
Team Expansion in Collaborative Environments

Lun Zhao1, Yuan Yao1, Guibing Guo2, Hanghang Tong3, Feng Xu1, and Jian Lu1

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Software College, Northeastern University, China

3Arizona State University, USA
zhaolun@smail.nju.edu.cn,{y.yao,xf,lj}@nju.edu.cn

guogb@swc.neu.edu.cn,hanghang.tong@asu.edu

Abstract. In this paper, we study the team expansion problem in collaborative
environments where people collaborate with each other in the form of a team,
which might need to be expanded frequently by having additional team members
during the course of the project. Intuitively, there are three factors as well as the
interactions between them that have a profound impact on the performance of
the expanded team, including (1) the task the team is performing, (2) the existing
team members, and (3) the new candidate team member. However, the vast major-
ity of the existing work either considers these factors separately, or even ignores
some of these factors. In this paper, we propose a neural network based approach
TECE to simultaneously model the interactions between the team task, the team
members as well as the candidate team members. Experimental evaluations on
real-world datasets demonstrate the effectiveness of the proposed approach.

Keywords: Team expansion, candidate member prediction, collaborative envi-
ronments, neural networks

1 Introduction

In many application domains, people tend to frequently collaborate with others in the
form of teams for specific tasks. For example, in open source software community,
developers distributed worldwide work with each other by forming developer teams
for specific projects; in research community, researchers form research teams and they
collaborate with each other for research projects/papers; in the film industry, the crew
works together as a team for a film shooting. In this work, we refer to these application
domains as collaborative environments.

One of the key features in these collaborative environments is team mobility, i.e.,
teams are formed upon specific tasks and individuals can participate in several teams
depending on their own interest and capabilities. In such environments, we usually need
to expand the team by adding new members during team formation or when the existing
team encounters difficulties on the task. In this paper, we put our focus on the team
expansion problem in collaborative environments.

Broadly speaking, team expansion is related to several existing lines of research
(please refer to the related work section for more details): (1) people and task match-
ing which searches for an optimal match between people capabilities and task require-
ments [3, 23], (2) recommendation which recommends items to users [18, 11], and (3)

2 Zhao et al.

social proximity analysis which computes the proximities between users [21, 13]. How-
ever, they all suffer from some limitations for the team expansion problem studied in
this paper: (1) people and task matching methods need concrete descriptions about peo-
ple capabilities and task requirements, while such descriptions are usually unavailable;
(2) recommendation methods mainly focus on recommending items for users, while
team expansion aims to recommend users for items (i.e., tasks) where the ‘chemistry’
between existing users and the new user matters; (3) social proximity analysis methods
analyze the social connections between users, while the matching between users and
tasks are widely ignored.

In this paper, we propose a neural network based approach (TECE) for team expansion
in collaborative environments. The basic considerations of TECE are three-fold: (1) no
concrete requirements and capabilities for the candidate team member are needed, (2)
the candidate should match the task, and (3) the candidate should match the existing
team members. To this end, we propose to automatically match the candidate mem-
bers to both team tasks and existing team members, based on the existing interactions
between them. To match a candidate member with the given task, we exploit the col-
laborative filtering idea from recommender systems by mining the existing interactions
between individuals and tasks; to match a candidate member with the existing team
members, we take the team leader as a proxy of the team members and incorporate
the social connections between the candidate and the team leader into the model. Ad-
ditionally, we adopt deep models with multiple non-linear neural layers to capture the
complex relationships between candidate members, team leaders, and team tasks.

The main contributions of this paper include:

– We formally define the team expansion problem in collaborative environments,
which has a wide range of applications.

– We propose the TECE model to solve the team expansion problem. The proposed
TECE simultaneously considers three important factors (team task, existing team
members, and candidate team member) as well as their interactions.

– Experimental results on two real-world datasets show that the proposed method
can outperform several competitors in terms of accurately identifying candidate
members. For example, TECE can achieve up to 22.1% improvement compared
with its best competitors.

The rest of the paper is organized as follows. Section 2 defines the team expansion
problem. Section 3 describes the proposed approach. Section 4 presents the experimen-
tal results. Section 5 covers related work, and Section 6 concludes.

2 Problem Statement

In this section, we present the problem definition. Without loss of generality, we assume
that each team corresponds to a unique task. Therefore, we use t to denote both the
team task and the team itself. We assume that there are m teams/tasks and n unique
individuals, and we use T = {t1, t2, . . . , tm} and I = {i1, i2, . . . , in} to denote the set of
teams and individuals, respectively. The existing interactions between team tasks and
individuals are contained in matrix R. For example, R(t, i) = 1 means that individual i

Team Expansion in Collaborative Environments 3

belongs or once belonged to team t, and R(t, i) = 0 indicates otherwise. For a specific
team t, we use It to denote the existing members in the team. Specially, we assume
that there is a team leader ot ∈ It (e.g., the owner of the team) in each team. With the
above notations, we define the team expansion problem in collaborative environments
as follows.

Problem 1. Team Expansion Problem in Collaborative Environments (TECE)

Given: (1) a collection of teams/tasks T each of which has a team leader ot, (2) a
collection of individuals I, (3) the existing interactions R between teams/tasks and
individuals, and (4) a team ttest ∈ T that is about to expand;

Find: the candidate member to join team ttest.

The above team expansion problem can be formulated as estimating the fitness s-
cores of unobserved entries in R, which resembles the recommendation problem. How-
ever, different from traditional recommendation problem, when recommending a can-
didate member to a team, we need to pay special attention to the ‘chemistry’ between
the candidate member and existing team members. The goal of team expansion is to
generate a ranked list of candidates for the team that is about to expand. The ranked list
is determined by the estimated scores of unobserved entries in R. For example, suppose
team t is the team to expand. We take team t itself, the team leader ot, and a candidate
team member i as input, and the goal is to learn a mapping function f to obtain the esti-
mated fitness score between candidate i and the team t with leader ot. Formally, we have
R̂(t, i) = f (t, ot, i|Θ), where R̂(t, i) denotes the estimated fitness score, and Θ contains
the model parameters. In the next section, we will show how we construct the mapping
function f and learn its parameters.

3 The Proposed Approach

In this section, we present the proposed TECE model, followed by some discussions
and generalizations.

3.1 The TECE Model

Figure 1 shows the overview of the proposed approach. As we can see, TECE takes (the
one-hot encodings of) team task id, team leader id, and candidate member id as input,
and embeds each of them into a low-dimensional vector. After that, the resulting embed-
dings are fed into several non-linear layers to learn the complex interactions between
them. To be specific, TECE exploits the collaborative filtering idea from recommender
systems to model the interactions between candidate team members and team tasks; it
treats the team leader as a proxy of the team members and model the social interactions
between candidate members and team leaders; it also models the interactions between
team tasks and team members as team state which could impact the ideal candidate
member. The last layer contains the final high-level features from the above interaction-
s for predicting the fitness score between the input candidate and the input team (with
its team leader). Finally, the output layer produces the estimated fitness score.

4 Zhao et al.

Team task Team leader New individual

Estimated score

Training

Real score

1/0

t ot i

Concatenate

ReLU ReLU ReLU

Input layer

Embedding
layer

Non-linear
layers

Fig. 1. The overview of TECE.

Next, we present the details of the TECE model. As mentioned in introduction, team
expansion needs to consider the interactions between candidate member, team task, and
existing team members. In the following, we first separately consider these interactions,
and then describe the neural network based objective functions.

(A) Matching Candidate Team Member with Team Task. For the matching between
candidate team member and team task, we first denote the embedding vectors/features
of team task and candidate member as pt ∈ R

d and qi ∈ R
d, respectively, where d is

the vector dimensionality. Then, we model the interaction vector rti between team task
t and candidate i as follows,

rti = pt � qi (1)

where � denotes element-wise multiplication. For simplicity, we assume all the embed-
ding vectors are row vectors in this paper.

(B) Matching Candidate Team Member with Existing Team Members (Team Lead-
er). For the matching between candidate member and existing members, we pay special
attention to the team leader as he/she plays important roles in building the team spirit
and improving team performance [4, 19]. Therefore, we use the team leader as a proxy
of the team members in this work. Based on this, we model the interactions between
team leader ot and candidate i as the likelihood of their cooperation in the current team.
We use cti to stand for the cooperation likelihood, and it can be computed as

cti = qi � qot
(2)

where we still use the element-wise multiplication, and qi and qot
are the embedding

vectors for candidate i and team leader ot, respectively. Note that team leader is one of
the individuals in I.

(C) Team State Building. In addition to matching the candidate with team task and
team leader, we consider to build the team state vector which describes the interactions

Team Expansion in Collaborative Environments 5

between team task and team leader. Such interactions could impact what is the best way
the ideal candidate member should interact with team state. For example, if the current
team state is harmonic, the ideal candidate should maintain the existing ‘chemistry’; if
there is a lack of timely communication in the current team state, the ideal candidate
should act as a communication bridge. Specially, we define the team state vector st as

st = pt � qot
(3)

where pt is the embedding vector of team task t, and qot
is the embedding vector of

team leader ot.
(D) Single-layer Modeling. Next, based on the above three intermediate vectors, we

can build a neural network to compute the fitness score R̂(t, i). In the simplest case,
we can concatenate these vectors and feed the resulting vector into a dense (fully-
connected) layer, whose output score R̂(t, i) can be computed as

R̂(t, i) = f out([rti, cti, st]xT) (4)

where x is the weight vector, and f out can be set as the sigmoid function f out(x) = 1
1+e−x .

Note that for the network we describe in Eq. (4), it can be seen as a generalization
of the traditional collaborative filtering based recommendation. It can be degenerated to
traditional collaborative filtering if we take only the rti as input, define x as a row vector
of 1s, and define f out as the identify function. In other words, compared to traditional
recommendation, we further consider the current team state (st) and the interactions
between candidate members and team leaders (cti).

(E) Multi-layer Modeling. For single-layer network, simply using a vector concate-
nation as final features is insufficient to represent the complex interactions between
candidate team members, team leaders, and team tasks. To address this issue, we add
multiple non-linear layers to model these interactions. Take the cooperation likelihood
vector cti as an example, the multi-layer modeling for fitness score R̂(t, i) can be defined
as follows:

z(1) = f (1)(W(1)cti + b(1))
z(2) = f (2)(W(2)z(1) + b(2))

. . .

z(L) = f (L)(W(L)z(L−1) + b(L))
R̂(t, i) = f out(z(L)xT) (5)

where L is the layer number, W(i), b(i), and f (i) denote the weight matrix, bias vector,
and activation function for the corresponding layer, respectively. f out and x are defined
in Eq. (4). For the activation function, we choose the ReLU (Rectified Linear Units)
function for f (i). Similarly, we can add multiple non-linear layers for each of the three
intermediate vectors as defined in Eq. (1) - (3), and we may also add multiple non-linear
layers for the concatenated vector as defined in Eq. (4).

(F) Objective Function. Finally, we define the objective function to learn the em-
bedding vectors pt, qi, and qot

, as well as the other model parameters Θ. Specially, we
adopt the following logistic-like objective function

argmax
P,Q,Θ

∑
(t,i)∈R R(t, i) log(R̂(t, i)) + (1 − R(t, i)) log(1 − R̂(t, i)) (6)

6 Zhao et al.

where P contains the embedding vectors pt, Q contains the embedding vectors qi and
qot

, R(t, i) is the real fitness score between team task t and candidate i, and R̂(t, i) is
estimated fitness score by our model.

Here, the ground truth is contained in the existing interaction matrix R with R(t, i) =

1 as positive label and R(t, i) = 0 as negative label. The remaining problem is to sample
the negative (t, i) pairs. Directly choosing all the possible (t, i) pairs is computational
expensive (quadratic time complexity). Choosing only the positive labels (i.e., R(t, i) =

1) would lead to trivial solutions (i.e., the feature values towards infinity). In this work,
we keep all the positive labels, and randomly sample r (sampling ratio) negative labels
(e.g., R(t, j) = 0) in terms of team task t for each positive label. Based on the sampling
strategy, a stochastic gradient ascent learning algorithm can be applied for optimization.

3.2 Generalizations and Discussions

The TECE model is open for some reasonable adjustments on the model architecture.
Here, we discuss some possible generalizations of the proposed method.

First, the proposed model is flexible with several special cases. For example, we may
consider the single-layer objective function as discussed above. Such treatment may
improve the training efficiency while lower the prediction accuracy. Besides, for the
three inputs, we can delete either the team task or the team leader which will degenerate
the model to social proximity model and recommendation model, respectively. We will
experimentally evaluate some the above special cases in the next section.

Second, as a common practice in neural networks, we use element-wise multipli-
cation in Eq. (1) - (3) to model the interactions between team task, team leader, and
candidate team member. In addition to this operation, other operations such as inner
product, concatenation, average pooling, and max pooling can also be used. In fact, we
can simultaneously use element-wise multiplication and concatenation to obtain more
intermediate vectors. In this work, we omit such extensions for brevity.

Third, in our model, when matching the candidate member with team members, we
take team leader as a proxy. We can also incorporate all the existing team members into
the model by average pooling or max pooling. Take average pooling as an example. We
can flatten the embedding vectors of existing team members by computing the average
vector. We will experimentally evaluate this in the experimental section.

Fourth, in this work, we employ the team-individual interaction history only as input
for the team expansion problem. Actually, we can consider much richer information
such as the text descriptions of team tasks, member profiles, and temporal effects when
such information is available. We leave these extensions as future work.

4 Experiments

4.1 Experimental setup

Datasets. We conducted experiments on two real datasets: GitHub1 and DBLP2. GitHub
is an open-source software development platform. The data contains the information

1 http://ghtorrent.org/downloads.html.
2 https://cn.aminer.org/billboard/citation.

Team Expansion in Collaborative Environments 7

Table 1. Statistics of the datasets.

Dataset # of team tasks # of individuals Avg. members per team Avg. teams per individual
GitHub 10,505 30,258 31.56 10.96
DBLP 17,838 29,423 3.59 2.18

about projects, developers, and the actions from developers to projects. Since there are
many toy projects and inactive users, we filter the data by deleting the developers who
have contributed to less than five projects, and the projects whose ‘star’ is no more than
five and whose team member number is less than five. DBLP is an open database that
collects scientific articles in the field of computer science [20]. We treat each article as
a team task, authors as team members, and the first author as the team leader. We use
a subset of the whole dataset, and the subset contains the areas of Data Mining, Ma-
chine Learning, Database, and Artificial Intelligence. Similar to the processing steps
above, we filter out the authors who have published less than three articles, and the ar-
ticles whose author number is less than three. Overall, both software development and
research article publication can be seen as collaborative environments where people fre-
quently collaborate with others in the form of teams for specific tasks. Both datasets are
publicly available, and the statistics are listed in Table 1.

Compared Methods. We compare TECE with the following methods including
two social proximity analysis methods and two recommendation methods.

– Co-rank. It is a heuristic method. The basic idea is to rank the candidate team
members based on their cooperation times with the team leader.

– RW [21]. This is a random walk method that computes the proximities between
users in a network. We adapt the method to the bipartite network of individuals and
tasks.

– BPR [17]. This is a classic recommendation model for the one-class feedback case.
It directly optimizes the rankings between an observed feedback and an unobserved
feedback.

– NCF [9]. NCF is a recent neural network based model designed for one-class rec-
ommender systems. It treats the recommendation problem as a binary classification
problem, and adopts neural networks to model the interactions between users and
items.

Evaluation Metrics. To evaluate the effectiveness of the compared methods, we
adopt the following two widely used evaluation metrics. Specifically, we output the
top K candidate members in a ranked list, and compute the HR and nDCG metrics as
follows.

HR@K =
1
|T |

|T |∑
t=1

hitt, nDCG@K =
1
|T |

|T |∑
t=1

log 2
log(rt + 1)

where T is the test set of teams, hitt ∈ {0, 1} is a binary value indicating whether the
ground-truth candidate is in the top K list, and rt ∈ {1, 2, ...,K} is the ranking of the
ground-truth candidate in the ranked list. rt = 0 if the candidate is not in the top K list.
In this work, we set K to 1, 5, 10, 15, and 20.

8 Zhao et al.

0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

Top K

H
R

Co−rank RW BPR NCF TECE

(a) HR results on GitHub

0 5 10 15 20
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Top K

nD
C

G

Co−rank RW BPR NCF TECE

(b) nDCG results on GitHub

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Top K

H
R

Co−rank RW BPR NCF TECE

(c) HR results on DBLP

0 5 10 15 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Top K
nD

C
G

Co−rank RW BPR NCF TECE

(d) nDCG results on DBLP

Fig. 2. Effectiveness comparisons. TECE generally outperforms the compared methods in both
HR and NDCG on both datasets.

Experimental Settings. To setup the experiments, we randomly select one team
member in each team as the test set. The training data is used to train the model where
a ranked list of possible candidates for each team will be generated. Here, we basically
assume that the existing member is a suitable match for the corresponding team task.
While this is not always true in reality, we mitigate the issue by filtering the datasets
and keeping the teams that can be considered as good teams (e.g., software projects
that have been starred several times, or scientific papers that have been published in top
venues). During the testing stage, since predictions on all the candidates would be time-
consuming, we randomly select 100 negative samples for each ground-truth candidate.

For the parameters, we either follow the default setting or set them equally. For
example, we set the embedding dimensionality to 32 for all the methods (Co-rank and
RW are not applicable). For the two non-linear layers of TECE, we set the embedding
size as 16 and 8, respectively.

4.2 Experimental Results

(A) Effectiveness Comparisons. We first compare TECE with the existing methods, and
report the results in Figure 2. First of all, we can observe from the figures that the
proposed TECE generally outperforms the compared methods in terms of the two e-
valuation metrics on both datasets. For example, TECE improves the best competitor
(NCF) by up to 11.3% on the GitHub data, and by up to 22.1% on the DBLP data. Ba-
sically, TECE is better than NCF and BPR as it further considers the matching between

Team Expansion in Collaborative Environments 9

Table 2. Performance gain analysis. The team leader, team task, and multi-layer modeling are all
helpful to improve the prediction accuracy.

Method TECE TECE-tc TECE-lc TECE-sl TECE-em TECE-con
HR@10 0.7711 0.7359 0.7556 0.7550 0.7351 0.7299
nDCG@10 0.6579 0.5962 0.6404 0.6553 0.6040 0.5949

8 16 32 64
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Embedding size

A
cc

ur
ac

y

GitHub−HR GitHub−nDCG DBLP−HR DBLP−nDCG

(a) Embedding size d

1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

Negative sampling ratio

A
cc

ur
ac

y

GitHub−HR GitHub−nDCG DBLP−HR DBLP−nDCG

(b) Negative sampling ratio r

Fig. 3. Parameter study. TECE is robust to the two parameters in a relatively wide range.

candidate member and team leader; TECE is better than RW and Co-rank as it further
considers the matching between candidate member and team task.

Second, we can also observe that the overall results on the GitHub data are better
than those on the DBLP datasets. This is due to the fact that the DBLP data is much
sparser, making the problem more challenging. Third, for the Co-rank method, it can
identify the candidate team member with a relatively high accuracy at top 1 (K = 1),
while the accuracy increases slowly as K increases. The reason is that Co-rank can
only find the candidates in a local neighborhood (i.e., previously cooperated), while the
global perspective of task-candidate matching is ignored.

(B) Performance Gain Analysis. Next, we analyze the proposed TECE by checking
the performance of its components and variants. For its components, we delete the team
leader, team task, and multi-layer modeling of TECE, and obtain the TECE-tc (task
and candidate), TECE-lc (leader and candidate), and TECE-sl (single-layer) method,
respectively. For its variants, we consider to substitute team leader with the average-
pooling on all the existing team members, and substitute the element-wise product with
concatenation. The resulting methods are referred to as TECE-em (existing member)
and TECE-con (concatenation), respectively. For brevity, we report the HR@10 and
nDCG@10 results on the GitHub data in Table 2.

First, we can observe from the table that all the three components (i.e., team leader,
team task, and multi-layer) of TECE are helpful to improve the prediction accuracy. For
example, when team leader, team task, and multi-layer modeling are incorporated, the
HR@10 performance of TECE improves by 4.8%, 2.1%, and 2.1%, respectively. Sec-
ond, TECE is better than its two variants TECE-em and TECE-con. The improvement
over TECE-em indicates the important role of the team leader, and the improvement
over TECE-con indicates that the element-wise multiplication is a better way to model
the interactions between team tasks, team leaders, and candidate team members.

10 Zhao et al.

(C) Parameter Study. Finally, we conduct a parameter study of the proposed method
in terms of the embedding size d and the negative sampling ratio r. The results are
shown in Figure 3 where we still report the HR@10 and nDCG@10 results. As we can
see from Figure 3(a), the prediction accuracy generally improves when the embedding
size d grows from 8 to 32. No significant improvement can be observed when d becomes
larger. For the negative sampling ratio r, slight improvement can be observed when
r = 3 for the DBLP data. In general, TECE is robust to the two parameters in a relatively
wide range. In this paper, we fix embedding size d to 32 and sampling ratio r to 2 for
simplicity.

5 Related Work

In this section, we briefly review the related work including people and task matching,
recommender systems, social proximity analysis, etc.

People and Task Matching. In the operations research community, the people and
task matching problem has been extensively studied [5, 3, 23]. Typically, the matching
problem is often formulated as an integer linear program, and the goal is to search for
an optimal match between people capabilities and task requirements. This line of work
needs explicit and concrete descriptions of people capabilities and task requirements,
while such descriptions are usually unavailable or inaccurate in many real applications.

Recommender Systems. Team expansion is related to recommender systems. One
of the branches in recommender systems takes collaborative filtering as the model ba-
sis, and recommends items to users based on the existing interactions/feedback between
users and items [11, 17]. Later, some researchers further incorporate social connections
between users into the model [15, 25], and some others adopt deep neural networks.
For example, normal deep networks [9], stacked auto-encoder [22], convolutional neu-
ral network [10], and recurrent neural network [24] have been used for modeling the
user feedback, item content, temporal effect, etc. Different from the existing recom-
mendation methods whose goal is to recommend items to users, team expansion aims
to recommend users to items/tasks, where the ‘chemistry’ between existing users and
the candidate user matters.

Social Proximity Analysis. Since the social connections between the candidate
member and the existing members matter for the team expansion problem, our work is
also related to existing social proximity analysis work [21, 14, 2]. For example, Tong
et al. [21] propose fast random walks based on which the social proximity between
two nodes in a network can be computed; Cummings and Kiesler [6] find that prior
working experience is the best predictor for the collaborative tie strength; recently, Han
and Tang [8] propose the social group invitation problem, and solve the problem from a
group evolution viewpoint. This line of work mainly focuses on the proximity analysis
between users in the social network, while the matching between individuals and tasks
are widely ignored.

Team Formation and Optimization. The team formation or team expansion prob-
lem has been studied in the entrepreneurial context [5, 7], where interpersonal attrac-
tion, knowledge and communication skills make the essential factors for a successful
team. In computer science, the team formation problem [1, 16] has also been studied.

Team Expansion in Collaborative Environments 11

However, existing work still requires the explicit descriptions of task requirements and
user skills. The most related work is perhaps the recent work by Li et al. [12]. They
propose to reformulate the team expansion problem as a team replacement problem by
defining a virtual member with the desired skill set and communication structure, and
then replacing this member with a most similar substitute. In contrast to their work, we
do not require the descriptions of skill set and communication structure, and our focus
is to find a candidate team member by exploiting the interactions between candidates,
team leaders, and team tasks.

6 Conclusions

In this paper, we have proposed the team expansion problem in collaborative environ-
ments, and proposed a neural network based approach TECE for the problem. The
key idea of TECE is to match the candidate team member with both team task and
team leader. Additionally, TECE models the non-linear interactions between them via a
multi-layer architecture. Experimental evaluations on real-world datasets demonstrate
that the proposed approach can outperform several competitors in terms of accurately
identifying candidate members. Future directions include exploring richer information
such as task descriptions and member profiles for the team expansion problem, and
handling the cold-start cases of the team expansion problem.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 61690204, 61672274, 61702252), the National Key Research
and Development Program of China (No. 2016YFB1000802), the Fundamental Re-
search Funds for the Central Universities (No. 020214380033), and the Collaborative
Innovation Center of Novel Software Technology and Industrialization. Guibing Guo
is partially supported by the National Natural Science Foundation for Young Scien-
tists of China (No. 61702084). Hanghang Tong is partially supported by NSF (IIS-
1651203, IIS-1715385, CNS-1629888 and IIS-1743040), DTRA (HDTRA1-16-0017),
ARO (W911NF-16-1-0168), and gifts from Huawei and Baidu.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online team for-
mation in social networks. In: WWW. pp. 839–848. ACM (2012)

2. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links
in social networks. In: WSDM. pp. 635–644. ACM (2011)

3. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using fuzzy optimization ap-
proach. Cybernetics and Systems: An International Journal 38(2), 155–185 (2007)

4. Bradley, J.H., Hebert, F.J.: The effect of personality type on team performance. Journal of
Management Development 16(5), 337–353 (1997)

5. Chen, S.J., Lin, L.: Modeling team member characteristics for the formation of a multi-
functional team in concurrent engineering. IEEE Transactions on Engineering Management
51(2), 111–124 (2004)

12 Zhao et al.

6. Cummings, J.N., Kiesler, S.: Who collaborates successfully?: prior experience reduces col-
laboration barriers in distributed interdisciplinary research. In: CSCW. pp. 437–446. ACM
(2008)

7. Forbes, D.P., Borchert, P.S., Zellmer-Bruhn, M.E., Sapienza, H.J.: Entrepreneurial team for-
mation: An exploration of new member addition. Entrepreneurship Theory and Practice
30(2), 225–248 (2006)

8. Han, Y., Tang, J.: Who to invite next? predicting invitees of social groups. In: AAAI. pp.
3714–3720 (2017)

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In:
WWW. pp. 173–182 (2017)

10. Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document
context-aware recommendation. In: RecSys. pp. 233–240. ACM (2016)

11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 30–37 (2009)

12. Li, L., Tong, H., Cao, N., Ehrlich, K., Lin, Y.R., Buchler, N.: Enhancing team composi-
tion in professional networks: Problem definitions and fast solutions. IEEE Transactions on
Knowledge and Data Engineering 29(3), 613–626 (2017)

13. Li, L., Yao, Y., Tang, J., Fan, W., Tong, H.: Quint: On query-specific optimal networks. In:
KDD. pp. 985–994. ACM (2016)

14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of
the Association for Information Science and Technology 58(7), 1019–1031 (2007)

15. Ma, H., Yang, H., Lyu, M.R., King, I.: Sorec: social recommendation using probabilistic
matrix factorization. In: CIKM. pp. 931–940. ACM (2008)

16. Rangapuram, S.S., Bühler, T., Hein, M.: Towards realistic team formation in social networks
based on densest subgraphs. In: Proceedings of the 22nd international conference on World
Wide Web. pp. 1077–1088. ACM (2013)

17. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: Bpr: Bayesian personalized
ranking from implicit feedback. In: UAI. pp. 452–461. AUAI Press (2009)

18. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM 40(3), 56–
58 (1997)

19. Soomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A.: The effect of soft-
ware engineers? personality traits on team climate and performance: A systematic literature
review. Information and Software Technology 73, 52–65 (2016)

20. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and mining of
academic social networks. In: Proceedings of the 14th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. pp. 990–998. ACM (2008)

21. Tong, H., Faloutsos, C., Pan, J.y.: Fast random walk with restart and its applications. In:
ICDM. pp. 613–622 (2006)

22. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems.
In: KDD. pp. 1235–1244. ACM (2015)

23. Wi, H., Oh, S., Mun, J., Jung, M.: A team formation model based on knowledge and collab-
oration. Expert Systems with Applications 36(5), 9121–9134 (2009)

24. Wu, C.Y., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks.
In: WSDM. pp. 495–503. ACM (2017)

25. Yao, Y., Tong, H., Yan, G., Xu, F., Zhang, X., Szymanski, B.K., Lu, J.: Dual-regularized
one-class collaborative filtering. In: CIKM. pp. 759–768. ACM (2014)

