated query di�ers from initial query, the node attribute
information N will not contribute to s̃.
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Since many real-world networks are observed to have a low-
rank structure, we can leverage this characteristics to obtain a
good approximation of the similarity matrix. Here, we de�ne the
approximate similarity matrix as follows:

Definition 1. (APPROXIMATE SIMILARITY VECTOR)

Given a similarity vector s = (1−α)(I−αWsym )−1h, its approximate

similarity vector ŝ is given by

ŝ = (1 − α)(I − αŴsym )−1h

where Ŵsym
is a low rank approximation of Wsym

.

Since the adjacency matrices A and Aq are both symmetric, we
can apply rank-r eigenvalue decomposition (EVD) on A and Aq.
An additional advantage of using EVD is that we can reduce the
space complexity by only storing the low-rank matrices instead
of the whole adjacency matrices. The algorithm is summarized in
Algorithm 1.

Algorithm 1 FIRST-Q
Input: the attributed data network G = {A, NA },

1: the initial and revised query network Q = {Aq, Nq }, Q̃ = {Ãq, Ñq },
2: the alignment preference matrix H,
3: parameter α .

Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:

5: UAΛAUT
A ← A; //top r eigenvalue decomposition

6: UQΛQUT
Q ← Aq ; //top t eigenvalue decomposition

7: Store UA, ΛA;
8: Interactive Stage:

9: UQΛQUT
Q ← Ãq; //top t eigenvalue decomposition

10: Compute node attribute matrix of input networks N and diagonal degree
matrix D; Construct P = D−

1
2 N, D1 = P−1P−1;

11: L← UA ⊗ UQ;
12: R← UT

A ⊗ UT
Q;

13: Λ← ΛA ⊗ ΛQ;
14: s̃ = (1 − α )P−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P−1h;

15: S̃ =mat (ŝ, n, k ); //reshape similarity vector

From the fourth line to seventh line are the precomputing stage.
The top r eigenvalue decomposition of A and the top t eigenvalue
decomposition of Aq are calculated. UA and ΛA are stored. In the
interactive stage, only the top t eigenvalue decomposition of Ãq is
calculated. Then S̃ is computed from line 10 to line 15. The proof
of correctness of FIRST-Q is presented as follows:

Theorem 3.1 (Correctness of FIRST-Q). The Algorithm 1 (FIRST-

Q) gives the approximate similarity vector by De�nition 1: s̃ = ŝ .

Proof According to De�nition 1,

ŝ = (1 − α)[I − αP1(Â ⊗ Âq)P1]−1h

= (1 − α)P1
−1[D1 − α(Â ⊗ Âq)]−1P1

−1h
(4)

in which P1 = D̃−
1
2 N = ND̃−

1
2 , D1 = P1

−1P1
−1. Let UAΛAUT

A
be top r eigenvalue decomposition of A and UQΛQUT

Q be top t

eigenvalue decomposition of Aq . Then in the interactive stage,

Ŵsym can be written as:

Ŵsym = D̃−
1
2 N[(UAΛAUT

A) ⊗ (UQΛQUT
Q)]ND̃−

1
2

= D̃−
1
2 N[(UA ⊗ UQ)(ΛA ⊗ ΛQ)(UT

A ⊗ UT
Q)]ND̃−

1
2

(5)

Let L = UA ⊗ UQ, R = UT
A ⊗ UT

Q, Λ = ΛA ⊗ ΛQ. According to
equation 4 and the de�nition of ŝ,

ŝ = (1 − α)(I − αP1LΛRP1)−1h

= (1 − α)P1
−1(D1 − αLΛR)−1P1

−1h

= (1 − α)P1
−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P1

−1h

(6)

where the third equality comes from the Sherman-Morrison Lemma [20].
Hence the correctness of FIRST-Q is proved. �

It is worth pointing out that if the node attribute information is
also missing, which means that Wsym takes the form of type (i),
the algorithm also works by setting N to be identity matrix I. The
proof is almost identical to the proof above.
B - Node Attribute Change. Here, we provide an algorithm
(FIRST-N) for the scenario where only node attribute of the query
graph is revised during user’s interactive query process. Again, the
edge attribute is not available in this scenario (i.e., no E and Eq).
The algorithm is summarized in Algorithm 2.

Algorithm 2 FIRST-N
Input: the attributed data network at time step 1 G = {A, NA },

1: the initial and revised query network Q = {Aq, Nq }, Q̃ = {Ãq, Ñq },
2: the alignment preference matrix H,
3: parameter α .

Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:

5: UAΛAUT
A ← A; //top r eigenvalue decomposition;

6: UQΛQUT
Q ← Aq ; //top t eigenvalue decomposition;

7: L← UA ⊗ UQ;
8: R← UT

A ⊗ UT
Q;

9: Λ← ΛA ⊗ ΛQ;
10: Store L, R, Λ;
11: Interactive Stage:

12: Compute node attribute matrix of input matrix N and diagonal degree
matrix D with Ñq , A and Ãq ; Compute P = D−

1
2 Ñq ;

13: Compute D1 = P−1P−1;
14: s̃ = (1 − α )P−1[D1

−1 + αD1
−1L(Λ−1 − αRD1

−1L)−1RD1
−1]P−1h;

15: S̃ =mat (ŝ, n, k ); //reshape similarity vector

In the precomputing stage, the algorithm calculates and stores L,
R and Λ, while in the interactive stage the algorithm can directly
construct P. S̃ is calculated from line 12 to line 15.

From the algorithm, we can notice that the eigenvalue decompo-
sition of adjacency matrix A and Aq , the construction of matrices
L, R and Λ can be precomputed at initial step, thus further speed
up this algorithm, compared with Algorithm 1. The proof of the
correctness of Algorithm 2 is similar to the proof of Algorithm 1
and is omitted for space.

3.3 Handling Edge Attribute
In this subsection, we discuss the interactive scenario where both
node and edge attribute are available. Note that in this case the
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query can be revised in multiple ways (e.g., only revising network
topology/node attribute/edge attribute vs simultaneously revising
network topology as well as attributes, etc.). In our proposed al-
gorithm (FIRST-E), we consider the general case where network
topology, node and edge attributes are all revised simultaneously
during one interactive stage. The rest of the ways to revise the
query graph are special cases, and thus can also be supported by
our approach. The algorithm is presented in Algorithm 3.

Algorithm 3 FIRST-E
Input: the attributed network at time step 1 G = {A, NA, EA },

1: the initial and revised query network Q = {Aq, Nq, Eq }, Q̃ =

{Ãq, Ñq, Ẽq }
2: the alignment preference matrix H,
3: parameter α , index of changed edge attribute l′ (optional).

Output: Approx. updated similarity matrix S̃.
4: Precomputing Stage:

5: for each l ∈ [1, L] do
6: Ul

AΛl
A(U

l
A)

T ← El
A � A; //top r eigenvalue decomposition

7: Store Ul
A, Λl

A;
8: end for
9: if l′ is not empty then

10: for each k ∈ [1, L] do
11: Uk

qΛk
q(Uk

q)T ← Ek
q � Aq; //top t eigenvalue decomposition

12: Store Uk
q , Λk

q;
13: end for
14: end if
15: Interactive Stage:

16: Construct N and D from A, Ãq, NA, Ñq, EA, Ẽq;
17: for each l ∈ [1, L] (or each l ∈ l′ if l′ is not empty) do
18: Ul

qΛl
q(Ul

q)T ← El
q � Ãq; //top t eigenvalue decomposition

19: end for
20: Construct block matrix U = [V1, V2, . . . , VL], in which Vi = Ui

A ⊗ Ui
q

(i ∈ [1, L]), and block matrix Λ = diaд(Y1, Y2, . . . YL), in which
Yj = Λj

A ⊗ Λj
q (j ∈ [1, L]);

21: L← D−
1
2 NU;

22: R← UTND−
1
2 ;

23: s̃ = (1 − α )[I + αL(Λ−1 − αRL)−1R]h;
24: S̃ =mat (ŝ, n, k ); //reshape similarity vector

The precomputing stage is from line 4 to line 14 and the interac-
tive stage is from line 16 to line 24. In line 20, two block matrices
(U, Λ) are constructed. U is a 1 × L block matrix with each element
being Vi, while Λ is a L×L diagonal block matrix with each diagonal
element being Yj (i, j ∈ [1,L]).

As mentioned at the beginning of this subsection, the algorithm
still works in other ways to revise the query graph by setting Ãq ,
Ñq or Ẽq equal to their initial counterparts. Speci�cally, if only
certain edge attributes are changed, the algorithm could take an
optional parameter l′ (line 3) as the index of changed edge attribute,
otherwise l′ is set empty. In line 9, the top t eigenvalue decomposi-
tion of the element-wise product of the kth edge attribute matrix
Ek

q and network adjacency matrix A is computed, if l′ is not empty.
In the following interactive stage, the eigenvalue decomposition
can be only calculated on the element-wise product of the changed
edge attribute matrices (El

q) and Ãq (line 17 to 19), which further
speed up the interactive computing stage.

Theorem 3.2 (Correctness of FIRST-E). The Algorithm 3 (FIRST-

E) gives the approximate updated similarity vector by De�nition 1:

s̃ = ŝ.

Proof We know that W̃ takes the form of type C (which is
D−1/2N[E � (A ⊗ Aq)]ND−1/2). Then

W̃sym = D−
1
2 N[(

L∑
l=1

ElA ⊗ Elq ) � (A ⊗ Ãq)]ND−
1
2

= D−
1
2 N[

L∑
l=1
(ElA � A) ⊗ (Elq � Ãq)]ND−

1
2 (7)

Ŵsym = D−
1
2 N[

L∑
l=1
(Ul

AΛl
A(U

l
A)

T) ⊗ (Ul
qΛl

q(Ul
q)T)]ND−

1
2 (8)

= D−
1
2 N[

L∑
l=1
(Ul

A ⊗ Ul
q)(Λl

A ⊗ Λl
q)((Ul

A)
T ⊗ (Ul

q)T )]ND−
1
2

= D−
1
2 NUΛUTND−

1
2

where U and Λ are block matrices as described in line 20 of
Algorithm 3. From Equation 7 to Equation 8, the top r and top t
eigenvalue decomposition are taken as described in line 6 and line
18. The derivation from the second line to the third line in Equation
8 is based on the property of block matrix [19]. If l′ is not empty,
in the interactive stage,

Ŵsym = D−
1
2 N[

∑
l ∈l′
(Ul

AΛl
A(U

l
A)

T) ⊗ (Ul
qΛl

q(Ul
q)T)

+
∑
l<l′
(Ul

AΛl
A(U

l
A)

T) ⊗ (Ul
qΛl

q(Ul
q)T)]ND−

1
2 (9)

where the eigen-decomposed term that is not in the index l′ (in the
second line of equation 9) is calculated in the precomputing stage
(line 6). Still, equation 9 is equal to equation 8. Let L = D−1/2NU,
R = UTND−1/2. Then ŝ is given as:

ŝ = (1 − α)(I − αŴ)−1h

= (1 − α)(I − αLΛR)−1h

= (1 − α)[I + αL(Λ−1 − αRL)−1R]h
The last line comes from Sherman-Morrison Lemma [20]. Hence

we have proved that s̃ = ŝ and FIRST-E gives the approximate
updated similarity vector. �

3.4 Implementation Details
In this section, we present implementation details of our method
to transform the similarity matrix to one or more matching sub-
graphs. After either FIRST-Q, FIRST-N or FIRST-E is called, the
returned similarity matrix S̃ should be transfered into updated
matching subgraph M̃. We start by introducing indicator matrix X
and “goodness" function.

Let X be a k ×n binary match indicator matrix, where X(i, j) = 1
means that the ith query node in Q matches the jth node in G; and
X(i, j) = 0 otherwise. It can be seen that each row of X has only
one entry to be 1 and each column of X has at most one entry to be
1. The match indicator matrix X induces the matching subgraphs,
i.e., the matching subgraph are the induced subgraph of G whose
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corresponding columns in X are not empty. The match indicator
matrix X can be found through the following “goodness" function 2.

д(X ) = −‖ XAX′ − Aq ‖2F + a · trace(SX′) − b · ‖ XX′ − I ‖2F
where a and b are parameters that balance the weight of each

term.
The idea behind the goodness function to calculate X (k ×n) that

best embodies both the rankings in the pair-wise similarity matrix
(the second term) and the original connectivity consistency (the
�rst term of the network. In our proposed method, we �rst drive the
index matrix T, which gives the node pairs that should be connected
in the resulting matching subgraph; then convert all connected sub-
graphs to “super nodes" (i.e., connected node sets); and �nally �nd
the bridges between the corresponding super nodes. The proposed
procedure to �nd matching subgraph is summarized in Algorithm 4.

Algorithm 4 Sim2Sub
Input: Indicator Matrix X (k ×n), the data network G, revised query graph
Q̃.

Output: The updated matching subgraph M̃
1: T = X′AqX− and(A, X′AqX); //index matrix of nodes in subgraph that

should be connected;
2: Construct index I of connected nodes from and (A, X′AqX);
3: for each connected node set C in I do
4: Construct "super node" C′;
5: end for
6: Update the data network G;
7: for each unconnected "super node" pair (C′1, C′2) from T do
8: Connect (C′1, C′2) by the shortest path;
9: end for

10: return M̃;

Since the counterpart of the query graph can be found in the
indicator matrix X, the connection among the counterparts should
be decided. In line 1 and 2, the algorithm �nds the indices of nodes
that are directly connected and not connected in the original data
network G. From line 3 to line 10, the algorithm constructs super
nodes and �nd shortest paths as bridges among counterparts that
should be connected. The method generates one subgraph from one
indicator matrix X. If multiple results (e.g., t results) are required,
then t indicator matrices which have top t largest “goodness" values
will be constructed as described in Section 3.1.

3.5 Complexity Analysis
In this section we give the complexity analysis of the proposed
algorithms (i.e., FIRST-Q, FIRST-N and FIRST-E).

Lemma 3.3. Complexity of FIRST-Q & FIRST-N. The time com-

plexity of Algorithm 1 and Algorithm 2 is O(r2t2kn + rtkn + K2kn),
and its space complexity isO(k2rn+m1). Here, n and k are the orders

of the number of nodes of the input data network and the query graph,

respectively; K denotes the number of unique node attributes, and r
and t are the rank of eigendecomposition;m1 is the number of edges

in attributed network G.
2In this paper, we use a local heuristic to �nd X from S by searching the top-l entries
in each row of S, where l is a small number (e.g., l = 3).

Proof Firstly, since the diagonal degree matrix D needs to be
updated, from equation 2, D is given as follows when edge attribute
is missing:

D = diag(
K∑

k,k′=1
(NkANk′1) ⊗

O (k2)︷          ︸︸          ︷
(Nk

qAqNk′
q 1)︸                               ︷︷                               ︸

O (k2)+O (nk )=O (nk ))

This is because k � n based on our assumption. Also note that
during the updating, A and N of the network G is unchanged. In
all, the complexity of updating D is O(K2kn). In the process of
computing s̃,

s̃ = (1 − α )P−1[D1
−1 + αD1

−1L

O (r 2t 2kn)+O (r 3)=O (r 2t 2kn)︷                    ︸︸                    ︷
(Λ−1 − αRD1

−1L)−1 RD1
−1]P−1h︸                                                                                       ︷︷                                                                                       ︸

O (r 2t 2kn)+O (r tkn)

Secondly, when computing the above multiplication in backward
way in order to make use of the linear complexity property of vector
multiplication, the complexity can achieveO(r2t2kn)+O(rtkn). The
time for the rest of the computation in the algorithm is smaller,
and thus can be ignored in the big-O notation. Overall, the time
complexity of FIRST-Q is O(r2t2kn + rtkn + K2kn).

The proof of space complexity is omitted for space. �
Lemma 3.4. Complexity of FIRST-E. The time complexity of

Algorithm 3 isO(r2t2kn + Lrtkn +K2Lkn), and its space complexity

isO(Lrtkn+m1). Here, n and k are the orders of the number of nodes

of the input network and query graph, respectively; K , L denotes

the number of unique node and edge attributes, respectively and r ,
t are the rank of eigendecomposition;m1 is the number of edges in

attributed network G.
Proof When N and E are both available, in the process of

updating diagonal degree matrix D:

D = diag(
K∑

k,k′=1

L∑
l=1
(Nk (El � A)Nk′1) ⊗

O (k2)︷                     ︸︸                     ︷
(Nk

q (Elq � Aq )Nk′
q 1)︸                                                                 ︷︷                                                                 ︸

O (K 2Lkn)

)

s̃ = (1 − α )[I + αL

O (Lr tkn)+O (L3r 3t 3)+O (r 2t 2kn)︷             ︸︸             ︷
(Λ−1 − αRL)−1 R]h︸                                                              ︷︷                                                              ︸

O (r 2t 2kn+Lr tkn)

As we see from the above equations with the heaviest computation
in the algorithm, the time complexity of FIRST-E is O(r2t2kn +
Lrtkn + K2Lkn). The complexity of the rest of the computation in
the algorithm can be reasonably ignored.

The proof of space complexity is omitted for space. �

4 EXPERIMENTAL RESULTS
In this section, we present the experimental results and analysis of
our proposed algorithms. The experiments are designed to answer
the following questions:

(1) E�ectiveness How e�ective are our proposed subgraph
generating algorithms compared to other algorithms when
di�erent structures of queries are sent as inputs?

(2) E�ciency How fast are our proposed algorithms com-
pared to other techniques when they are applied on di�er-
ent size of real networks? How do our algorithms scale?
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4.1 Experimental Setup
Datasets. We use �ve di�erent real-world datasets in our experi-
ments, summarized in Table 2.

Table 2: Datasets Used in Evaluations
Name # of Nodes # of Edges Node/Edge Attribute
DBLP 9,143 16,338 Node attribute only
Flickr 12,974 16,149 Node attribute only
LastFm 136,421 1,685,524 Node attribute only
ArnetMiner 1,274,360 4,756,194 Node & edge attribute
LinkedIn 6,726,290 19,360,690 Node attribute only

• DBLP: In the graph of DBLP each node represents an author
who published paper in popular Data Mining and Database
conferences and journals. Undirected edges represent co-
authorship and each author has one attribute vector of the
number of publications in 29 major conferences[22].

• Flickr: The graph of this dataset is the network of friends
on Flickr. Node attribute vector is transformed from users’
pro�le information [30].

• LastFm: This dataset contains the following relationships
of users on LastFm [30]. The node attribute vector is also
transformed from users’ pro�le information, such as age,
gender and location. It was collected in 2013.

• ArnetMiner: The graph in ArnetMiner dataset represents
the academic social network. Undirected edges represent
co-authorship and node attribute vector is extracted from
number of published papers[30].

• LinkedIn: The graph of LinkedIn dataset is from users’
connection relationship in the social network in LinkedIn.
The node attribute vector is transformed from users’ pro�le
information such as age, gender and occupation, etc.

Comparison Methods. We compare our proposed algorithms
with G-Ray [27], MAGE [21], FINAL together with its variants (e.g.,
FINAL-N, FINAL-N+, FINAL-NE) [29]. To be speci�c, according to
the two-phase nature of our method, we compare the similarity
matrix calculated by our method and FINAL and the subgraph with
G-Ray and MAGE. We also verify the e�ciency of our proposed
method on �ve real-world datasets and test the scalability.
Machine. The following experiments are tested on 64-bit Win-
dows Machine with 3.60 GHz CPU and 32.0 GB RAM. Programs
are implemented in MATLAB with single thread.

4.2 E�ectiveness
A - Matching Graph Comparison. We evaluate the e�ective-
ness of each of the two phases of the whole algorithm. First, we
show how well our algorithms can perform on computing the cross-
network node similarities. We de�ne the distance of two similarity
matrices computed by two di�erent methods. The distance is calcu-
lated as the Frobenius norm of the di�erence between two similarity
matrices: distance = ‖ S − S′ ‖F , where S is computed by FINAL-

N+ and S′ is computed by FIRST. The distance against the number
of query nodes indicate the closeness between the similarity matrix
returned from FIRST and FINAL-N+. As we observe from Figure 2,
as the number of query nodes increase, the distance can be lower
than 1.5×10−6, which indicates that the similarity results computed
by these two methods are quite close. Next we treat the similarity

matrix returned from FINAL-N+ as groundtruth and de�ne the pre-
cision and recall to evaluate how well our method approximates
FINAL-N+. First we sort both similarity matrix S and S′ and trun-
cate top k columns as retrieved results M. The precision and recall
are then calculated with regard to p (p ≤ k) selected columns. For
each row, if the entry in S’ of selected matrix is also in M, then
we consider it as relevant. From Figure 2, we can observe that the
precision tends to be high when the recall is low. Also the overall
tendency shows that a relatively small r leads to a high precision.

In the second phase, we test the e�ectiveness of our subgraph
generating algorithm against G-Ray and MAGE respectively. We de-
sign �ve typical query patterns and load them into three algorithms.
The performance of three algorithms are summarized in Table 4
and Table 5. We de�ne the terminology in the table as follows.

According to the summary, the patterns returned by G-Ray devi-
ate signi�cantly from the query pattern. The returned subgraph is
reasonable in several patterns such as E-star (%83.3 exact matching
nodes) and line (%50 exact matching nodes). For other patterns
like clique (FIRST %57.1 vs. G-Ray %25.0 exact matching nodes)
and loop (FIRST %71.4 vs. G-Ray %27.3 exact matching nodes),
our method performs better. Generally speaking, thanks to our
formulation that considers both the topology and pairwise node
similarity, when the inputs contain more diverse and complicate
patterns, the results returned by our method tends to have a better
balance on the subgraph structure and attribute matching. Overall,
our method also outperforms MAGE when edge attribute is taken
into consideration.

Table 3: Terminology De�nition in Table 4 & 5
Name De�nition
Extra Nodes Nodes in subgraph with incorrect node attribute or related position
Exact Matching Nodes Nodes in subgraph with correct node attribute and related position
Intermediate Nodes Nodes in the path between exact matching nodes
Extra Edges Edges in subgraph with incorrect edge attribute or between extra nodes
Exact Matching Edges Edges in subgraph with correct node attribute and between exact matching nodes
Intermediate Edges Edges in the path between intermediate nodes

Table 4: Matching Comparison of 5 Patterns (Nodes)
% % Exact % Intermediate

Extra Nodes Matching Nodes Nodes
Algorithm G-Ray MAGE FIRST G-Ray MAGE FIRST G-Ray MAGE FIRST

Star(N) 62.5 * 0.0 37.5 * 75.0 0.0 * 25.0
E-Star(N) 0.0 * 0.0 83.3 * 71.4 16.7 * 28.6

Line(N) 50.0 * 0.0 50.0 * 83.3 0.0 * 16.7
Loop(N) 0.0 * 0.0 27.3 * 71.4 72.7 * 28.6

Clique(N) 25.0 * 0.0 25.0 * 57.1 50.0 * 42.9
Star(NE) * 50.0 0.0 * 30.0 40.0 * 20.0 60.0

E-Star(NE) * 0.0 0.0 * 33.3 41.7 * 66.7 58.3
Line(NE) * 33.3 0.0 * 33.3 62.5 * 33.3 37.5

Loop(NE) * 27.3 44.4 * 27.3 33.3 * 45.5 22.2
Clique(NE) * 40.0 0.0 * 60.0 66.7 * 0.0 33.3

Table 5: Matching Comparison of 5 Patterns (Edges)
% % Exact % Intermediate

Extra Edges Matching Edges Edges
Algorithm G-Ray MAGE FIRST G-Ray MAGE FIRST G-Ray MAGE FIRST

Star(N) 66.7 * 0.0 33.3 * 57.1 0.0 * 42.9
E-Star(N) 0.0 * 0.0 60.0 * 50.0 40.0 * 50.0

Line(N) 60.0 * 0.0 40.0 * 60.0 0.0 * 40.0
Loop(N) 8.3 * 0.0 8.3 * 42.9 83.3 * 57.1

Clique(N) 35.7 * 0.0 7.1 * 12.5 64.3 * 87.5
Star(NE) * 42.9 0.0 * 0.0 14.3 * 57.1 85.7

E-Star(NE) * 0.0 0.0 * 7.1 9.0 * 92.9 91.0
Line(NE) * 27.3 0.0 * 0.0 14.3 * 72.7 85.7

Loop(NE) * 30.0 42.9 * 0.0 14.3 * 70.0 29.8
Clique(NE) * 33.3 0.0 * 0.0 12.5 * 100.0 87.5
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(a) Precision vs. Recall (α = 0.8). (b) Distance vs. Query Size.

Figure 2: E�ectiveness Comparison (number of query nodes
= 13, r = 5).

(a) Running time vs. Query Size
comparison between FINAL and
FIRST. (α = 0.8).

(b) Running time vs. Query Size
and Eigendecompositon Rank.
(α = 0.8).

Figure 3: ScalabilityComparison andAnalysis onQuery Size
and Eigendecomposition Rank.

B - Case Study. We also designed an interactive scenario which
is shown in Figure 5. The experiment is conducted on DBLP dataset.
The initial query is a 4-node clique which requests a group of co-
authors from four di�erent main conferences. The initial result
gives an approximate clique with three intermediate authors. After
that, the user adds one more author from SIGKDD to the group
and the algorithm returns an approximate subgraph with six in-
termediate authors. Note that as the query is re�ned, the result is
also incrementally re�ned instead of a complete change, as Alan
F. McMichael appears in both initial and updated result. This phe-
nomena can be also observed from the following steps and it makes
sense in the interactive procedure. As the user realizes that the
structure is complex and incurs too many intermediate nodes, the
query graph is revised to a loop fashion. The re�ned result shows
H. Schweitzer and Enrico Motta in both results. Finally the user is
shown a re�ned output with �ve intermediate nodes, and all �ve
matching nodes are exact matching nodes from DBLP. This implies
the cooperation pattern among the authors.

4.3 E�ciency
A - Speedup. We �rst evaluate the e�ciency of our proposed tech-
nique and there are two phases in this particular experiment. First,
we only consider node attribute and perform FIRST against FINAL-
N and FINAL-N+ to compare the running time on �ve datasets.
Then we add edge attribute and perform FIRST against FINAL-NE.
In each test, the query graph is �xed and it is a relatively small
graph with 13 nodes. The results are shown in Figure 4. From the
result we can observe that our algorithm outperforms the other
three algorithms with speedup from 2× to 16×. Speci�cally, when
the large graph has over 20M edges, The response time for exact
network alignment method is too long to measure. But our method

can incrementally update pair-wise similarity in about 20 seconds
with a high accuracy (over 90%, see Section 4.2).

(a) E�ciency Comparison 1 (α =
0.8).

(b) E�ciency Comparison 2 (α =
0.8).

Figure 4: (Lower is better.) Log of Running time vs Datasets
of di�erent size. (number of query nodes = 13, r = 5).

B - Scalability. The scalability of FIRST is summarized in Fig-
ure 3 and they are tested on DBLP. We �rst measure the running
time against the number of query nodes and also compare it with
FINAL-N and FINAL-N+. We can see that the running time of FIRST
grows linearly. Compared to FINAL-N and FINAL-N+, FIRST has
better scalability as the increase of query size. Next we measure
the scalability with regard to the number of eigenvalues used in
FIRST. We can see that for di�erent r , the running time still grows
linearly. At the point where there are 60 nodes and r = 10, the run-
ning time is still less than 1 second (0.8s). It shows that the quick
response time of FIRST, which makes it suitable for interactive
query feedback.

5 RELATED WORK
Various subgraph matching techniques can be found in di�erent
targeting problems. G-Ray by Tong et al. [27] applies RWR (Ran-
dom Walk with Restart) [18, 28] and CePS (CenterPiece Subgraphs)
[26] idea to achieve fast inexact pattern matching for networks
with node attributes. TALE by Tian and Patel [25] allows approx-
imate matching and large query graphs by proposing NH-index
(Neighborhood Index). SIGMA by Mongiovi et al. [17] de�nes a
new e�ective pruning rule for inexact matching based on multi-set
and multi-cover, a variant of the well known set-cover problem. It
performs well in the application of query yeast and human protein
complexes. More recently, R-WAG, I-WAG and S-WAG by Roy et
al. [23] aim to return fast best-e�ort answer for WAG(Weighted
Attributed Graphs) query by designing a hybrid index structure
that incorporates weighted attributes, structural features and graph
structure. NeMa by Khan et al. [12] proposes a heuristic approach
based on de�ning a new de�nition of matching cost metric. More
recently, IncMatch by Fan et al. presents a simulated method for
incremental subgraph matching of certain patterns.

One of the important aspects of our method is to measure the
similarity between nodes. Some works adopt similar methodology
(compared to our technique) to address dynamic issues. While
the SimRank by G. Jeh [11] is well known for its e�ectiveness,
recently the fast algorithms by C. Li et al. [14] is proposed. By
using Kronecker product and vectorization operators, an approxi-
mate non-iterative approach is developed for similarity tracking in
evolving information networks. Other works like ObjectRank [5],
RelationalRank [9], direction-aware proximity [27] are all on mea-
suring the node similarity. COSNET by Zhang et al. [30] connects

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1454



Figure 5: A case study of interactive attributed subgraphmatching onDBLP. Best viewed in color. (a): query graphs, (b): match-
ing subgraphs. Green ellipse: node attribute value, Yellow rectangle: matching node, White rectangle: extra/intermediate
node.

heterogeneous social networks with local and global consistency,
which lays the foundation of the idea of our method in �ltering the
Kronecker graph with node and edge attributes. Another common
technique which is adopted in our method is low-rank approxi-
mation [1, 7]. Many real-world network has low-rank property
and low-rank approximation is widely used in various data min-
ing tasks. As for the usage of block matrix approaches in large
graph mining, a large amount of applications could be found in
the literature ranging from group/community detection [8] to fast
algorithms for calculating RWR [24, 28].

Our fast and interactive approach has various potential applica-
tions such as dense subgraph detection [3, 13] in static [10]/dynamic
graphs [4], large graph sense-making [2] and rare category detec-
tion [31]/ outlier detection/anomaly detection [32]. These works
are closely related to pattern matching/recognition problems, which
could be addressed as subgraph matching problems.

6 CONCLUSION
In this paper, we study the interactive attributed subgraph matching
problem and develop a family of e�cient and e�ective algorithms
(FIRST) to address this problem according to di�erent interactive
scenarios. Speci�cally, we �rst propose that the problem can be
recasted to a cross-netwrok node similarity problem and the com-
putation can be speeded up by exploring the smoothness between
initial and revised queries. We then propose FIRST-Q and FIRST-N
to handle the scenario where only node attribute is available, and
FIRST-E to handle the scenario where both node and edge attribute
are available. We conduct numerous experiments on real world
data, and show that our method lead up to 16× speedup with more
than 90% accuracy. In the future, we will (i) deploy the proposed
FIRST algorithms in an online team search and optimization system

(http://team-net-work.org/system.html), and (ii) generalize it to
handle dynamic attributed data networks and deploy it.
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