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Abstract—Wearable internet of things (IoT) devices are becoming
popular due to their small form factor and low cost. Potential applications
include human health and activity monitoring by embedding sensors
such as accelerometer, gyroscope, and heart rate sensor. However, these
devices have severely limited battery capacity, which requires frequent
recharging. Harvesting ambient energy and optimal energy allocation can
make wearable IoT devices practical by eliminating the charging require-
ment. This paper presents a near-optimal runtime energy management
technique by considering the harvested energy. The proposed solution
maximizes the performance of the wearable device under minimum
energy constraints. We show that the results of the proposed algorithm
are, on average, within 3% of the optimal solution computed offline.

[. INTRODUCTION

Advances in low power sensor, processor and wireless commu-
nication technologies enable a wide range of wearable applications.
For instance, small form factor and low cost IoT devices offer a
great potential for non-invasive healthcare services which are not
limited to any specific time or place [3, 7]. Exciting, and possibly
pervasive, applications include health monitoring, activity tracking
and gesture-based control [29]. However, small form factor and
low cost constraints severely limit the battery capacity. Therefore,
harvesting ambient energy and optimal energy allocation are crucial
for the success of wearable IoT devices.

Energy limitation is one of the major problems faced by wearable
applications. Bulky batteries are heavy and inflexible, while small
printed batteries have modest (3.16-29.6 mWh/cm?) capacity [24, 25,
41], which requires frequent charging. Therefore, it is imperative to
exploit ambient energy sources such as light, motion and heat. Recent
studies show that photovoltaic (PV) cells can provide 0.1 mW/cm?
(indoor) — 100 mW/cm? (outdoor) power [39]. Similarly, human
motion and heat can generate 0.73 mW/cm?® [10] and 0.76 mW/cm?
power at AT = 10 K [22], respectively. Energy harvesting can be
particularly effective for wearable devices, since they are inherently
personalized. For example, the device can easily learn the expected
energy generation and consumption patterns based on daily activities.
Therefore, we adopt energy harvesting as the primary source. At
the same time, the intermittent nature and current source behavior
of the energy sources necessitate an energy storage element, such
as a battery and super capacitance [31]. In this work, we utilize
rechargeable flexible batteries as a reinforcement to provide a smooth
quality of service and backup, in case the harvested energy falls
significantly below expectations. The batteries we employ offer 148
mWh capacity at a 12x35 mm? footprint, have 2 mm thickness, and
weigh 1.7 g [30].

The primary goal of this work is to provide recharge-free wearable
IoT devices that maximize the quality of service (QoS). To achieve
this goal, we propose a dynamic energy optimization framework with
a finite time horizon. The proposed framework channels the generated
power between the battery and the IoT device, while enforcing
minimum and target energy constraints to guarantee recharge-free

operation. The fundamental components of the proposed framework
are illustrated in Figure 1 and described below.

Inputs and objective: The inputs to our optimization framework are
the initial battery energy and the expected energy harvested pattern.
In addition, we also specify the minimum battery level allowed at
any point in time and the battery energy target at the end of the
day. The minimum energy constraint ensures that the battery always
has a reserve to perform emergency tasks. Similarly, the energy level
target ensures that the battery will have a desired level of charge at
the end of each day. Our goal is to optimize the work performed by
the IoT device, called the utility, under the battery level constraints.
We measure the utility using an increasing function of the energy
allocated to the IoT device. This choice captures the fact that more
energy allocation would lead to a larger utility. At the same time, it
is more general than simply maximizing the allocated energy itself,
since allocating more energy may have a diminishing rate of return.
Dynamic optimization with 24-hour horizon: The first component
of the proposed solution is a finite horizon dynamic optimization
formulation, as represented by the green patterned box in Figure 1.
We set the finite time horizon as 24 hours, since the energy harvesting
pattern and user activities are repeated on a daily basis with potential
day-to-day variation. The 24-hour horizon is divided into equal
intervals, e.g., one hour or one minute epochs. We derive a closed-
form solution that gives the optimal energy allocations for each
time interval during the day by using Karush-Kuhn-Tucker (KKT)
conditions [23]. The optimality of this solution is guaranteed if the
expected energy harvesting pattern matches with the actual generated
energy. However, there are inter-day and inter-interval variations in
the generated energy due to environmental conditions. Therefore, we
also need to perturb the energy allocations computed using expected
values.

Perturbation in each interval: The energy allocations computed at
the beginning of each day deviate from their optimal values due to
uncertainties in the harvested energy and load conditions. Therefore,
we also perform runtime optimization by taking the differences in
the expected and actual energy values into account. For example,
suppose that one-day horizon is divided into 24 one-hour intervals,
and the energy harvested during the first hour is less than the assumed
value. We compute this difference at the end of the first hour. Then,
we reflect it in the energy allocations computed for the rest of the
intervals on that day. In this way, the deviation from the optimal
allocations are rectified at every interval. As a result, we continuously
adapt to the changes in the environmental conditions with negligible
runtime overhead.

Learning the daily patterns: Throughout the day, we keep track
of harvested energy in each interval, and use this data to find the
expected energy harvesting pattern. Similarly, user motion patterns
reveal low and high activity periods (e.g., sleep and exercise times).
Daily averages of this data are fed to the proposed framework. Then,
this data is used to guide the energy allocations, such as allocating
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Fig. 1: The proposed hardware architecture and energy harvesting framework. The energy harvesting unit channels the generated current
between the IoT device and battery. Our proof of concept prototype uses PV-cell as the ambient energy source, but the proposed framework

can work with multiple energy sources.

minimum energy during sleep, as described in Section IV-C.

We demonstrate the proposed framework using the hardware pro-
totype presented in Section V-A. Our prototype employs flexible PV-
cells to harvest energy from ambient light. The effectiveness of our
optimization algorithm is evaluated for different user activities and
energy harvesting patterns obtained from an online database [2, 38].
The proposed runtime algorithm is near optimal, since the actual
harvested energy in a given interval may be different than the
expected value. Therefore, we compare our results with the max-
imum achievable utility computed using an oracle and an offline
optimization algorithm [12, 13]. We show that the utility obtained
by our runtime optimization approach is within 3% of the optimal
utility, which is not feasible since it assumes an oracle. Moreover,
our results converge to the optimal solution as the difference between
the harvested energy and its expected value diminish.

The major contributions of this work are as follows:

« We present a closed-loop solution for finding the optimal energy
consumption of a self-powered IoT device when the amount of
harvested energy is known a priori,

« Since the actual harvested and consumed energy may differ from
their expected values, we propose a novel runtime algorithm with
constant time complexity for setting the energy consumption in
finite horizon,

« We demonstrate that our results are, on average, within 3% of the
optimal solution computed offline for a wide range of practical
scenarios using a hardware prototype. We also show that the
proposed algorithm incurs negligible power consumption and
execution time penalty.

The rest of the paper is organized as follows: We review the related
work in Section II. We present the preliminaries and the proposed
algorithm in Section III and Section IV, respectively. Finally, we
discuss the experimental results in Section V, and summarize the
conclusions in Section VI.

II. RELATED WORK

Wearable IoT devices have recently attracted significant attention
due to advances in sensing, low-power processing, communication
protocol and radio technologies [15, 26]. In particular, flexible
hybrid electronics technology offers a great potential for sensor-rich
wearable applications [5, 14, 21].

Limited battery capacity of wearable devices has led to the study of
energy harvesting. Major components of an energy harvesting system
are the energy source, storage, harvesting circuit and harvesting-aware
power management [31, 34]. Solar energy harvesting using PV-cells
is one of the most promising techniques adopted by many recent

studies [1, 28, 31]. Body heat and motion can also generate energy
with the help of thermoelectric [16, 35] and piezoelectric sensors [17,
32], respectively.

Energy harvesting aware power management for wireless sensor
nodes has been studied extensively in recent years [9, 20, 40].
In particular, the work in [20] presents a general framework for
including energy harvesting in power management decisions. The
authors maximize the duty cycle of a sensor node using a linear
program formulation. To avoid solving a linear program at runtime,
the authors also present a low-complexity heuristic to solve the linear
program. Similarly, a linear quadratic tracking based algorithm that
adapts the duty cycle of the sensor node is presented in [40]. The
authors minimize the deviation of the battery level from a specified
target. However, these solutions do not consider the application
requirements when tuning the duty cycle of the nodes.

Concurrent task scheduling and dynamic voltage frequency
scheduling is proposed to increase the lifespan of energy harvesting
systems in [27]. At the beginning of each time interval, their
algorithm refines the solar irradiance estimation and adjusts the task
scheduling, but it is unable to correct future energy allocations. To
achieve long-term recharge-free operation, a design-time capacity
planning and runtime adjustment method is presented in [6]. Their
methodology derives the battery capacity that can satisfy uninter-
rupted operation for a year. During runtime, the duty ratio of the
device is changed based on the daily operation history. However, this
approach only reacts to the harvested energy variations, thus leaving
room for improvement.

In wearable IoT applications, energy can be optimized by consid-
ering the user activity and application characteristics. Our proposed
approach learns the energy harvesting and user activity patterns.
We first calculate the optimal energy allocation using a closed-form
formula, assuming expected harvesting pattern. Then, we propose
a novel runtime algorithm that both revises the optimal allocation
dynamically and redistributes the slack from the previous intervals.

III. PRELIMINARIES AND OVERVIEW

We divide the one-day horizon into " equal intervals. For example,
the battery energy illustration in Figure 2 assumes 7' = 24, i.e., each
interval is one hour long. The proposed approach does not put any
constraints on the level of granularity, provided that the overhead of
the runtime energy allocation calculations is negligible'.

Energy constraints: The battery energy at the beginning of any
interval ¢ is denoted as EtB for 0 < ¢t < T — 1. The proposed

'Our implementation runs with one-minute intervals without any significant
overhead.



approach can work with multiple ambient sources such as a PV-
cell, thermoelectric generator and a piezoelectric device. In our
experiments, we use a commercial PV-cell as the ambient energy
source [8]. Suppose that the harvested and consumed energies in
interval ¢ are given by Eff and EY, respectively. As illustrated in
Figure 2, the battery energy dynamics can be expressed as:

B, =EP + Bl —Ef, 0<t<T-1 (1

where 7; is used to model the losses of the battery and power
management circuitry including the PV cell and voltage converters.
The efficiency is time varying since it is a function of generated
current. Regardless of the harvested energy, the IoT device should
have enough reserves to perform an emergency task, such as detecting
a fall and sending an emergency signal. Therefore, we set a minimum
battery level constraint F,, ;. Similarly, we constrain the energy level
at the end of the day from below, such that there is sufficient reserve
for the next day. Hence, the constraints on the battery energy level
are given as:

E7 > Erarget and Ef > Epin ¥t 0<t<T—1 (2)
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Fig. 2: Illustration of the battery level computation for 7" = 24 hr
horizon.

Driver applications and the utility function: Although the proposed
framework does not depend on any particular application, we consider
health monitoring and activity tracking as the driver applications. We
monitor the user activity using a motion sensor unit that integrates
an accelerometer and a gyroscope. We also employ circuitry for real-
time acquisition of physiological signals such as electromyography
(EMG) and electrocardiogram (ECG). These signals are sampled and
processed by a micro-controller unit (MCU). The processing results
are transmitted to a personal device, such as a smartphone, using
Bluetooth Low Energy (BLE) protocol.

The energy requirement of the target application is determined pri-
marily by three factors. The first one is the active power consumption
Pact(ft) as a function of the processing speed f: during interval
t. In our driver applications, this includes sampling the sensors,
processing the data in real-time, and potentially transmitting data
through BLE connection. The other factors are the duty ratio p, i.e.,
the percentage of time the application is active, and the idle power
consumption P;q.. With these definitions, the average application
power consumption in a given interval can be written as:

Py = [pePact(fe) + (1 = pt) Piare] (3)

A given target application needs a minimum duty ratio pmi, and
operating frequency fin to accomplish its performance require-
ments. For example, it may need to guarantee a certain number of
measurements per unit time. We use these requirements to compute
the minimum energy Mg that should be allocated for each period.
Allocating more energy can improve the QoS by delivering higher
throughput, while less energy allocation means lower QoS. We define
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Fig. 3: Illustration of the application utility function.

a utility function that expresses the quality of service in terms
of Mg to capture this behavior. For illustration, a linear utility
function EY — Mg is plotted in Figure 3. In general, allocating more
energy has a diminishing rate of return, while allocation under Mg
degrades quality at a faster rate. Hence, we employ a parameterized
and generalized the utility function that captures this behavior as
illustrated in Figure 3:

c Ei )
u(Ef) =In (M—i) @)

where the parameter « is used to tune the utility function for a specific
user or application. We note that the algorithm presented next works
with any utility function that is concave and increasing. The major
parameters used in this paper are summarized in Table 1.

IV. OPTIMAL ENERGY MANAGEMENT

A. Problem Formulation

Our goal is to maximize the utility over a one-day horizon under
the energy constraints explained in Section III. Hence, we can
formulate the optimization problem using Equations 1-4 as follows:

T—-1 [
. . c c cy t Eic
mazximize U(Eg, Ey...Er) = tE:O 5" 1n (ME
. B B H c
subject to Eiy, = Ey +mE; — Ef 0<t<T—1 (5

E’ZE 2 Etarget

0<t<T -1

In this formulation, we compute the total utility as the sum of the
utilities in each interval. A positive discount factor 0 < 5t <1lis
added to enable bias against distant intervals.

The optimal solution to the problem given in Equation 5 can be
found offline using dynamic programming [4]. However, it requires
solving a set of 7" nonlinear equations, which is computationally
expensive for a runtime algorithm. Furthermore, it relies on the
knowledge of the energy that will be harvested in the future intervals
(ie., EF for 0 < t < T — 1). In what follows, we propose a two-
step solution based on two insights that enable us to overcome these
challenges. The proposed solution leads to a near-optimal runtime
algorithm with a complexity of O(1), i.e., the complexity does not
grow with the time horizon or the number of intervals.

B. Optimal Closed-Form Solution with Relaxed Constraints

The proposed solution relies on two key insights:
Key insight-1: We can derive a closed-form analytical solution
to this optimization problem, if we tentatively ignore the minimum
energy constraint. Obviously, the revised solution is not guaranteed
to satisfy the minimum energy constraint EF > E,.;,. However,
we can enforce it at runtime at the expense of loss in optimality.



TABLE I: Summary of the major parameters

Symbol Description
T Number of control intervals in the finite horizon
B8>0 Discounting factor for utility

Emin, Etarget Minimum and target battery energy constraints

P Power consumption of the IoT device in interval ¢

Duty ratio and frequency of the IoT device

pe; fi in interval ¢
Mg Minimum energy required for positive utility
A positive parameter to control the shape

« of the utility function
EtH , Ef Harvested and consumed energy in interval ¢
EtB Battery energy at the beginning of interval ¢
Al AC Deviation from the expected values of harvested

tr B¢

and consumed energy

Therefore, we find the closed-form solution at the beginning of each
day. Then, the energy allocations are adjusted at the beginning of
each interval, as described in Section IV-C.

Key insight-2: We cannot rely on the knowledge of energy that will
be harvested or consumed throughout the day. However, we can learn
the expected patterns by profiling the generated energy during each
time interval. This enables us to derive the optimal allocation for
each interval at the beginning of each day by utilizing the expected
values. Similarly, the actual energy consumption may be different
than the optimal allocation, as detailed in Section IV-C. Therefore,
we compare the actual generated and consumed energies with their
expected values. Then, we use the difference to perturb the energy
allocations for the remaining intervals, as described in Section IV-C.
Since we relax the E,,;, constraint, there may be time intervals
during which the battery level drops below the minimum threshold.
Furthermore, the proposed approach can over- or under-allocate
energy due to unexpected changes in the harvested energy, unlike
an oracle-based offline optimization. However, these effects do not
propagate beyond one interval, since the proposed approach rectifies
over- and under-allocations at the beginning of the next control
interval. For the continuity of the discussion, we first summarize the
closed-form solution with relaxed constraints below.

Closed-form solution: When we relax the minimum energy con-
straint and assume expected values for the harvested energy, the
optimal energy allocation for each interval can be found as follows:

EB_E T-1 . pH
First interval :  E§ = 0 target + 240 M Ex
1+8+82+...+p71
Subsequent intervals : By, = SE} 0<t<T-1

(6)

The derivation is presented in the Appendix. Note that the denomina-
tor can be computed a priori, and the total expected energy that will be
harvested is available through profiling. Therefore, this closed-form
equation enables us compute the energy allocations with constant
time complexity. Next, we explain how we employ this solution to
design a runtime algorithm.

C. Near-Optimal Runtime Solution

This section presents our novel algorithm that builds on top of the
closed-form solution given by Equation 6. The proposed algorithm
perturbs the optimal allocations found using the expected energy
values and enforces the minimum energy constraints at runtime.

1) Uncertainty in Expected Energy Values: The actual energy
harvested at runtime may differ from the expected value due to factors

such as environmental conditions. Efficiency in storing the harvested
energy also adds to the uncertainty, since it varies with the load. We
represent the difference between the actual energy generation and the
expected value by A A# > 0 (AF < 0) means that actual energy
harvested during interval ¢ is larger (smaller) than the expected value
for that interval.

An IoT device uses the energy allocation target for a given
interval ¢ to compute the average power consumption allowed in that
interval. Then, it finds the duty ratio and operating frequency using
Equation 3 as summarized in Section IV-C4. However, the actual
energy consumed at the end of the interval may be different from the
target. We subtract the actual consumption from the allocated energy
to find the difference Af. Similar to the difference in the harvested
energy, Ay > 0 means a surplus, Af < 0 means that more energy
than the allocated target is consumed. Hence, the difference between
the expected energy accumulation and the actual values can be written
as:

Ar=AF + A 0<t<T -1 )

When A: is positive, the energy surplus can be used during the
remaining intervals. Otherwise, the consumed energy is more than
the allocated target. Therefore, the deficit should be reflected in the
remaining intervals.

2) Perturbation of the Allocated Energy Values: We need to adjust
two quantities to account for the unpredictable dynamic variations.
First, the optimal solution given in Equation 6 needs to be corrected
in light of the new data available at the end of each interval. Second,
the over or under expenditure in the previous interval should be
distributed to future intervals.

Correcting the Future Allocations: Suppose that we adjust the
optimal allocation at the beginning of the time interval ¢. The
difference in expected and actual energy accumulated over earlier
intervals {Ao, A1,...,A¢_1} are known at this point. Therefore,
the adjusted allocation for interval ¢ can be found using Equation 6
as:

B T—1 H t—1

EO - Eta'rget + Zk:o 77tEk + Zk:o Ay
1+p6+82+... + 571
Since we are interested in a computationally efficient recursive
solution, we can re-arrange the terms to express Fy in terms of F;_,
and A¢_; only:
B T-1 H t—2

t—1Eo — Erarget + Zk:o neEy; + Zk:o Ay
ZT71 Bk

k=0

Ef =p'

E;=8(8

B A1

+ =71
Yo B

)

t—1
b A“) 8)

T—1
k=0 B*
Hence, Equation 8 corrects the future allocations based on the most

up-to-date energy generation and consumption information after each
interval.

Ef = B(Effl +

Redistributing the Surplus/Deficit: In addition to correcting the
future allocations, we need to account for deviations from the revised
optimal values in the past intervals. For example, assume that the
optimal allocation for interval ¢ — 1 was computed as 10 mAh, but
the harvested energy in interval ¢ — 1 turned out to be significantly
lower than the expected value. Suppose that the optimal allocation
in interval ¢ — 1 is corrected as 6 mAh in light of the new
measurements. Equation 8 corrects the future allocations, but it does
not claim back 4 mAh overspent in the previous interval. In other



words, Equation 8 alone does not make up for over-consumption, or
reclaim the underutilized energy allocations in the previous intervals.
Therefore, we need to distribute A;_; to the remaining intervals
[t,T — 1]. A straightforward uniform distribution is not sufficient,
since any adjustment introduced at time ¢ affects the future allocations
due to the recursive rule in Equation 8.

Suppose that we add a correction term to Equation 8 as follows:

/3t71 At 1
C c —
Ef = B(Ei_1 + W) +arAi—1
k=0
where a; is a normalization coefficient that will ensure that the
perturbations in the remaining intervals will add up to precisely A;_1.

By grouping the terms with A;_1, we obtain:

t
Ef = BEf , + (%Olgk +ar) A ©
Since the perturbation term will be multiplied with 5 in each future
interval (due to the SE{_, term), the sum of the perturbations from
the current interval through the last one can be written as:

T—1 /Bt
Z ﬁkit(ﬂ + at)At71 = At71
k=t k=0

By solving this equation, we can find a; as:

-8 _ Bt
AT T ST
1 1 B

T—t T

0<p<1
B=1

3) User Activity and Minimum Energy Constraint: Profiling the
energy consumption and user activity reveal specific periods with
low or high activities. For example, it is possible to identify sleep
and exercise periods. The proposed approach enables us to easily
introduce new equality constraints based on this information. More
precisely, we set Ef = Mg for intervals ¢ that fall during the sleep
duration. Similarly, one can allocate a certain maximum value during
expected exercise periods. We note that over-allocation does not have
a significant drawback since unutilized allocations are distributed to
future periods. However, under-allocation may hurt the utility if the
interval duration is long (e.g., one hour). Therefore, low activity
regions should be selected conservatively. Since these constraints can
be introduced as pre-allocation, they do not change the formulation.

The final consideration is enforcing the minimum energy con-
straint. Equation 9 can cause the battery energy drain below Ey,in,
since this constraint was relaxed to find a closed-form solution.
Therefore, we project the remaining battery energy EEH at runtime
using Equation 1, and compare it against F,,;, before committing to
a solution. If there is a violation, we allocate the maximum energy
that satisfies Ef,_l = FEin. That is, the allocation becomes:

10)

at =

t
BEf 1+ (ﬁ +a)Ai-1 Ef1 > Emin
B = k=0 (11)
EP + mEl" — Emin otherwise

where Eﬁ_l and a; and are given by Equations 1 and 10, respectively.

4) Summary of the Proposed Algorithm: We conclude this section
with a step-by-step description of the runtime operation:

1) At the beginning of each day: Compute the allocation for the first
interval E§ using Equation 6.

2) For each interval 0 < t < T —1: Divide the energy allocation F;
by the interval duration to find the target power consumption P;.
Then, use Equation 3 to find the duty ratio p;. If there are multiple
allowed frequency levels f;, we use the most energy efficient f.
However, any feasible combination is acceptable.

3) During each interval 0 < t < T — 1: Keep track of actual
harvested and consumed energy. Compute A: at the end of
the interval by finding the difference between the expected and
measured values.

4) Before the start of each interval 1 <t < T — 1: Use Equation 11
to find the next allocation Ef. If ¢ = T — 1 stop, otherwise
increment ¢ and go to step 2.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

IoT Device Parameters: We employ the prototype shown in Figure 4
to demonstrate the proposed algorithm under realistic scenarios. It
consists of an MPPT charger (TI BQ25504 [36]), a microprocessor
(TI CC2650 [37]), a motion sensor unit (InvenSense MPU-9250 [19]),
and EMG circuitry. We use a PV-cell from FlexSolarCells SP3-37 [8]
as the energy-harvesting device and a 12 mAh Li-Po battery GMB
031009 [11] as the storage element. We have probes to measure
the power consumption of different components, as illustrated in
Figure 1. These measurements are used to validate the power model
given in Equation 3 as a function of the duty ratio and frequency. We
also determined the IoT device parameters, such as F,,i, and Mg,
listed in Table II, based on these measurements.

TABLE II: Parameter values used during evaluations

Parameter  Value Parameter  Value
FEmin 0.75 mAh Eiarget 8 mAh
Piaie 2.2 mW Mg 0.6 mAh
T 24 « 1

Fig. 4: Prototype (a) front view, (b) back view

Energy Harvesting Model: The harvested energy is determined
by the PV-cell and the radiation intensity, which is a function of
observation time and location. I-V characteristics of SP3-37 are
measured by varying the radiance from 100 to 1000 W/m? with the
help of a halogen lamp. Then, this empirical data is used to model
the maximum generated power as a function of radiation. This model
enables us to compute the harvested energy, if the radiation is known.
To find the radiation, we first estimate the position of the sun at a
given date and time using Sandia’s Ephemeris model [33]. Then,
we convert the position information to radiation using Ineichen’s
model [18]. These three models are used by our algorithm to predict
the energy that will be harvested during the day. We compare our
results to an offline optimal algorithm implemented using the CVX
package [13] and an oracle. The oracle uses the actual radiation,
which is measured at every minute on the NREL Solar Radiation
Research Laboratory’s baseline measurement system [2].

User Activity Model: The energy consumption varies as a function
of the user activity. To evaluate a wide range of scenarios, we use
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Fig. 7: Energy allocation in January after learning the user
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different user activity patterns from the American Time Use Survey
conducted by the US Department of Labor [38]. This survey contains
the time a user spends for various activities. In our evaluations, we
use five activity categories {sleep, work, exercise, leisure, others}.
When the user is asleep, we allocate Mg to the corresponding
interval. Otherwise, we use the proposed approach to find the optimal
allocation.

B. Energy Allocation Over Time

We first illustrate the operation of the proposed algorithm for a
specific user and date. Figure 5 shows the energy-harvesting profile,
battery energy and optimal allocations on January 15° for user-1.
The energy harvesting profile (blue o markers) shows that there is
little to none energy generation until 8 AM. During this period,
the allocated energy (red [J markers) is supplied by the battery,
whose stored charge drops continuously (green A markers). Once
the harvested energy exceeds the energy allocated within an interval
(around 10 AM), the battery energy starts recovering. We observe
that our results match very closely with the result of the offline
optimization that uses an oracle (dotted lines). We do not see a
significant difference in the allocated energy throughout the day,
since the battery capacity is sufficient to absorb the variation in
the harvested energy. However, we observe a dramatically different
behavior for July, as shown in Figure 6. The peak harvested energy
is about 2.5x larger in July than January (~3.5 mAh versus ~9
mAh), and it spans a wider range. Therefore, the proposed algorithm
allocates aggressively at the beginning of the day, relying on the
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Energy allocation in July after learning the user

energy that will be generated later. However, it hits the minimum
battery energy constraint at 4 AM, unlike the offline optimization
that accounts for E,,;, from the beginning. As soon as the battery
energy drops to Enmin, the proposed algorithm starts allocating sub-
optimally only the harvested energy to the IoT device. This continues
until the harvested energy becomes sufficiently large to power the IoT
device and charge the battery (8 AM). While the allocation during
the rest of the day closely follows the optimal allocation, the IoT
device is under-powered from 3 AM to 8 AM. As a result, the loss
in utility with respect to the oracle is larger compared to that obtained
for January. This demonstrates the cost of neglecting the minimum
energy constraint at the beginning of the day.

Next, we analyze the results on same days by taking the user
activity into account. We identify the periods of low activity, primarily
the intervals categorized as sleep, and constrain the allocations in
those intervals as Ef = Mpg. We add the same constraint to the offline
optimization for fairness. Comparing Figure 5 to Figure 7 shows
that the algorithm starts allocating less energy at night. As a result,
more energy is reserved for higher activity intervals, which leads to
more than 30% increase in the utility during those intervals. Like
before, the results match very closely with the offline optimization
results. Incorporating the user activity leads in even more savings in
the results obtained for July. When we account for user activity, the
proposed algorithm does not over-allocate at the early hours, since
there is little activity during night. Therefore, the battery energy does
not hit to E,,i», and our results coincide with the oracle results, as
shown in Figure 8.
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Fig. 9: Comparison of the proposed solution to offline optimization for three users over 12 months.

C. Comparison to Offline Optimization

Improving the duty ratio is an important end goal. Therefore, this
section compares the duty ratio obtained with the proposed approach
against the offline optimization results, which employ an oracle.
We performed the comparisons for three different users from the
US Department of Labor [38] database over 12 months. Figure 9
summarizes the normalized duty ratio (our results divided by the
offline optimization results). We observe that the duty ratio provided
by our approach is, on average, within 1% of the duty ratio achieved
by the oracle. Moreover, the largest loss in optimality in the duty is
less than 5%. We observe a bigger loss under two conditions. First,
when the variation between the expected and actual energy generation
is large, the results of the proposed algorithm degrade, as anticipated.
Second, when the peak-to-peak variation in the harvested energy
becomes comparable to the battery capacity (~25% of Ejqrget), the
proposed algorithm hits the E,,;, target, as shown in Figure 6.

VI. CONCLUSIONS AND LIMITATIONS

Wearable IoT devices have a great potential to enable health
monitoring, activity tracking and gesture-based control applications.
However, they face severe energy limitations due to weight and
cost constraints. Therefore, harvesting energy from ambient sources,
such as light and body heat, and using it optimally is critical for
their success. This paper presented a near-optimal runtime algorithm
for self-powered wearable IoT devices. The proposed approach is
based on two observations that lead to near-optimal results with
constant time complexity. First, we obtain a closed-form solution for
the optimization problem by relaxing the minimum battery energy
constraint. Then, we use the expected energy that will be harvested
throughout the day to solve the relaxed finite horizon optimization
problem. Finally, we account for the deviations from the expected
values and enforce the minimum energy constraints at runtime. We
demonstrate that our results are on average within 3% of optimal
values computed offline using an oracle. The results degrade as
the peak-to-peak variation in the harvested energy and deviation
from the expected values increase. However, the degradation in the
utility is small when the battery capacity can absorb the peak-to-peak
variations.
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APPENDIX: DERIVATION OF EQUATION 6

To solve the optimization problem given in Equation 5, we first
evaluate the Lagrangian of the objective function as:

T-1
E{ \a .
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Using the Lagrangian, we can write the first-order conditions as:
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In addition to the first-order conditions above, the Karush-Kuhn-
Tucker (KKT) conditions are p: > 0, A¢ > 0, and:

pie(ES1 — Emin) =0 (16)
II/T—I(EIE"; - Etarget) =0 (17)

Since u(Ef) is concave, Equations 13-17 give the necessary and
sufficient conditions for the optimality [23]. We present a step-by-
step solution below.

0<t<T—1

1. Boundary Condition: Lagrangian multipliers \; can be found
using Equation 13 as :
aM E
)\ =
t Etc
Combining this relation with Equation 15, we can conclude that
Ar—1 = pr—1 # 0 . Hence, the complementary slackness given
by Equation 17 implies EZ = Ftarger.

0<t<T—1 (18)

2. Recursion over Ef: We can use Equation 14 to derive a recursion
rule for \; and combine it with Equation 18 as follows:

BAty1 = Ae + e 0<t<T~-1
OtﬂME OzME

- = — + [ 0<t<T -1 (19)
Efy E

We plug the boundary condition B = FEiarget to this recursive
relation. Then, the energy allocations in earlier interval can be solved
using the Equation 5 and the KKT condition given by Equation 16.
Solving 7" nonlinear equations at runtime is not efficient. However,
tentatively ignoring the minimum energy constraint (key insight 1),
enables us to eliminate z; from Equation 19. That is, we can set p; =
0 in equations 16 and 19. Similarly, /7 is not known a priori, but
we use the expected values (key insight 2). The proposed algorithm
presented in Section IV-C enables us to make up for these choices
at runtime.
3. Closed-form Solution: After setting uy = 0, 0 <t < 7T —1,
Equation 19 reduces to:

E{, = BEY (20)

We can re-arrange the battery energy dynamics in Equation 5, and
combine with this relation as follows:

E§ =By — B +0Eq, BE;=EY — By +n2Ey' ...
BT TVES = ER_y — Erarget + nr—1 B4,
Note that Eiqrger in the last equation comes from the boundary
condition. When we summing up these T equations, Ef — FE_,
cancel each other. Hence, we find E§ as:
E(])3 - Eta'rget + 23;701 ntEtH

1+B8+B2+...+pT1

Combining Equation 20 and Equation 21 gives the closed form
solution summarized in Equation 6. [

Eg = 21





