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Multi-Layered Network Embedding

Jundong Li*f Chen Chen*f

Abstract

Network embedding has gained more attentions in re-
cent years. It has been shown that the learned low-
dimensional node vector representations could advance
a myriad of graph mining tasks such as node classifi-
cation, community detection, and link prediction. A
vast majority of the existing efforts are overwhelmingly
devoted to single-layered networks or homogeneous net-
works with a single type of nodes and node interactions.
However, in many real-world applications, a variety of
networks could be abstracted and presented in a multi-
layered fashion. Typical multi-layered networks include
critical infrastructure systems, collaboration platforms,
social recommender systems, to name a few. Despite the
widespread use of multi-layered networks, it remains a
daunting task to learn vector representations of different
types of nodes due to the bewildering combination of
both within-layer connections and cross-layer network
dependencies. In this paper, we study a novel prob-
lem of multi-layered network embedding. In particular,
we propose a principled framework - MANE to model
both within-layer connections and cross-layer network
dependencies simultaneously in a unified optimization
framework for embedding representation learning. Ex-
periments on real-world multi-layered networks corrob-
orate the effectiveness of the proposed framework.

1 Introduction

The prevalence of various information systems make
networked data ubiquitous to our daily life, examples
include infrastructure networks, social media networks,
brain networks, to name a few. Recent years have
witnessed many attempts to gain insights from these
networked data by performing different graph learn-
ing tasks such as node classification [4, 21, 27], com-
munity detection [15, 45] and link prediction [1, 26].
As the very first step, most of these algorithms need
to design hand-crafted features to enable the down-
stream learning problems. One critical issue of these
hand-crafted features is that they are problem depen-
dent, and cannot be easily generalized to other learning

Computer Science and Engineering, Arizona State Univer-
sity, Tempe, AZ, USA. {jundongl, chen_chen, hanghang.tong,
huan.liu}@asu.edu

TIndicates Equal Contribution

Hanghang Tong* Huan Liu*

tasks. To mitigate this problem, recent studies show
that through learning general network embedding rep-
resentations, many subsequent learning tasks could be
greatly enhanced [17, 34, 39]. The basic idea is to learn a
low-dimensional node vector representation by leverag-
ing the node proximity manifested in the network topo-
logical structure.

The vast majority of existing efforts predomi-
nately focus on single-layered or homogeneous net-
works!. However, real-world networks are much more
complicated as cross-domain interactions between dif-
ferent networks are widely observed, which naturally
form a type of multi-layered networks [12, 16, 35]. Crit-
ical infrastructure systems are a typical example of
multi-layered networks (left part of Figure 1). In this
system, the power stations in the power grid are used
to provide electricity to routers in the autonomous sys-
tem network (AS network) and vehicles in the trans-
portation network; while the AS network, in turn, needs
to provide communication mechanisms to keep power
grid and transportation network work in order. On the
other hand, for some coal-fired or gas-fired power sta-
tions, a well-functioning transportation network is re-
quired to supply fuel for those power stations. There-
fore, the three layers in the system form a triangu-
lar dependency network [11]. Another example is the
organization-level collaboration platform (right part of
Figure 1), where the team network is supported by the
social network, connecting its employee pool, which fur-
ther interacts with the information network, linking to
its knowledge base. Furthermore, the social network
layer could have an embedded multi-layered structure
(e.g., each of its layers represents a different collabora-
tion type among different individuals); and so does the
information network. In this case, different layers form
a tree-structured dependency network.

The availability and widespread of multi-layered
networks in real-world has motivated a surge of research.
Recent work shows that cross-layer network dependen-
cies are of vital importance in understanding the whole
systems and they have an added value over within-layer
connectivities. In addition, a small portion cross-layer
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Figure 1: Two typical examples of multi-layered net-
works: critical infrastructure systems and organization-
level collaboration platform.

network dependencies could improve the performance
of many learning tasks such as link prediction remark-
ably [11]. Despite the fundamental importance of study-
ing multi-layered dependencies, the development of a so-
phisticated learning model which could embed nodes on
multi-layered networks into a continuous vector space
is still in its infancy. To bridge the gap, in this paper,
we study a novel problem on how to perform network
embedding for nodes on multi-layered networks. It is a
challenging problem mainly because of the following rea-
sons: (1) on multi-layered networks, cross-layer network
dependencies are introduced to the system in addition
to the within-layer connectivities in each layer. Needless
to say, those cross-layer network dependencies play an
important role as they also encode the node proximity
to some extent. Hence, embedding multi-layered net-
works would be a non-trivial extension from single lay-
ered network embedding, since the latent node features
need to capture both within-layer connections and cross-
layer network dependencies; (2) nodes on multi-layered
networks come from heterogeneous data sources. Even
though they are presented in different modalities, they
are not mutually independent and could influence each
other. Network embedding algorithms should be able to
seize their interconnections to learn a unified embedding
representation. To tackle the above challenges, we pro-
pose a novel multi-layered network embedding frame-
work - MANE. The main contributions are as follows:

e We formally define the problem of multi-layered
network embedding;

e We provide a unified optimization framework to
model both within-layer connections and cross-
layer network dependencies for embedding repre-
sentation learning on multi-layered networks;

e We provide an effective alternating optimization
algorithm for the proposed MANE framework;

o We evaluate the effectiveness of the proposed
MANE framework with two real-world multi-
layered networks.

[ Notations [ Definitions or Descriptions

G the layer-layer dependency matrix
A={A1,.., Ay} within-layer connectivity matrices
D={D;;, (i #j)} cross-layer dependency matrices

g number of layers

n; number of nodes in the i-th layer
di,da, ..., dg embedding dimensions

F; embedding for the i-th layer

Table 1: Symbols.
2 Problem Definition and Preliminaries

We first summarize the main symbols used in this
paper. We use bold uppercase for matrices (e.g., A),
bold lowercase for vectors (e.g., a), normal lowercase
characters for scalars (e.g., a), and calligraphic for sets
(e.g., A). Also, we follow the matrix settings in Matlab
to represent the i-th row of matrix A as A(i,:), the j-
th column as A(:,j), the (i,7)-th entry as A(i,j), the
transpose of matrix A as A’, trace of matrix A as tr(A)
if it is a square matrix, Frobenius norm of matrix A as
|A|lF. I denotes the identity matrix.

Next, we introduce the following terminology to
ease the understanding of multi-layered networks. Let
matrix G denotes the g x g layer-layer dependencies
in a typical multi-layered network with g layers, where
G(i,j) = 1 if the j-th layer depends on the i-th
layer, otherwise G(i,j) = 0. Then we use a set of g
matrices A = {A4,...,A;} to represent the proximity
among nodes within each layer. Last, we use a set of
matrices D = {D;;,(i,j = 1,...,9)(¢ # j)} to denote
the cross-layer network dependencies between different
layers. In particular, the matrix D;; describes the
cross-layer dependencies between the i-th layer and the
Jj-th layer if G(4, j) = 1; otherwise D, ; is absent. The
main symbols are summarized in Table 1. With the
above notations, the problem of multi-layered network
embedding is defined as follows.

PROBLEM 1. Multi-Layered Network Embedding

Given: the embedding dimension di,da,...,dg for dif-
ferent layers; a multi-layered network with: (1) a set
of g within-layer adjacency matrices A = {Aq,..., Ay}
where A; € {0,1}™*™ (i=1,...,q); and (2) observed
cross-layer dependency matrices D = {D;, (1,7 =
1,..,9)(@ # j)} where D;; € {0,1}"*" denotes the
cross-layer network dependency between A; and A;;

Output: the embedding representation F; € R"*% for
all nodes in the i-th layer (1 =1,...,g).

3 Proposed Algorithm and Analysis

In this section, we present a novel multi-layered network
embedding framework - MANE, which models both
within-layer connections and cross-layer network depen-
dencies for embedding representation learning. We first
formulate the multi-layered network embedding prob-
lem as an optimization problem and then introduce an
effective alternating optimization algorithm for the pro-
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posed framework. At last, we investigate the time com-
plexity of the MANE framework.

3.1 Within-Layer Connections Modeling The
target of a typical embedding algorithm in a single-
layered network is to seek for a low-dimensional vector
representation which well preserves the node proximity
in the original network topological structure. Specifi-
cally, for two nodes ¢ and j in a certain layer k, we en-
force their embedding vector representations Fy(i,:) €
R and Fy(j,:) € R% close to each other if these two
nodes are interconnected with each other. According to
the analysis in spectral theory [29], it can be mathemat-
ically formulated by minimizing the following objective
function:

Fi(i)  Fi(ji)
vDeg;  \/Deg;

I3,

1 o
(3.1) rgtnilz;Ak(m)ll

where Deg; and Deg; are degrees of nodes ¢ and j re-
spectively. It is easy to verify that the above optimiza-
tion problem can be reformulated as the following max-
imization problem:

(3.2) ma tr(FiLyFy) st FiFg =1,

where L, = H;l/QAkH;UQ is the normalized Lapla-
cian matrix for the network structure in the k-th layer,
and Hy, is a diagonal matrix with its diagonal element
as Hy(i,i) = Z;‘LL A (i,7). Tt should be mentioned
that the constraint F/F; = I is imposed in the above
objective function to avoid arbitrary scaling factor of
the embedding representation Fy.

Putting the within-layer connections modeling for
all g layers together, we obtain the following objective
function:

(3.3)

"1.,F; ', = —
Fl,g%%,Fg Zl tr(F,L;F;) s.t. FoF, =1 (Vi=1,,,.,9).

The above optimization problem is equivalent to
solving a set of g trace maximization problems sepa-
rately. For each sub-problem in a certain layer k, we
could obtain the optimal solution Fj by concatenating
the top dj eigenvectors of L which correspond to the
largest dj, eigenvalues.

3.2 Cross-Layer Network Dependencies Model-
ing As dependencies in a multi-layered network consist
of both within-layer connectivities and cross-layer net-
work dependencies, we now focus on discussing how to
model the cross-layer network dependencies for an em-
bedding representation for nodes from different layers.

In the previous subsection, we enforce the embedding
representations of two nodes to be close to each other
in the Euclidean space if they are connected in the same
layer. However, it is not easy to measure the proximity
of nodes from two different layers directly as they come
from different domains, which hinders their compara-
bility. Usually, the embedding representation of nodes
can be interpreted as the latent features, and these la-
tent features interact with each other to generate cross-
layer network dependencies. For example, a conven-
tional recommender systems can be regarded as a two
layer networks, with user-item ratings as the cross-layer
network dependencies. In such networks, users could
be characterized by some latent features, representing
her/his personal interests or tastes; and also, each item
can be represented by some latent features, showing its
key properties or compositions. The latent features of
users and items interact with each other to form the
user-item ratings. Motivated by the block models [28],
we model the node proximity of nodes from different
layers by investigating how their latent features’ inter-
play approximates the real dependencies. Specifically,
let K;; € R%*4 indicates the interaction matrix be-
tween the embeddings of the i-th layer and the embed-
dings of the j-th layer, then the node proximity between
nodes from layer ¢ and layer j can be measured by solv-
ing the following matrix approximation problem:

) o min_ [[Di; — FiK;Fj
iy g,
st. FJF, =L F/F, = L

Similarly, the orthogonal constraints in the above for-
mulation are incorporated to avoid arbitrary scaling fac-
tors. By incorporating all possible cross-layer network
dependencies together, node proximity for all cross-
layers can be measured by solving the following opti-
mization problem:

g
min Y Dy - FK;F3
(3.5) F; F; Ki; Py

st. FIF, =1 (Vi=1,...,9).

3.3 Proposed Embedding Framework - MANE
We have shown how to model within-layer connections
and cross-layer network dependencies for embedding
representation learning in a typical multi-layered net-
work in Eq. (3.3) and Eq. (3.5), respectively. By comb-
ing these two objective functions together, we obtain
the final objective function for multi-layered network
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embedding framework - MANE:

(3.6)
g g
!/ s
Frfl?{)fj Z tr(FiLiFi) o Z HDij - FiKiij”F

i=1 i,j=1
st. FiF, =1 (Vi=1,...,9),

where the positive parameter « is introduced to balance
the contributions of within-layer connectivities model-
ing and cross-layer network dependencies modeling for
embedding learning. Further analysis on the effect of
the positive parameter o will be investigated later.

The objective function in Eq. (3.6) has two sets
of variables, the embedding representation F; for each
layer and the layer-layer embedding interaction matrices
K,;. It is easy to verify that that the objective function
is not convex w.r.t. to these two sets of variables.
Meanwhile, due to the orthogonal constraints, it is
not easy to obtain a global optimal solution. Next,
we present an effective iterative algorithm to solve the
optimization problem in Eq. (3.6).

3.3.1 Computation of K;; To update matrix Kj;,
we remove the terms that are irrelevant to K;,, then
Eq. (3.6) can be reformulated as:

179
(3.7) I%l? |Di; — FiKiF)|%.

We have the following theorem for the solution of K;;.

THEOREM 3.1. If F; and F; are fized, the optimal
solution of K;j in Eq. (3.7) can be obtained as:

(3.8) K;; = F/D;;F;.

Proof. We expand Eq. (3.7) as follows:

(3.9)
[Dij — FiKz‘jF}II%

(D
:t’I‘(D D/ ) + tT(Kin/ij) - QtT'(FLK”F;D;J)

By setting the derivative of the above formulation w.r.t.
K,; to zero, we obtain the closed-form solution of Kj;:

(3.10) K;; = F;D;;F;,
which completes the proof.

3.3.2 Computation of F; We have shown how to
obtain the optimal solution of F; when all the other
variables are fixed. We have the following theorem:

THEOREM 3.2. The maximization problem in Eq. (3.6)
1s equivalent to the following optimization problem:

(3.11)

maxz tr(FIL;F;) + « Z tr(F;Dy;F;F;D};F;)
,5=1

st. FiF, =1, (Vi=1,...,9)

Proof. By plugging the solution of K;; in Eq. (3.8) into
Eq. (3.6), the second term (excluding «) in Eq. (3.6)
can be reformulated as:

(3.12)
g
— Y IDi; - FiKi,Fj|7
‘,j—l
g
= Z tr(D;;Dj;) — Y _ tr(F;D;;F,;F;D};F;)
1,7=1 i,j=1

g
+2 Y tr(F,;F/D;;F;F,Dj))

ij=1
9 g
=— > tr(DyD}) + > tr(F{Dy;F,;F;D}F;).
5,j=1 i,j=1
As f,j:1 tr(D;;Dj;) is constant, by combining

Eq. (3.12) with the first term of Eq. (3.6), we complete
the proof.

To update F;, we remove the terms that are irrelevant to
F;, then the optimization problem can be reformulated
as:

maxtr(F L;F,) + aZtr (F/D,,;F,F/D/,F;)
(3.13) =

st. FJF; =1.

It is easy to verify that M; = L; + « Z§:1 D;;F;F.Dj;
is a positive-semidefinite matrix. Therefore, the opti-
mization problem w.r.t. F; boils down to a trace maxi-
mization problem with orthogonality constraint, which
has a closed-form solution according to the Ky-Fan the-
orem [5]. Specifically, F; could be obtained by concate-
nating the top d; eigenvectors of M; which correspond
to the largest d; eigenvalues.

In summary, the objective function of the proposed
multi-layered network embedding framework - MANE
in Eq. (3.6) is solved in an iterative way as illustrated
in Algorithm 1.

3.4 Time Complexity Analysis First, we denote

the number of edges in each within-layer connectivity
matrix A; as m;. Meanwhile, the number of edges in
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Algorithm 1 Multi-layered network embedding -
MANE
Input: A multi-layered network with layer-layer depen-
dency matrix G; a set of within-layer connectivity
matrices A = {A1, Ag, ..., Ay}; a set of cross-layer
dependency matrices D = {D;;,(i,j = 1,...,9)};
embedding dimension dy, ..., dy; model parameter o«
Output: Embedding representation F =
{F|,F,, ... F,}.
1: Initialize F; (1 < i < g) with orthonormal matrices;
2: Calculate L; (1 <i < g);
3: while objective function value in Eq. (3.6) not
converge do
4:  Calculate M; ( <i<yg);
5. Obtain F; (1 < i < g) by concatenating the top
d; eigenvectors of M,;
6: end while

each cross-layer dependency matrix D;; is m;;. As both
the within-layer connectivity matrix and cross-layer de-
pendency matrix are very sparse, we have m; < n?
and m;; < nyn;. Before the iteration process in Al-
gorithm 1, the complexity of computing the Laplacian
matrix L is O(m;). The complexity of computing M;
is O(>°7_, (nd;j+m;;d;)). In addition to that, the com-
putation of obtammg the top d; eigenvectors of matrix
M, is O(m;d; + n;d?) if we adopt the Lanczos method.
Since M; is not a sparse matrix, the complexity is equiv-
alent to O(n2d;). Based on the above analysis, the
time complexity of the proposed MANE framework is
#iter x O3 9 (min; + Y 7_, (n2d; + my;d;) + nid;)).

4 Evaluations

In this section, we conduct experiments to evaluate
the effectiveness of MANE on the multi-class node
classification task. We first introduce the datasets,
baseline methods, and experimental settings before
presenting the details of experiments. Last, we perform
a parameter sensitivity study to show how the model
parameters affect the performance of MANE.

4.1 Dataset We use two datasets to demonstrate
the effectiveness of MANE, including one academic
collaboration network (AMINER) and one infrastructure
system network (INFRA).

AMINER. The AMINER dataset is an academic col-
laboration platform in the domain of computer science?
which is naturally a three-layered network. The entities
in these three layers are papers, authors and conference
venues. Specifically, each layer of the network represents
(1) a co-authorship network, (2) a paper-paper citation

Zhttps://aminer.org/

| Dataset | AMINER [ INFRA |
# of Layers 3 3
# of Nodes 17,504 8,325
# of Links 107,466 | 15,138
# of CrossLinks | 35,229 | 23,897
# of Labels 8 5

Table 2: Statistics of Datasets.

network, and (3) a venue-venue citation network respec-
tively. In addition, two types of cross-layer network de-
pendencies naturally exist, including “who-writes-which
paper”, and “which venue-publishes-which paper”. The
labels of the venues are classified by the research areas
in Google Scholar3. Overall, we have eight different re-
search areas?. The labels of papers and authors are also
determined by these eight research areas. Specifically,
the label of each paper is decided by the label of the cor-
responding venue. And we label each author according
to the major areas of his/her publications.

INFRA. This dataset contains three critical infras-
tructure networks (1) an airport network®, (2) an AS
network® and (3) a power grid [42]. The three infras-
tructure networks are functionally dependent on each
other. Therefore, they form a triangle-shaped multi-
layered network. The labels of the nodes are determined
by service areas inferred from the geographic proximity.

The statistics of the datasets are listed in Table 2.

4.2 Compared Methods The compared methods
can be roughly categorized into two classes: matrix
factorization based methods and single-layered network
embedding methods. Among them, CCF, CMF and
NMF are matrix factorization based methods. The rest
methods fall into the category of network embedding
based approaches.

e CCF [46] is a collective collaborative filtering ap-
proach that works on the multi-layered networks.
The within-layer connections are incorporated by
the social homophily effect.

e CMF [37] is a collective matrix factorization ap-
proach that jointly approximates within-layer con-
nections and cross-layer dependencies on the multi-
layered networks.

Shttps://scholar.google.com/citations?viewop=
topvenues&hl=en&vq=eng.

41. Computer Systems, 2. Computer Networks & Wireless
Communication, 3. Computational Lingustics, 4. Computer
Graphics, 5. Human Computer Interaction, 6. Theoretical
Computer Science, 7. Computer Vision & Pattern Recognition
and 8. Database & Information Systems

Shttp://www.levmuchnik.net/Content/Networks/
NetworkData.html.

Shttp://snap.stanford.edu/data/
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e NMF [24] is a nonnegative matrix factorization
method that works on the flattened single-layered
network of the multi-layered networks. Specifi-
cally, the diagonal blocks in the flattened network
contains all the within-layered connections; while
the off-diagonal blocks contains the corresponding
cross-layer dependencies.

e Deepwalk [34] is a recent proposed network em-
bedding approach that learns node embedding rep-
resentation by language model. In the exper-
iments, we perform Deepwalk on the flattened
single-layered network of the original multi-layered
network. Hence, a walk may contain both within-
layer connections and cross-layer dependencies in
an unstructured manner.

e LINE [39] is a large-scale network embedding
method that preserves both first-order and second-
order node proximity. Similar to Deepwalk, LINE
is also performed on the flattened single-layered
network of the original multi-layered networks.

e Deepwalk-within is a variant of Deepwalk but
only considers the within-layer connections for em-
bedding representation learning.

e LINE-within is a variant of LINE. Similar to
Deepwalk-within, it only leverages the within-layer
node connections for embedding learning.

e Metapath2vec [14] is a heterogeneous network
embedding method which can effectively leverage
the semantic correlations between different types
of nodes with metapath guided random walks.
For AMINER dataset, we generate random walks
by metapaths “APA” and “APVPA”7. While on
INFRA, we exploit the following metapaths “APA”,
“APNPA”, “APNPA”, “ANA”, and “ANPNA”8,

4.3 Experimental Settings Following the com-
monly adopted way [34, 39], we evaluate the proposed
framework MANE on the multi-class node classification
task. Specifically, after we obtain the embedding repre-
sentation for nodes in each layer, we split these nodes
into training set and testing set. The ratio of training
data is varied from 10% to 90%. We choose the logistic
regression as the discriminative classifier. Two widely
used evaluation criteria based on F1l-score, i.e., Macro-
F1 and Micro-F1 are used to measure the performance
of multi-class classification algorithms [34]. Micro-F1
can be considered as a weighted average of F1-score over
all k different class labels. Macro-F1 is an arithmetic

‘A’ = Author; ‘P’ = Paper; ‘V’ = Venue
8¢A’ = Airport; ‘P’ = Power Station; ‘N’ = Network Router

average of Fl-scores of all output class labels:
> i, 2TP
¥ (2TP' + FP' + FNY)

k .

1 2TP*
Macro-F1 = — Z , , —
k — (2TP" + FP' + FN")

Micro-F1 =
(4.14)

where TP?, FP!, and FN? denote the number of posi-
tives, false positives, and false negatives in the i-th class,
respectively. Normally, the higher the values are, the
better the classification performance is.

We follow the suggestions of the original papers to
specify the parameters for baseline methods. In the
experiments, the embedding dimension for all methods
and all datasets is set to be 100. We run all the exper-
iments 10 times and report the average performance.
More discussions on the parameter sensitivity study of
MANE will be investigated later.

4.4 Node Classification Performance We first as-
sess the quality of obtained embedding representation
on the task of multi-class node classification. The com-
parison results w.r.t. Macro-F1 and Micro-F1 are shown
in Table 3 and Table 4. We make the following obser-
vations:

e When the percentage of training data is varied from
10% to 90%, the classification performance of all
methods gradually increase.

e In almost all cases, the proposed MANE frame-
work outperforms all baseline methods by obtain-
ing higher classification performance. We also per-
form a pairwise Wilcoxon signed rank test between
MANE and all other baseline methods, and the
test results show that MANE is significantly better,
with a significance level of 0.05.

e Cross-layer network dependencies can help boost
the classification performance as all methods
that work with the cross-layer dependencies (e.g.,
MANE, Metapath2vec, Deepwalk, LINE, CCF,
CMF, NMF) are superior to the methods with only
within-layer connections (e.g., Deepwalk-within,
and LINE-within).

e Methods that work under the flattened homo-
geneous networks (e.g., NMF, Deepwalk, LINE,
Metapath2vec) are inferior to the methods that ex-
plicitly differentiate different types of links (e.g.,
CCF, CMF and MANE). This observation indi-
cates that it is necessary to discriminate the mod-
eling of within-layer connectivities and cross-layer
network dependencies for embedding representa-
tion learning.
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[ Training Ratio

[ 10% [ 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |

CCF 85.34 | 88.37 | 89.70 | 90.91 | 91.07 | 91.24 | 91.31 | 91.44 | 91.62

CMF 84.33 | 87.65 | 88.84 | 89.39 | 90.38 | 90.43 | 90.47 | 90.50 | 91.20

Macro-F1 NMF 74.40 | 75.52 | 75.97 | 76.49 | 80.91 | 84.88 | 85.20 | 86.00 | 86.79
Deepwalk 82.67 | 85.05 | 86.02 | 86.81 | 87.32 | 87.37 | 87.47 | 88.01 | 88.14
Deepwalk-within || 63.92 | 67.33 | 68.48 | 68.87 | 69.89 | 70.50 | 71.70 | 71.87 | 72.27

LINE 83.59 | 84.85 | 86.90 | 87.53 | 88.09 | 88.15 | 88.34 | 88.37 | 88.50

LINE-within 44.72 | 51.80 | 56.58 | 61.58 | 63.27 | 66.55 | 67.69 | 68.21 | 70.85
Metapath2vec 85.46 | 86.53 | 87.23 | 87.71 | 88.06 | 89.45 | 89.42 | 89.99 | 90.80

MANE 88.80 | 90.46 | 91.15 | 91.78 | 92.31 | 92.37 | 92.38 | 92.43 | 92.72

CCF 92.44 | 92.89 | 92.87 | 93.35 | 93.76 | 93.94 | 94.40 | 94.38 | 94.48

CMF 92.07 | 92.88 | 92.62 | 93.10 | 93.25 | 93.57 | 94.18 | 94.30 | 92.64

Micro-F1 NMF 88.06 | 88.28 | 88.48 | 88.73 | 89.42 | 89.55 | 89.80 | 90.07 | 90.36
Deepwalk 89.99 | 90.54 | 90.82 | 91.08 | 91.33 | 91.59 | 91.72 | 91.84 | 92.03
Deepwalk-within || 83.23 | 84.21 | 84.70 | 84.75 | 85.08 | 85.11 | 85.52 | 85.69 | 86.32

LINE 89.16 | 90.83 | 91.40 | 91.74 | 91.90 | 91.93 | 91.96 | 92.05 | 92.20

LINE-within 66.51 | 72.27 | 73.97 | 75.74 | 76.61 | 77.34 | 7813 | 7845 | 79.36
Metapath2vec 92.16 | 93.51 | 93.77 | 93.89 | 93.74 | 93.93 | 93.94 | 94.37 | 94.96

MANE 93.15 | 94.44 | 94.73 | 94.75 | 95.19 | 95.28 | 95.31 | 95.45 | 95.59

Table 3: Node classification performance comparison on AMINER dataset with different portions of training data.

[ Training Ratio

[ 10% [ 20% [ 30% | 40% | 50% | 60% | 70% | 80% | 90%

|

CCF 53.43 | 54.72 | 55.13 | 55.85 | 56.15 | 56.42 | 56.38 | 56.89 | 56.92

CMF 54.63 | 54.56 | 55.12 | 55.77 | 56.30 | 56.91 | 58.01 | 58.27 | 58.47

Macro-F1 NMF 46.01 | 4742 | 49.84 | 50.62 | 51.26 | 51.67 | 51.75 | 52.35 | 53.06
Deepwalk 52.64 | 54.24 | 54.64 | 55.34 | 55.42 | 55.87 | 55.92 | 56.11 | 56.36
Deepwalk-within || 47.56 | 51.37 | 50.40 | 51.77 | 51.95 | 52.69 | 52.79 | 53.03 | 53.41

LINE 53.41 | 53.91 | 55.03 | 55.33 | 55.59 | 55.87 | 55.94 | 55.89 | 56.15

LINE-within 47.05 | 48.93 | 49.15 | 50.15 | 50.96 | 51.03 | 51.57 | 52.11 | 52.20
Metapath2vec 54.34 | 55.39 | 55.88 | 57.59 | 58.79 | 59.86 | 58.58 | 59.29 | 59.27

MANE 56.68 | 57.32 | 57.54 | 58.42 | 58.57 | 58.50 | 59.38 | 59.35 | 59.64

CCF 56.00 | 58.15 | 58.27 | 59.40 | 59.77 | 59.97 | 60.88 | 61.16 | 61.58

CMF 56.91 | 59.57 | 59.29 | 60.55 | 60.93 | 61.46 | 62.35 | 62.61 | 62.87

Micro-F1 NMF 52.66 | 54.21 | 54.68 | 56.04 | 56.32 | 56.54 | 57.05 | 57.13 | 57.41
Deepwalk 55.59 | 56.31 | 57.29 | 58.20 | 58.30 | 58.35 | 59.01 | 59.38 | 59.72
Deepwalk-within || 52.24 | 56.28 | 55.04 | 58.54 | 58.19 | 57.20 | 57.45 | 57.74 | 57.90

LINE 53.74 | 55.49 | 57.27 | 58.08 | 58.82 | 59.60 | 60.17 | 60.43 | 60.64

LINE-within 46.18 | 46.66 | 52.28 | 53.07 | 53.62 | 53.99 | 53.67 | 54.49 | 55.44
Metapath2vec 55.44 | 56.93 | 59.28 | 59.37 | 59.59 | 61.50 | 60.97 | 61.96 | 61.33

MANE 59.40 | 61.67 | 62.62 | 62.91 | 63.12 | 63.37 | 63.82 | 64.20 | 64.81

Table 4: Node classification performance comparison on INFRA dataset with different portions of training data.

4.5 Parameter Study The proposed MANE frame-
work has one important parameter «, which is used to
balance the contribution of within-layer connectivities
modeling and cross-layer network dependencies model-
ing for embedding representation learning. We first vary
the value of o and investigate how it affects the classi-
fication performance. Specifically, the training ratio is
specified as 80% and the embedding dimension is set
to be 100. As can be shown in Figure 2(a), with the
increase the value of «, the classification performance
first increases, reaches its peak, and then becomes rela-
tively stable. The classification performance is the best
when « is around 0.1. Next, to study the impact of the
embedding dimension d, we vary the value from 20 to
120. The variation result is shown in Figure 2(b), we
can see that by increasing the embedding dimension d,

the classification performance first increases and then
keeps stable. Hence, we empirically set it as 100 in the
experiments. It should be noted that we only perform
the parameter sensitivity study on the AMINER dataset
as we have similar observations on the INFRA dataset.

5 Related Work

In this section, we review related work from two aspects:
multi-layered networks and network embedding.

5.1 Multi-Layered Networks Multi-layered net-
works have attracted considerable research attentions in
recent years. To construct a general overview of this re-
search area, Kivela et al. [22] provided a comprehensive
survey about different types of multi-layered networks,
including multi-modal networks [18], multi-dimensional
networks [3], multiplex networks [2] and interdependent

Copyright © 2018 by SIAM
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Figure 2: Parameter study on the AMINER dataset.

networks [6]. The multi-modal networks in [18] is de-
fined as a 3-tuple (V, E, M), in which the edges in E
are hyperedges that have multiple source nodes and
target nodes from V; and each edge can have differ-
ent mode from M. On multi-dimensional networks and
multiplex networks, different layers of the network rep-
resent various types of connections between the same
set of nodes. The network studied in our paper falls in
the category of interdependent networks. Due to the
complex dependency relationships in the network, most
of the previous research centers around two-layered net-
works [6, 16, 33, 36], with a few exceptions that focus on
arbitrarily structured multi-layered interdependent net-
works [9, 10]. Other related studies that infuse networks
or data from multiple domains include cross-layer de-
pendency inference [11], cross-network ranking [30] and
clustering [31], and multi-view data analysis [48, 49].
To the best of our knowledge, this is the first attempt
to study embedding representation learning on multi-
layered interdependent networks.

5.2 Network Embedding Network embedding has
become an effective tool in analyzing real-world net-
works. The learned low-dimensional node vector rep-
resentation not only can help us gain more insights on
the essential properties of the underlying networks, but
also can benefit many downstream learning tasks, such
as node classification, community detection, link predic-
tion and anomaly detection. Perozzi et al. [34] incorpo-
rated language modeling techniques in NLP community
into social network analysis and learn node embeddings
by truncated random walks. Grover and Leskovec [17]
extended the Deepwalk method by adding flexibility in
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exploiting node neighborhoods. Tang et al. [39] consid-
ered both first order and second order node proximity
into embedding representation learning. Cao et al. [7]
further extended LINE to leverage high-order node
proximity in network embedding. In [19, 20, 44], rich
content of nodes are incorporated to obtain more dis-
criminative representations. Other extensions include
dynamic [25], heterogeneous [13, 43], document [23, 38],
community preserving [41] and emerging [47] network
embedding. In addition to that, many other deep learn-
ing based approaches are proposed to further enhance
different learning tasks [8, 32, 40]. Our work differs
from these approaches as we first study how to perform
network embedding in a multi-layered network.

6 Conclusions

Multi-layered networks emerge to be a new network
representation and naturally arises themselves in var-
ious domains. With the prevalence of the multi-layered
networks in many real-world applications, there are a
few attempts to study this complex network represen-
tation in order to better understand it and derive some
actionable patterns upon it. Network embedding has
shown its power in modeling traditional single-layered
networks as the learned node embedding representation
could advance many graph mining tasks. However, the
study on how to obtain embedding representation on
multi-layered networks is still an unsolved problem. In
this paper, we study this important problem by propos-
ing a novel network embedding framework MANE. To
capture both within-layer node connections and cross-
layer node dependencies, MANE employs the spectral
embedding and the block model to joint model dif-
ferent network dependencies. An effective alternating
optimization algorithm is also presented for the pro-
posed MANE framework. We validate the superiority
of MANE on real-world multi-layered networks.

Future work can be focused on studying the multi-
layered network embedding problem in more complex
settings, for example in dynamic multi-layered networks
and multi-layered networks with rich node attributes.
Another potential research direction is to study task-
oriented multi-layered network embedding.
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