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Flexible PV-cell Modeling for Energy Harvesting

in Wearable IoT Applications

JAEHYUN PARK and HITESH JOSHI, Arizona State University

HYUNG GYU LEE, Daegu University

SAYFE KIAEI and UMIT Y. OGRAS, Arizona State University

Wearable devices with sensing, processing and communication capabilities have become feasible with the

advances in internet-of-things (IoT) and low power design technologies. Energy harvesting is extremely im-

portant for wearable IoT devices due to size and weight limitations of batteries. One of the most widely used

energy harvesting sources is photovoltaic cell (PV-cell) owing to its simplicity and high output power. In

particular, flexible PV-cells offer great potential for wearable applications. This paper models, for the first

time, how bending a PV-cell significantly impacts the harvested energy. Furthermore, we derive an analytical

model to quantify the harvested energy as a function of the radius of curvature. We validate the proposed

model empirically using a commercial PV-cell under a wide range of bending scenarios, light intensities and

elevation angles. Finally, we show that the proposed model can accelerate maximum power point tracking

algorithms and increase the harvested energy by up to 25.0%.
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1 INTRODUCTION

Wearable devices interweave technology into daily life in a myriad of applications including health

monitoring, smart watch, and fitness tracker. Widespread adoption of these devices is hindered by

the duration they can operate without recharging. Since the weight, size and flexibility constraints

limit the total battery capacity [7], it is imperative to leverage ambient energy sources, such as solar
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Fig. 1. Wearable IoT devices powered by a flexible PV-cell.

Fig. 2. The P-V curve of a flexible PV-cell for a constant radiation intensity G = 1000W /m2 and elevation

angle α = 50◦ when is flat and bent.

energy, body heat and motion. We envision an application scenario where the wearable device is

primarily powered through the harvested energy with a small battery serving as a backup, as

shown in Figure 1. Flexible harvesting sources are necessary for wearable applications, since they

can conform to human body and clothing. Flexible photovoltaic cells (PV-cells), in particular, offer

superior outdoor and competitive indoor power density to other alternatives. They can deliver

10 − 100mW /cm2 outdoors and 100 μW /cm2 indoors [19]. In comparison, flexible thermoelectric

generators (TEG) generate 3.8mW /cm2 at ΔT = 50 K [10] and piezoelectric generators provide up

to 101 μW /cm3 with 1 kдf [9].

The amount of power harvested from a PV-cell is determined by the operating point on the

current–voltage (I–V) curve. The voltage and current values that maximize the harvested power

is called the maximum power point (MPP). Both the MPP and harvested power are a strong func-

tion of the physical flexibility of a PV-cell. To demonstrate this impact, we performed experi-

ments with a rectangular FlexSolarCell flexible PV SP3-12 unit with length L = 50.8mm and width

W = 12.7mm [6]. We observe that the power produced by this unit degrades significantly under

bending. In particular, R = 40mm radius of curvature leads to 56.7% degradation in maximum har-

vested power, for a constant radiation intensityG. Our measurements also show that the MPP can

change significantly when the PV-cell is bent, as illustrated using the � and�markers in Figure 2.

Therefore, finding the location of the MPP is important to maximize the harvested power. Fur-

thermore, PV models, such as Sandia PV Array Performance Model [11] and parameter extraction

methods [21], rely on it to reproduce the I-V curve.

TheMPP changes as a function of the load current, radiation and temperature. Therefore, a vari-

ety of maximum power point tracking (MPPT) algorithms are proposed to maximize the harvested

power [2, 5, 20]. MPPT algorithms run in conjunction with a DC–DC converter and an MPPT con-

troller. The controller regulates input voltage or current of the converter, as shown in Figure 1. For

example, the maximum power point voltage VMPP decreases (increases) as the radiation intensity

reduces (grows), while the ratio of theVMPP to the open circuit voltage, i.e., (VMPP/VOC ), does not
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vary significantly for flat PV-cells [2]. Fractional open-circuit voltage (FOCV) MPPT algorithm

utilizes this information to track VMPP .

Two major considerations of MPPT algorithms are accelerating the convergence time and min-

imizing the tracking energy overhead. When the MPP shifts due to a rapid change in operating

conditions, the MPPT algorithms dynamically search for the new MPP. This search happens in-

crementally, unless there is a model that predicts the change in the MPP. The approach presented

in [12, 24] shows that estimating the new MPP reduces the convergence time when a sudden radi-

ation change occurs. In Section 4.3, we show that bending can also change the parameters of the

MPPT algorithm significantly compared to a flat PV-cell model. Although the impact of bending

on the harvested power is well established, to date, there are no analytical models that quantify this

relation. An analytical quantification can accelerate the MPPT algorithms and boost the harvested

power in flexible PV-cells. Moreover, it can be used to predict the energy harvesting potential given

an application scenario, e.g., when wearing the flexible PV-cell on the arm.

In this paper, we first model the radiation received by the flexible PV-cell as a function of the

radius of curvature, the radiation intensity, and the incident angle of light source to the PV-cell’s

surface. Then, we extend the proposed model to account for the partial shading effect that causes

significant change in the harvested power. We validate the accuracy of the proposed model by

comparing an exhaustive set of empirical results that includes using a commercial FlexSolarCell

(PV SP3-12 unit). Our extensive validation demonstrates that the proposed model can predict the

voltage and power at the maximum power point with 1.8% and 4.8% error, respectively. Finally, we

use our analytical models to extract the circuit parameters of flexible PV-cells. The proposed mod-

els and extracted parameters enable us to accelerate the MPPT algorithms and boost the harvested

power. Our simulations performed using a fractional open-circuit voltage MPPT algorithm [2]

show that the proposed analytical model increases the harvested energy by as much as 25.0%.

The major contributions of this work are as follows:

• We derive an analytical model that quantifies the I-V characteristics of flexible PV-cells

under different bending and partial shading scenarios

• Our exhaustive experiments using a commercial PV-cell show that we can estimate the

voltage and power at the MPP on average with 1.8% and 4.8% error, respectively.

• We show that the proposed model leads up to 25.0% increase in harvested energy compared

to a MPPT algorithm that does not model flexibility

The rest of this paper is organized as follows. Section 2 reviews the related work and highlights

our major contributions. The analytical radiation model with bending is derived in Section 3. We

present validation of the proposed model with extensive experiments and show the benefit of the

model in Section 4. Finally, Section 5 concludes this paper.

2 RELATEDWORK

Designing the power supply system is a key issue for IoT applications, since insufficient power can

severely limit their operation. Accurate analytical modeling is proven to be a good starting point

for low power system design [14]. Hence, analytical modeling of flexible PV-cells is an important

problem, which has not been addressed before.

A two-fold three dimensional PV panel, instead of a traditional two-dimensional flat PV panel

is proposed in [25]. Similar to our approach, this work analyzes the power change of the two-fold

three-dimensional PV panel as a function of the angle between the sub-panels. It also discusses

the partial shading effects, which is an important problem. This work extends the service time of

applications, but it still targets only flat PV-cells. Thus, their models are not suitable for considering

the flexible PV-cells. Power generated by PV-cells degrades significantly, if one of the serially
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connected cells has lower radiation intensity than the others. The cell with lower radiation not

only provides less power but also hinders power generation of other cells [31]. This phenomenon

can be avoided with help of bypass diodes, which generates local maximum power points [13, 22,

23]. Therefore, we explicitly model the impact of partial shading and bypass diodes.

Uneven distribution of radiation intensity across a bent PV is an inherent feature of flexible

PV-cells. A simple equation to calculate the effective length of a flexible PV-cell, when it is bent, is

proposed in [13]. However, the authors do not present an analytical model, but only measure the

behavior of flexible PV-cells to develop an MPPT algorithm. The ratio of the maximum harvested

power PMPP to the product of open-circuit voltageVOC and short-circuit current ISC , i.e., fill factor,
can be used to model the behavior of PV-cells. The work presented in [22] models flexible PV-cells

based on the fill factor, which changes with bending. Their method requires a set of measured data

at different bending scenarios. Furthermore, it is not able to find the location of local maximum

power point caused by bypass diodes. In contrast, our approach requires measurements only for

flat cells and finds the local and global MPPs with or without bypass diodes.

In energy harvesting applications, maximum power point tracking has been an important is-

sue to increase the system-level energy harvesting efficiency. Commonly used MPPT algorithms

include perturb and observation (P&O) [5], incremental conductance [20], fractional open-circuit

voltage (FOCV) and fractional short-circuit current (FSSC) [2]. However, most algorithms target

conventional flat PV-cells because there is no analytical model that considers flexible PV-cells.

MPPT algorithms for flexible PV-cells are proposed in [13, 23] to follow the global maximum power

point. Chaotic-search and particle swarm optimization based MPPT algorithm is proposed due to

absence of analytical model [13]. In addition, these algorithms are not suitable for wearable sys-

tem due to their heavy computation cost. An MPPT algorithm that that target flexible PV-cells is

proposed in [23]. This approach first approximates the location of global MPP using a fill factor

model. Then, it employs a P&O algorithm to track the MPP. The method discussed in the paper

fails to predict the exact location of global MPP. It is also unable to predict the MPP, if the degree

of bending changes dynamically. Therefore, it is not suitable for IoT applications.

To the best of our knowledge, this is the first study to model the radiation and generated power

as a function of bending of flexible PV-cells. We note that the proposed model can be used in con-

junctionwith any existingMPPT algorithm, since this papermainly focuses on analytical modeling

of flexible PV-cells considering bending effects.

3 BENDING-AWARE RADIATION CHANGES IN A FLEXIBLE PV-CELL

A PV-cell generates power as a function of radiation intensity from the light source. Therefore,

this section first presents a radiation model for flexible PV-cells by considering the bending radius.

Then, we enhance the proposed model to account for partial shading that significantly affects the

amount of generated power. Finally, we combine the proposed radiation model with a single diode

equivalent circuit model to practically estimate the amount of generated power onmultiple flexible

PV-cells connected in series. The proposed model is used to estimate the harvested power and the

MPP under different bending conditions. The goal of our modeling effort is to minimize the error

between the estimated and actual values. The accuracy of themodel is validated by the experiments

presented in Section 4.

3.1 Analytical Radiation Model with Bending

3.1.1 Model Construction. Figure 3 illustrates the geometry of a flexible PV-cell, when it is flat

(dashed line) or bent with the radius of curvature R (solid line). The first quantity of interest is

the incident angle between the PV-cell surface and the rays from the light source. For a clear

definition, we divide this angle into two components: elevation angle α and inclination angle β
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Fig. 3. Illustration of bending and major parameters.

Fig. 4. Illustration of the inclination angle.

(where 0 ≤ α , β ≤ π ) of the flat cell. The first term indicates the angle of light source from the

ground surface as markedwith©1 in Figure 3, while the second term indicates the inclination angle

of the PV-cell from the ground surface. For clarity, the flat PV-cell is plotted parallel to the ground

in Figure 3, i.e., the inclination angle β = 0. A more general illustration is depited in Figure 4.

The amount of radiation received by the PV-cell is equal to the radiation intensityG, when the

light rays are orthogonal to the PV-cell surface. However, if the light source has an elevation angle

α or the PV-cell has an inclination angle β , the radiation at the PV-cell surface can be expressed

as:

λ =

∫ L

2

−L
2

∫ W

0

G · sin(α + β ) dwdl (1)

where L and W indicate the length and the width of the PV-cell, respectively [3]. For simplicity,

we only consider α and β where 0 ≤ α , β ≤ π
2 because sin function in the interval [ π2 ,π ] is

symmetric with that of [0, π2 ]. Since the radiation intensity, elevation and inclination angles are
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Fig. 5. Potential partial shading scenarios as a function of the ratio of the length of PV-cell to the radius of

curvature and elevation angle. Note that R1 � R2 � R3.

constant across the flat PV-cell, the amount of radiation can be found as follows:

λf lat = L ·W ·G · sin(α + β ) (2)

Unlike a flat PV-cell, the radiation at each infinitesimal point of a flexible PV-cell is not uniform.

In what follows, we analyze the effective radiation changes with bending step by step.

When a PV-cell is bent with a radius of curvature R, it can be considered as an arc. The central

angle of this arc is L/R. The length of an infinitesimal cross section of the arc, dl , can be expressed

asR · dθ , wheredθ is the corresponding infinitesimal angle. This is illustrated by the regionmarked

with©2 in Figure 3. By convention, we measure θ starting from the center, extending to either sides

of the arc, i.e., +θ and −θ . Hence, the limits of θ can be found as follows:

−L
2
= R · θmin ⇒ θmin =

−L
2R
,

L

2
= R · θmax ⇒ θmax =

L

2R

The final step in transforming Equation (1) is finding the angle between the incident light and

the surface of the bent PV-cell as a function of θ . Note that the infinitesimal cross section at θ = 0

coincides with the flat position. Consider the triangle �OAB formed for an arbitrary θ > 0. We

can easily see that ∠B = π/2 − θ , and ∠C = θ in Figure 3. The elevation angle α becomes an inde-

pendent parameter as the distance between the PV-cell and light source increases. Therefore, the

incident angle of the bent PV-cell at a specific infinitesimal point is found as ∠DEC = α + θ which

is marked with©3 in Figure 3. Hence, the total radiation received by the bent PV-cell can be found

as follows:

λbent =

∫ L

2R

−L
2R

R

∫ W

0

G · sin(α + β + θ ) dwdθ (3)

3.1.2 Derivation of the Analytical Model. Depending on the degree of bending, parts of the PV-

cell can be shaded from the light source. Figure 5 illustrates three possible partial shading cases of

a bent PV-cell depending on the L/R, α and β . We differentiate the radii of curvature using different

symbols (R1, R2, R3) in the figure and the subsequent analysis to explicitly show that the degree of

bending is different in each case.

Case 1: Single-side shading (α + β − L
2R1
< 0)

Unlike a flat PV-cell, shading happens as the PV-cell is bent (i.e., L/R1 increases) and α ap-

proaches 0◦. For example, some areas on the left side of the PV-cell can be shaded as illustrated

in Figure 5(a), when the incident angle is less than 0◦ (i.e., α + β − L
2R1
< 0). Since the shaded area

does not contribute to power generation, we change θmin from
−L
2R1

to−(α + β ). Hence Equation (3)
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is modified as follows:

λbent,1 =

∫ L

2R1

−(α+β )
R1

∫ W

0

G · sin(α + β + θ ) dwdθ

=W ·G · R1

(
1 − cos

(
α + β +

L

2R1

)) (4)

Note that, when the left side is shaded, we do not need to adjust θmax , since the right side of the

PV-cell is not affected. When only the right side is shaded, the analysis is symmetrical to the left

side shading.

Case 2: No shading (α + β − L
2R2
≥ 0 and α + β + L

2R2
< π )

In this condition, there will be no shaded area in both sides of the PV-cell, as shown in Figure 5(b).

Thus, there is no need to adjust θmin and θmax . Hence, Equation (3) is the no shading case and is

expressed as follows:

λbent,2 =

∫ L

2R2

−L
2R2

R2

∫ W

0

G · sin(α + β + θ ) dwdθ

=W ·G · R2

(
cos

(
α + β − L

2R2

)
− cos

(
α + β +

L

2R2

))

= 2W ·G · R2 · sin(α + β )sin
(
L

2R2

)
(5)

If R2 is infinite, the equation should be the same as that of the flat PV-cell. Since limR2→∞ 2R2 ·
sin(L/(2R2)) = L by L’Hopital’s Rule, limR2→∞ λbent,2 = L ·W ·G · sin(α + β ), which reduces to

Equation (2).

Case 3: Both side shading (α + β + L
2R3
≥ π and α + β − L

2R3
< 0)

Both sides of the PV-cell may be shaded, when the flexible PV-cell is severely bent (L/R is larger

than π ). In this case, the flexible PV-cell has shaded areas on both sides as illustrated in Figure 5(c).

Therefore, both θmin and θmax should be adjusted in order to exclude the negative radiation in-

tegration due to the shaded areas. When both sides are shaded, Equation (3) is can be written as

follows:

λbent,3 =

∫ π−(α+β )

−(α+β )
R3

∫ W

0

G · sin(α + β + θ ) dwdθ

= 2W ·G · R3

(6)

3.2 Modeling the Impact of Partial Shading

In general, the open-circuit voltage of a single PV-cell is less than 1 V . Moreover, a single cell

generates 10 − 20mA/cm2 current at 1000W /m2 [26]. Therefore, multiple PV-cells are connected

in parallel to improve the current driving capability. Similarly, a set of PV-cells are connected

in series to increase the output voltage. This resulting structure is called a PV-string. When one

part of the PV-string falls under shade, the shaded cells start acting as power consumers instead of

contributing to the generated power. This phenomenon, known as partial shading, has a significant

impact on the harvested energy [31]. Therefore, it is crucial to account for partial shading problem

when modeling the impact of bending on flexible PV-cells.

Radiation intensity at each infinitesimal point on a flexible PV-string is different when it is bent,

as shown in Section 3.1. Since each infinitesimal point may belong to a different PV-cell, a subset

of cells (more than one PV-cell) may be under the shade together. Therefore, the contribution of
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Fig. 6. A flexible PV-string diagram for a partial shading.

each cell needs to be accounted individually to obtain accurate results. To this end, we refine our

proposed flexible PV-cell model by explicitly dividing the whole PV-string into multiple PV-cells.

As an example, Figure 6 shows a PV-string with a length of L, consisting of ns cells. When this

PV-string is bent with a radius of curvature R, each cell forms an arc with a length of L/(R · ns ).
We note that Equation (3) gives the radiation on a single flexible PV-cell of length Lwith a radius

of curvature R. When a series of ns PV-cells are connected to form a string, we use this equation

to express the total radiation of the ith PV-cell in a PV-string as follows:

λi =

∫ −L
2R +

L·i
R ·ns

−L
2R +

L·(i−1)
R ·ns

R

∫ W

0

G · sin(α + β + θ ) dwdθ , (7)

where 1 ≤ i ≤ ns . The bounds of the first integral are set according to Figure 6. For example, the

range of θ for ith segment is defined from −L
2R +

L ·(i−1)
R ·ns to −L2R +

L ·i
R ·ns . Note that the i

th PV-cell be-

longs to one of three cases described in Section 3.1. Therefore, we evaluate Equation (7) to gener-

alize our model to PV-strings by leveraging the radiation models summarized in Equations (4)–(6).

In particular, each PV-cell falls into one of the following four categories.

I. A given PV-cell is completely under shade: This happens if even the upper limit of the

integral is negative, or if even the lower limit is smaller than π . More precisely:

α + β − L

2R
+

L · i
R · ns

< 0 OR α + β − L

2R
+
L · (i − 1)
R · ns

≥ π

If any one of these two conditions is true, the corresponding PV-cell is completely under shade.

Therefore, the radiation should be zero.

II. Part of the PV-cell is under shade: In this scenario, the left or right side of the PV-cell is

under shade, while the remaining part receives light. Since this scenario coincides with Case 1

studied in Section 3.1, we leverage Equation (4) by refining the limits of the integral. When the left

part is shaded, we have:

Condition : α + β − L

2R
+
L · (i − 1)
R · ns

< 0 AND α + β − L

2R
+

L · i
R · ns

≥ 0

λi =W ·G · R
(
1 − cos

(
α + β − L

2R
+

L · i
R · ns

))
(8)

When the right part of the PV-cell is shaded, we have:

Condition : α + β − L

2R
+
L · (i − 1)
R · ns

< π AND α + β − L

2R
+

L · i
R · ns

≥ π

λi =W ·G · R
(
1 + cos

(
α + β − L

2R
+
L · (i − 1)
R · ns

))
(9)

III. The PV-cell does not fall under shade: In this scenario, the whole cell receives light. Since

this scenario coincides with Case 2 studied in Section 3.1, we leverage Equation (5) by refining the
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Fig. 7. A single diode equivalent circuit model considering recombination losses.

limits of the integral. Hence, we have:

Condition : α + β − L

2R
+
L · (i − 1)
R · ns

≥ 0 AND α + β − L

2R
+

L · i
R · ns

< π

λi =W ·G · R
(
cos

(
α + β − L

2R
+
L · (i − 1)
R · ns

)
− cos

(
α + β − L

2R
+

L · i
R · ns

))
(10)

IV. Both sides of the PV-cell have shade: This is an extreme scenario, which can happen if the

radius of curvature is comparable the length of a single cell. This scenario coincides with Case 3

studied in Section 3.1. Therefore, we leverage Equation (6) by refining the limits of the integral to

obtain:

Condition : α + β − L

2R
+
L · (i − 1)
R · ns

< 0 AND α + β − L

2R
+

L · i
R · ns

≥ π

λi = 2W ·G · R (11)

3.3 Current-Voltage Modeling of PV-cells

This section explains how we apply the radiation models derived in Section 3.1 and Section 3.2 to

a concrete PV-cell model.

PV-cell characterization: The I-V curve of a PV-cell is commonly modeled using a single diode

equivalent circuit shown Figure 7 (without the current source shown using dotted lines). This

circuit consists of a photo current source Iph , a diode with saturation current Io , a series resistor
Rs and a shunt resistor Rsh . A single diode circuit models crystalline PV-cells accurately, but it

fails to capture the behavior of amorphous PV-cells [15, 16] targeted in this work. In amorphous

PV-cells, the recombination losses in the intrinsic layer affect the output current. Therefore, we

employ the equivalent circuit with an additional current source Ir ec , as shown in Figure 7 [16].

Thus, the output current IPV of this circuit can be expressed as follows:

IPV = Iph · �
�
1 −

d2I
μτeff (Vbi −Vd )

�
�
− Io
(
e

Vd

A·Vt − 1
)
− Vd
Rsh

(12)

where dI , μτeff, Vbi , Vd , Vt and A are the thickness of the intrinsic layer, effective diffusion length

of the charge carrier, built-in voltage, diode voltage, thermal voltage, and diode ideality factor,

respectively.

Thorough empirical measurements under different bending conditions (detailed in Section 4)

show that Iph , Rsh and Io depend on the radiation λ, which is in agreement with the literature [4,

16]. More specifically, Rsh increases as λ decreases, while Io increases with λ. Similar to existing
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Fig. 8. An equivalent circuit model for a PV-string.

research [4, 16], we model Iph , Rsh , and Io as functions of λ as follows:

Iph = aI PH ·
(

λ
W ·L

)bI PH
,

Io = aIO ·
(

λ
W ·L

)2
+ bIO · λ

W ·L + cIO ,

Rsh = aRSH · ebRSH ·
λ

W ·L (13)

where aI PH , bI PH , aIO , bIO , cIO , aRSH , and bRSH are unknown modeling parameters. As it is com-

monly done, we use measured I-V data at a wide range of radiation intensities, and find these

coefficients through least squares minimization.

From PV-cell to PV-string: A PV-string exposed to uneven radiation cannot be modeled as a

single diode equivalent circuit because PV-cells with different radiation behavior differently. We

refine the model as a circuit that consists of multiple single diode equivalent circuits connected in

series as shown in Figure 8 [31]. In this case, current through the ith PV-cell IPVi can be expressed

as:

IPVi = Iphi · �
�
1 − d2

I

μτeff

(
Vbi

ns
−Vdi

) �
�
− Ioi

(
e

Vdi

A·Vt − 1
)
− Vdi

Rshi

Iphi = aI PH ·
(

λi

W ·
(
L

ns

)
)bI PH

,

Vdi = VPVi + IPVi · Rsi ,

Ioi = aIO ·
(

λi

W ·
(
L

ns

)
)2
+ bIO ·

(
λi

W ·
(
L

ns

)
)
+ cIO ,

Rsi = Rs/ns ,

Rshi =
aRSH
ns
· e

bRSH ·
(

λi

W ·( L
ns )

)
(14)

whereVPVi is i
th PV-cell voltage. Note that the model parameters (aI PH , bI PH , aIO , bIO , cIO , aRSH ,

and bRSH ) are found during PV-cell characterization. Furthermore, radiation under bending λi is
calculated using Equations (7) through (11). Therefore, we can compute IPVi , Ioi and Rshi for each
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Fig. 9. An example flow chart from I–V modeling of the flexible PV-cell to MPPT algorithm implementation.

cell in the string. It remains to calculate IPV and VPV by using the equivalent circuit depicted in

Figure 8.

As shown in Figure 2, bending a PV-string reduces the output power significantly, and can cause

hotspots. Designers may use bypass diodes to alleviate this drawback. A bypass diode is located

in parallel with a PV-cell, as shown in Figure 8. The existence of bypass diodes determines the

equation to calculate IPV and VPV .
Without the bypass diodes: If there are no bypass diodes, IPVi is equal to IPV because PV-cells are

connected in series. Therefore, IPV and VPV are calculated by solving the following equation:

IPV = IPV1 = IPV2 = · · · = IPVns . (15)

With the bypass diodes: If there are bypass diodes, the current of the ith bypass diode is denoted

by IDi
. Then, we have:

IPV = IPV1 + ID1 = IPV2 + ID2 = · · · = IPVns + IDns
(16)

Hence, IPV andVPV are calculated by solving Equation (16). Note that bypass diodes may introduce

local MPPs. Since λi is independent of bypass diodes, we are able to estimate the effect of bypass

diodes and find local MPPs.

Summary and Application toMPPT: In summary, we start with a characterization of the target

PV-cell by measuring the I-V curve for different radiation intensities. Then, this model is used to

extract the PV-cell parameters (Equation (13)), as shown in Figure 9. The characterized PV-cell

parameters and our radiation models are used together to find the current and voltage of a PV-

string by solving Equation (14)–(16).We emphasize that these calculations are performed only once.

Then, the extracted parameters are used to compute the I-V curve of the PV-string.

For MPPT algorithms, we only need to model the maximum voltage point VMPP as a function

of bending. For example, the FOCV algorithm needs only VMPP/VOC . Therefore, we derive an

expression for VMPP/VOC as a function of L/R and elevation angle α , as illustrated in Section 4.4.

At runtime, we only evaluate this expression with 277.8 μs computation overhead. The validation

of our approach using a commercial PV-string, and application scenario and overhead analysis are

described in the following section.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

We validate the proposed analytical models using our custom-built experimental setup shown in

Figure 10. The radiation intensity is controlled using a halogen lamp and a solar power meter TES
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Fig. 10. Experimental setup to measure the generated power from a commercial flexible PV-cell.

Table 1. Extracted PV Parameters

Parameter Value Parameter Value

aI PH 1.077E-7 Rs 75 Ω
bI PH 1.489 A 4.2

aIO −3.103E-13 d2I /μτeff 0.003

bIO 1.118E-9 Vbi 0.9V
cIO 3.776E-8 ns 5

aRSH 5.426E+5 L 50.8mm
bRSH −3.687E-3 W 12.7mm

1333 [28], while the load is adjusted using a resistor box. We minimize the time that PV-cell is

exposed under the light to maintain the temperature of PV-cell constant. Moreover, we allocate

sufficient time between different experiments to let the PV-cell cool down to ensure controllable

experiments, i.e., obtain repeatable results. Finally, we measure the output voltage and current

of the PV-cell using NI PXIe-4081 [18] and PXIe-4080 [17]. We employ rectangular FlexSolarCell

PV SP3-12 unit [6] in our experiments. It is attached to the lateral surface of a cylindrical foam

with a given radius of curvature R to control bending. We rotate the cylindrical foam to emulate

the change in the elevation angle α .
In our experiments, we sweep the PV-cell voltage with the help of a resistor box with 1Ω resolu-

tion. The load resistance is adjusted to achieve a voltage resolution less than 0.3 V. For each setting,

we perform three measurements at each voltage to obtain consistent readings. Finally, we upsam-

ple the measured data by 100 to obtain better accuracy when extracting the circuit parameters.

The extracted PV-cell parameters used in this work are listed in Table 1.

In what follows, we first describe how the PV-cell parameters are extracted using the proposed

models and validated empirically. Then, we show that the flexible PV-cell models are able to boost

the harvested energy, and compare the accuracy of our approach against the model presented

in [23]. Finally, we discuss the runtime overhead of utilizing the proposed flexible PV-cell models.

4.2 Extraction of the Flat PV-cell Parameters

The first step towards validating the proposed analytical models is to extract the parameters of the

PV-cell given in Equation (12). We measure the I-V characteristics of the flat PV-cell for radiation

intensities ranging from 100 to 1000W /m2, in increments of 100W /m2, while keeping α fixed
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Fig. 11. Comparison of measurement and modeling results for (a) current and (b) power for a flat PV-cell.

Fig. 12. Relative error of modeled VMPP and PMPP against measured data for flat PV-cells.

at 90◦. Then, we extract initial values of parameters in Equation (12) at each intensity without

accounting for the recombination losses [21]. The recombination losses affect current degradation

near the MPP. So, we estimate the initial value of d2I /μτeff by comparing current around the MPP.

Then, we repeat the parameter extraction using these values, and continue this iteration until the

parameters converged. Finally, we extract the Iph , Io and Rsh parameters summarized in Table 1.

Figure 11(a) and Figure 11(b) compare the measured data (solid line) against the modeling re-

sults (dashed line) for the flat PV-cell as the radiation intensity ranges from 100 to 1000W /m2.

We observe a good fit across the feasible voltage range. The normalized root mean square error

(NRMSE) of power obtained from our model is 1.8%.

The most critical point on the P-V curve is the MPP, because it maximizes the harvested energy.

� and ◦markers in Figure 11(a) and Figure 11(b) show themeasuredMPP and themodeling results,

respectively. The predicted MPP voltage, VMPP , matches very well with the measured voltage, as

shown in Figure 12. The relative percentage error is less than 6%. The harvested power at the MPP,

PMPP , also exhibits low prediction error, as shown in Figure 12. In particular, the average error is

less than 3% across the range of radiation intensities, and the maximum error is 5.3%.

4.3 Validation of the Flexible PV-Cell Model

After confirming the accuracy of the flat PV-cell model, we validate the flexibility models pre-

sented in Section 3 by computing the effective radiation intensity under different scenarios. More

precisely, we evaluate our models for three cases: (1) Flat PV-string as a baseline, (2) PV-string

bent with a radius of curvature R = 40mm without considering partial shading, (3) and R = 40mm
but by considering partial shading.

Figure 13(a) shows the estimated and measured power generation as a function of the PV-cell

voltage when the elevation angle α = 90◦. We observe that there is a very good match between
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Fig. 13. Comparison of measured data and estimated data for G = 1000W /m2.

Table 2. Estimation Error Compared to Measured Data at R = 40mm

Without partial shading consideration With partial shading consideration

VMPP (%) PMPP (%) VMPP (%) PMPP (%)

Elevation angle 90◦ 70◦ 50◦ 90◦ 70◦ 50◦ 90◦ 70◦ 50◦ 90◦ 70◦ 50◦

In
te
n
si
ty

(W
/m

2
)

1000 −0.8 −5.3 −10.6 4.0 27.0 90.0 0.4 3.6 3.9 1.9 4.4 −8.8
900 −0.8 −5.9 −10.3 4.8 26.5 89.5 0.5 3.0 4.2 2.5 3.4 −9.6
800 −1.5 −7.4 −13.8 3.9 27.1 99.5 −0.1 1.4 −0.1 1.6 3.4 −5.3
700 −1.2 −7.0 −12.4 5.6 27.2 93.7 0.2 1.9 1.3 3.1 3.1 −8.4
600 −2.7 −5.8 −11.7 5.5 27.4 89.9 −1.4 3.2 2.1 3.0 3.0 −10.5

the modeling result and measured data for all three cases. In particular, the error in the VMPP

and PMPP estimates are less than 3%, as summarized in Table 2. Since partial shading is negligible

when α = 90◦, the model that does not consider partial shading still works well. This observation is

supported by Figure 13(b), which shows the measured and analysis results for α = 70◦. The VMPP

and PMPP estimation error jump to 7.5% and 27.4%, when partial shading is not considered. In

contrast, our model that takes partial shading into account results in only 3.6% and 4.4% error in

predicting the VMPP and PMPP , as summarized in Table 2. The same observation holds when the

elevation angle is further reduced to α = 50◦. Our models, which consider partial shading, keep

up very well with the measured data. However, ignoring partial shading leads to as high as 13.8%

error in theVMPP and 99.5% error in PMPP estimation. In contrast, the proposed analytical models

give very good accuracy across a wide range of intensities, as summarized Table 2.

Having established the accuracy of the proposed analytical models, we present next an MPPT

case study that demonstrates the benefits of the proposed models.

4.4 Boosting Energy Harvesting for MPPT using Flexible PV-Cell Models

It is well-known that the ratio between VMPP and the open circuit voltage VOC (VMPP/VOC ) does
not vary significantly with radiation intensity. Fractional open-circuit voltages, i.e., FOCV, MPPT

algorithm utilizes this information to track the maximum power point VMPP . FOCV can be im-

plemented with a small overhead by forming a voltage divider using resistors. Hence, it is very

practical and suitable for wearable IoT applications. Indeed, commercial chargers adopt the FOCV

algorithm to support MPPT [29].

Impact of Bending on VMP P /VOC : Bending results in uneven radiation on a flexible PV-cell,

which affects the maximum power point, as described in Section 4.3. To analyze the impact of

bending on the FOCV algorithm, we analyze theVMPP/VOC ratio under different bending scenarios
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Fig. 14. VMPP /VOC changes according to L/R change.

Fig. 15. Comparison of energy gain according to L/R ratio.

using the proposed analytical models. The degree of bending is quantified using the L/R ratio,

where L/R = 0 (R → ∞) corresponds to a flat PV-cell and L/R = 0.5π , meaning a quarter of circle.

Figure 14 plots VMPP/VOC as a function of bending for different elevation angles. First, we ob-

serve that VMPP/VOC remains constant for a flat PV-cell (L/R = 0) regardless of the elevation an-

gle. This observation aligns with the basic assumption of FOCV. Second, Figure 14 shows that

VMPP/VOC increases linearly with bending, i.e., when the radius of curvature R becomes smaller.

Furthermore, the rate of increase is a function of the elevation angle α . Large amounts of bending

and low α imply that the PV-cell suffers more from a partial shading. At α = 50◦, the value of up-
per right point stops increasing even though it is bent more. This happens when shading occurs

on a flexible PV-cell. These results clearly show that a flexible PV-string cannot rely on constant

VMPP/VOC values to track the maximum power point.

Harvested Energy Evaluation: We evaluate the energy harvested by the FOCV algorithm with

and without the proposed models using a custom PV-string model and FOCV algorithm imple-

mented in MATLAB Simulink. The simulated system consists of a flexible PV-cell, a charger with

FOCV MPPT, a boost DC-DC converter and a lithium-ion battery. Our model uses the parameters

of the commercial SP3-12 flexible PV-cell. Similarly, it adopts parameters for a charger from the

commercial product [29]. The model has a lithium-ion battery which is a single cell with 50 mAh

capacity. We compare the amount of energy harvested in a lithium-ion battery during a given time

under different scenarios.

In our experiments, we evaluate the amount of harvested energy by varying the degree of

bending L/R ∈ 0.25π , 0.375π , 0.5π and the elevation angle α ∈ 50◦, 70◦, 90◦. First, the harvested

energy is found for each combination by using the baseline FOCV algorithm that uses a constant

VMPP/VOC ratio. Then, the simulations are repeated by using the improved FOCV algorithm that

predicts theVMPP/VOC ratio using the proposed models. Figure 15 shows the percentage increase

in the harvested energy as a function of the elevation angle and bending. When the PV-string is
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Fig. 16. Comparison of modeled Pmpp to measured value. Average relative error of the proposed model is

2.4%, 3.5%, and 8.5% when α is 90◦, 70◦, and 50◦, respectively. In comparison, the average relative error of

Sharma et al. [23] is 0.40%, 21.7%, and 81% when α is 90◦, 70◦, and 50◦, respectively.

bent slightly (L/R = 0.25π ) and the elevation angle is 90◦, we observe minor increase in the har-

vested energy. However, the harvested energy increases sharply both with the degree of bending

and elevation angle. In particular, we achieve 10.5% harvested energy when only the elevation an-

gle drops to 50◦. When the PV-string is bent 50% more, i.e., L/R increases from 0.25π to 0.375π ,
the percentage savings increases to 17.4%. Finally, we harvest 25.0% larger energy for α = 50◦ and
L/R = 0.5π .

The improved FOCV algorithm is able to harvest more energy, since it can track the maximum

power point very accurately. As a result, the improvement in the harvested energy becomes larger

when there is larger variation inVMPP/VOC . Therefore, the improvement in the harvested energy

is aligned with the VMPP/VOC variation shown in Figure 14.

4.5 Comparison with PV-Cell Model from [23]

This section compares the accuracy of the proposed model against the flexible PV-cell model pre-

sented in [23] both in terms of VMPP and PMPP prediction, and harvested energy.

Accuracy ofVMP P and PMP P Prediction: The approach presented in [23] models the MPP of a

flexible PV-cell using a short-circuit current, a open-circuit voltage and a fill factor when it is bent.

For finding the coefficients used in the model, they perform experimental measurements for differ-

ent bending. Then they perform regression analysis to fit the measurement to a nonlinear model.

Unlike our technique, their approach requires different sets of measurements for each bending

scenario.

Figure 16 compares the harvested power predicted by the approach in [23] and ours against the

measured values. The coefficients used in [23] are extracted from the measurement at R = 40mm
andα = 90◦. Note that our approach requires only PV parameters extracted from themeasurements

when a flexible PV-cell is flat. We observe that both approaches achieve very good accuracy (less

than 2.4%), when the elevation angle is 90◦. However, our approach performs significantly better

as the elevation angle decreases. More precisely, the prediction error of our technique increases

slightly to 3.5%, while the approach presented in [23] leads to 21.7% error. Similarly, the accuracy

of our approach is significantly better (8.5% versus 81%) error, when the elevation angle is 50◦. The
accuracy of the technique presented in [23] decreases abruptly with lower elevation angles, since

their model does not consider the angle between the PV-cell and the incident light.

Similarly, we compare the voltage at the MPP predicted by our approach and Sharma et al. [23]

in Figure 17. Again, both approaches perform very well and lead to less than 2.0% error when the
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Fig. 17. Comparison of modeled Vmpp to measured value. Average relative error of the proposed model is

−1.4%, −2.6%, and 2.9% when α is 90◦, 70◦, and 50◦, respectively. In comparison, the average relative error of

Sharma et al. [23] is 2.0%, −4.3%, and −7.7% when α is 90◦, 70◦, and 50◦, respectively.

Fig. 18. Comparison of the operating point for α = 50◦.

elevation angle is 90◦. When the elevation angle decreases to 70◦ and 50◦, the modeling error of

our approach increases marginally to 2.6% and 2.9%, respectively. Under the same scenario, the

accuracy of the approach presented in [23] increases to 4.3% and 7.7%, respectively.

Impact on the Harvested Energy: The accuracy of the flexible PV-cell model affects the har-

vested energy. We calculate VMPP/VOC using the proposed model and Sharma et al. [23] to com-

pare them in terms of harvested energy using the same setup explained in Section 4.4. Note that

the harvested energy is compared only when R = 40mm, the technique proposed in [23] requires

new sets of measurements for different radius of curvature R. Since both approaches have high

accuracy for α = 90◦, they lead to similar gains. Improved FOCV MPPT algorithm based on the

proposed model achieves 8.8% and 18.8% with α = 70◦ and α = 50◦, respectively. However, the im-

proved FOCV MPPT algorithm based on [23] achieving only 2.8%, and 4.6% more energy than the

conventional FOCV MPPT algorithm when α = 70◦ and α = 50◦, respectively. Our approach leads

to significantly larger harvested energy, since it can operate much closer to the MPP than both the

convention FOCV and FOCV that utilizes the bending model from Sharma et al. [23], as illustrated

in Figure 18.

4.6 Runtime Operation and Overhead Analysis

As stated in Section 1, we envision that the flexible PV-cells considered in this work will power

wearable IoT devices [1]. For example, they can be attached to forearm, shoulder or to the chest.

The flexibility ensures that the PV-cells can conform to the shape of the body. When the person

moves, the inclination angle β or the radius of curvature R may change. Our model captures both

of these parameters.
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Table 3. Runtime Operation and Overhead

Parameter Operation Time Period

R Read a flex sensor 2.7 μs 100ms

β Compute β using accelerometer 570.7 μs 100ms

α
Get time/location from BLE 2.4ms 10min

Calculate α 1.0ms 10min

VOC Read VOC 30.5 μs 100ms

VMPP Compute and set VMPP 277.8 μs 100ms

Fig. 19. Normalized resistance as a function of bending.

Minimizing the runtime overhead is important to run an MPPT algorithms on wearable de-

vices. Therefore, we analyze the overhead of utilizing the proposed flexible PV-cell models in the

improved FOCV MPPT algorithm. The proposed approach runs with a period of 100 ms to cap-

ture the parameter change due to the body movement. The sequence of operation required by

our algorithm, its runtime and periodicity are summarized in Table 3. To compute the radius of

curvature R, we employ flex sensor FS-L-0095-103-ST [27] which changes its resistance linearly

according to L/R as shown in Figure 19. This operation takes only 2.7 μs to complete. Next, we

sample a 3-axis accelerometer [8] to obtain the orientation of flexible PV-cell (β), with 570.7 μs
runtime overhead. The last external input to the proposed approach is the elevation angle of the

sun α . Since it does not change rapidly unlike the other two, we can sample it with much longer

intervals. More specifically, we use GPS data to find the current time and location every 10min.
Even if the wearable system does not have access to the GPS, it can receive this information from

a nearby mobile device, such as a smartphone. The current time and location enable computing α
using the equation that describes the Sun position in the sky [25]. The total communication and

computation time is 2.4ms , as shown in Table 3. Finally, reading VOC and computing VMPP/VOC
using the results of offline regression analysis take 30.5 μs and 277.8 μs , respectively.
In summary, the total computation overhead is less than 0.9 ms out of 100 ms (less than 1%),

when the proposed approach is implemented with a TI’s CC2650 processor which operates up to

48MHz [30]. As the elevation angle of the Sun, i.e. α , changes slowly, there is an additional 1.0ms
overhead to update α every 10min. Hence, the proposed model can boost the harvested energy in

wearable IoT applications.

5 CONCLUSIONS

Energy harvesting is the one of most important problems in low power IoT devices. A flexible

PV-cell can enable uninterrupted operation of wearable IoT devices. However, to date, there are
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no analytical models that describe the impact of bending on the harvested energy and maximum

power point. This paper studies the effect of bending on harvested energy both analytically and

empirically. We show that bending can have a dramatic impact on the harvested energy, since it

changes the radiation intensity and can lead to partial shading. Our analytical models estimate

the voltage and power at the maximum power point within 4.2% and 10.5% accuracy compared

to measured data on a commercial flexible PV-cell. Finally, we show that the proposed analytical

model can lead up to 25.0% increase in harvested energy when used with MPPT algorithms.
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