
The VLDB Journal
DOI 10.1007/s00778-017-0483-4

SPECIAL ISSUE PAPER

Package queries: efficient and scalable computation of high-order
constraints

Matteo Brucato1 · Azza Abouzied2 · Alexandra Meliou1

Received: 23 January 2017 / Revised: 25 August 2017 / Accepted: 22 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract Traditional database queries follow a simple
model: they define constraints that each tuple in the result
must satisfy. This model is computationally efficient, as the
database system can evaluate the query conditions on each
tuple individually.However,manypractical, real-world prob-
lems require a collection of result tuples to satisfy constraints
collectively, rather than individually. In this paper, we present
package queries, a new query model that extends traditional
database queries to handle complex constraints and prefer-
ences over answer sets. We develop a full-fledged package
query system, implemented on top of a traditional database
engine. Our workmakes several contributions. (1)We design
PaQL, a SQL-based query language that supports the declar-
ative specification of package queries. We prove that PaQL
is at least as expressive as integer linear programming, and
therefore, evaluation of package queries is NP-hard. (2) We
present a fundamental evaluation strategy that combines the
capabilities of databases and constraint optimization solvers
to derive solutions to package queries. The core of our
approach is a set of translation rules that transform a pack-
age query to an integer linear program. (3) We introduce an

Electronic supplementary material The online version of this
article (doi:10.1007/s00778-017-0483-4) contains supplementary
material, which is available to authorized users.

B Matteo Brucato
matteo@cs.umass.edu

Azza Abouzied
azza@nyu.edu

Alexandra Meliou
ameli@cs.umass.edu

1 College of Information and Computer Sciences,
University of Massachusetts, Amherst, MA, USA

2 Computer Science, New York University, Abu Dhabi, UAE

offline data partitioning strategy allowing query evaluation
to scale to large data sizes. (4) We introduce SketchRe-
fine, a scalable algorithm for package evaluation,with strong
approximation guarantees [(1 ± ε)-factor approximation].
(5) We present a method for parallelizing the Refine phase
of SketchRefine. (6) We present an empirical study of the
efficiency gains of providing integer solvers with starting
solutions. (7) We present extensive experiments over real-
world and benchmark data. The results demonstrate that our
methods are effective at deriving high-quality package results
and achieve runtime performance that is an order of magni-
tude faster than directly using ILP solvers over large datasets.

Keywords Package queries · Integer linear programming ·
Approximation algorithm · SketchRefine · PaQL

1 Introduction

Traditional, non-recursive database queries rely on a sim-
ple evaluation model: they define constraints, in the form
of selection predicates, that each tuple in the result must sat-
isfy. Thismodel is computationally efficient,1 as the database
system can evaluate each tuple individually to determine
whether it satisfies the query conditions. However, many
practical, real-world problems require a collection of result
tuples to satisfy constraints collectively, rather than individ-
ually.

Example 1 (Meal planner)Adietitian needs to design a daily
meal plan for a patient. She wants a set of three gluten-free

1 The evaluation of non-recursive SQL queries is polynomial with
respect to data complexity. When we discuss complexity in this paper,
we refer to data complexity.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0483-4&domain=pdf
http://orcid.org/0000-0003-2730-6432
http://dx.doi.org/10.1007/s00778-017-0483-4

M. Brucato et al.

meals, between 2000 and 2500 calories in total, and with a
low total intake of saturated fats.

Example 2 (Night sky) An astrophysicist is looking for rect-
angular regions of the night sky that may contain previously
unseen quasars. Regions are explored if their overall redshift
is within some specified parameters, and ranked according
to their likelihood of containing a quasar [21].

Example 3 (Investment portfolio) A broker wants to identify
a set of investment assets to form an investment portfolio. The
portfolio should diversify the asset types (e.g., 75% stocks,
25% bonds), limit exposure in certain categories (e.g., 20%
energy, 50% technology), and minimize volatility.

In these examples, there are some conditions that can
be verified on individual data items (e.g., gluten content
in a meal), while others need to be evaluated on a collec-
tion of items (e.g., total calories). Similar scenarios arise
in a variety of application domains, such as product bun-
dles, course selection [31], team formation [2,26], vacation
and travel planning [9], and computational creativity [33].
Despite the clear application need, database systems do
not currently offer support for these problems, and exist-
ing work has focused on application- and domain-specific
approaches [2,9,26,31].

In this paper, we present an application-independent,
database-centric approach to address these challenges: We
introduce a full-fledged system that supportspackagequeries,
a new query model that extends traditional database queries
to handle complex constraints and preferences over answer
sets. Package queries are defined over traditional relations,
but return packages. A package is a collection of tuples that
(a) individually satisfy base predicates (traditional selec-
tion predicates), and (b) collectively satisfy global predicates
(package-specific predicates). Package queries are combina-
torial in nature: the result of a package query is a (potentially
infinite) set of packages, and an objective criterion can define
a preference ranking among them.

Extending traditional database functionality to provide
support for packages, rather than supporting packages at the
application level, is justified by two reasons: First, the fea-
tures of packages and the algorithms for constructing them
are not unique to each application; therefore, the burden of
package support should be lifted off application developers,
anddatabase systems should support packagequeries like tra-
ditional queries. Second, the data used to construct packages
typically reside in a database system, and packages them-
selves are structured data objects that should naturally be
stored in and manipulated by a database system.

Our work addresses three important challenges:
Declarative specification of packages. The first challenge
is to support declarative specification of packages. SQL
enables the declarative specification of properties that result

10-3

101

105

1 2 3 4 5 6 7

Ti
m

e
(s

)

Package Cardinality

SQL Formulation ILP Formulation

Fig. 1 Traditional database technology is ineffective at package eval-
uation, and the runtime of the SQL formulation of a package query
(Sect. 2) grows exponentially. In contrast, ILP solvers (Sect. 3) are
more effective

tuples should independently satisfy. In Example 1, it is easy
to specify the exclusion of meals with gluten using a regular
SQL selection predicate. However, it is difficult to spec-
ify global constraints (e.g., total calories of a set of meals
should be between 2000 and 2500 calories). Expressing
such a query in SQL requires either complex self-joins that
explode the size of the query, or recursion, which results in
extremely complex queries that are hard to specify and opti-
mize (Sect. 2). Our goal is to maintain the declarative power
of SQL, while extending its expressiveness to allow for the
easy specification of packages.
Evaluation of package queries. The second challenge per-
tains to the evaluation of package queries. Due to their
combinatorial complexity, packagequeries are harder to eval-
uate than traditional database queries [10]. Package queries
are in fact as hard as integer linear programs (Sect. 2.4). Exist-
ing database technology is ineffective at evaluating package
queries, even if one were to express them in SQL. Fig-
ure 1 shows the performance of evaluating a package query
expressed as a multi-way self-join query in traditional SQL
(described in detail in Sect. 2) as opposed to an integer linear
program (Sect. 3).As the cardinality of the package increases,
so does the number of joins, and the runtime of the SQL solu-
tion quickly becomes prohibitive: In a small set of 100 tuples
from the Sloan Digital Sky Survey dataset [34], SQL eval-
uation takes almost 24h to construct a package of 7 tuples.
Our goal is to extend the database evaluation engine to take
advantage of external tools, such as ILP solvers, which are
more effective for combinatorial problems.
Performance and scaling to large datasets. The third chal-
lenge relates to query evaluation performance and scaling to
large datasets. Integer programming solvers have two major
limitations: they require the entire problem to fit in main
memory, and they fail when the problem is too complex (e.g.,
too many variables or too many constraints). Our goal is to
overcome these limitations through sophisticated evaluation
methods that allow solvers to scale to large data sizes.

Our work addresses these challenges through the design
of language and algorithmic support for the specification and
evaluation of package queries. Specifically, we make the fol-
lowing contributions:

123

Package queries: efficient and scalable computation of high-order constraints

– We present PaQL (Package Query Language), a declara-
tive language that provides simple extensions to standard
SQL to support constraints at the package level. We
prove that PaQL is at least as expressive as integer linear
programming, which implies that evaluation of package
queries is NP-hard (Sect. 2).

– We present a fundamental evaluation strategy, Direct,
that combines the capabilities of databases and con-
straint optimization solvers to derive solutions to package
queries. The core of our approach is a set of translation
rules that transform a package query to an integer linear
program. This translation allows for the use of highly-
optimized tools for the evaluation of package queries
(Sect. 3).

– We introduce an offline data partitioning strategy that
allows package query evaluation to scale to large data
sizes. The core of our evaluation strategy, SketchRe-
fine, consists of separating the package computation
intomultiple stages, each with small subproblems, which
the solver can evaluate efficiently. In the first stage, the
algorithm “sketches” an initial sample package from a
set of representative tuples, while the subsequent stages
“refine” the sketched package by solving an integer pro-
gram within each partition. SketchRefine guarantees
a (1 ± ε)-factor approximation compared to Direct,
where ε is a flexible parameter of the offline partition-
ing (Sect. 4).

– We present an extensive experimental evaluation on both
real-world data and the TPC-H benchmark (Sect. 6) that
shows that our query evaluation method SketchRefine:
(1) is able to produce packages an order of magnitude
faster than the integer solver used directly on the entire
problem; (2) scales up to sizes that the solver cannotman-
age directly; (3) produces packages of very good quality
in terms of objective value; (4) is robust to partitioning
built in anticipation of different workloads.

– We design a parallel version of SketchRefine that can
efficiently solve queries that require most of the parti-
tions to be accessed. We experimentally show that this
type of queries is a worst case for the offline data par-
titioning used by SketchRefine, and severely impacts
the sequential performance of the algorithm.

– We present an empirical study on preconditioning solvers
with starting solutions. Our results show that seeding
solvers with feasible packages can significantly improve
the performance of the solver especially on harder
queries.

2 Language support for packages

Database systems do not natively support package queries.
While there are ways to express package queries in SQL,

these are cumbersome and inefficient. In this section, we first
describe twoways of expressing package queries in SQL and
explain their drawbacks. We then describe PaQL, a declara-
tive query language for specifying packages, and analyze its
complexity and expressivity.

2.1 Expressing package queries with SQL

Specifying packages with self-joins. In the limited case of
packages with strict cardinality, i.e., a fixed number of tuples,
it is possible to express package queries using relational
self-joins. The query of Example 1 requires three meals (a
package with cardinality three) and can be expressed as a
three-way self-join:

SELECT ∗ FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND

R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND
R3.gluten = ‘free’ AND
R1.kcal+R2.kcal+R3.kcal BETWEEN 2.0 AND 2.5

ORDER BY R1.sat_fat + R2.sat_fat + R3.sat_fat

Such a query is efficient only for constructing packages
with very small cardinality: larger cardinality requires a
larger number of self-joins, quickly rendering evaluation
time prohibitive (Fig. 1). The benefit of this specification
is that the optimizer can use the traditional relational algebra
operators, and augment its decisions with package-specific
strategies. However, this method does not apply for packages
of unbounded cardinality.
Specifying packages using recursion. SQL can express pack-
age queries by generating and testing each possible subset of
the input relation. This requires recursion to build a powerset
table; checking each set in the powerset table for the query
conditions will yield the result packages. This approach
has three major drawbacks. First, it is not declarative, and
the specification is tedious and complex. Second, it is not
amenable to optimization in existing systems. Third, it is
extremely inefficient to evaluate, because the powerset table
generates an exponential number of candidates.

2.2 Relation and package semantics

We first introduce some basic notation and describe the
semantics of packages. Let U be the universe of possible
tuples of a relation R and N the set of all the natural num-
bers,N = {0, 1, . . .}.R is amultiset over universeU , denoted
as (U,mR), where mR : U → N is a multiplicity func-
tion, indicating the number of occurrences of each element
of U in R. Throughout the paper, we use the following mul-
tiset operators: Given relations R1 and R2, R1 ⊆ R2, iff
∀t ∈ U : mR1(t) ≤ mR2(t); R1 ∪ R2 has multiplicity
mR1∪R2(t) = mR1(t) + mR2(t), ∀t ∈ U ; R1 \ R2 has multi-
plicity mR1\R2(t) = max{0,mR1(t) − mR2(t)}, ∀t ∈ U .

123

M. Brucato et al.

Fig. 2 Specification of the PaQL syntax (left), and the PaQL query for Example 1 (right)

A packageP, defined overR, is amultiset withmultiplicity
mP : U → N, such that ∀t ∈ U : mR(t) = 0 	⇒ mP(t) =
0.

2.3 PaQL: the Package Query Language

Our goal is to support declarative and intuitive package spec-
ification. In this section, we describe PaQL, a declarative
query language that introduces simple extensions to SQL to
define package semantics and package-level constraints.

PaQL syntax

Figure 2 shows the general syntax of PaQL (left) and the
specification for the query of Example 1 (right), which we
use as a running example to demonstrate PaQL’s features.
Square brackets enclose optional clauses and arguments, and
a vertical bar separates syntax alternatives. In this specifica-
tion, repeat is a nonnegative integer; w_expression
is a Boolean expression over tuple values (as in standard
SQL) and can only contain references to relation_name
and relation_alias; st_expression is a Boolean
expression and obj_expression is an expression over
aggregate functions or SQL subqueries with aggregate func-
tions; both st_expression and obj_expression can
only contain references topackage_name, which specifies
the name of the package result.

Basic package query

The new keyword PACKAGE differentiates PaQL from tra-
ditional SQL queries.

Q1: SELECT ∗ Q2: SELECT PACKAGE(∗)

FROM Recipes R FROM Recipes R

The semantics of Q1 and Q2 are fundamentally different: Q1

is a traditional SQL query, with a unique, finite result set
(the entireRecipes table), whereas there are infinitely many
packages that satisfy the package query Q2: all possiblemul-
tisets of tuples from the input relation. Each tuple, whether or
not unique in the input relation, has unbounded multiplicity
in the package. The result of a package query like Q2 is a
set of packages. Each package resembles a relational table
containing a collection of tuples (with possible repetitions)
from the relation Recipes. A package result of Q2 follows

the schema of Recipes. Similar to SQL, the PaQL syntax
allows the specification of the output schema in theSELECT
clause. For example, PACKAGE(sat_fat, kcal) only returns
the saturated fat and calorie attributes of the package.2

The language also permitsmultiple relations in theFROM
clause; in that case, the packages produced will follow the
schema of the join result. In the remainder of this paper, we
focus on package queries without joins. This is for two rea-
sons: (1) The join operation is part of traditional SQL and
can occur before package-specific computations. (2) There
are important implications in the consideration of joins that
extend beyond the scope of our work. Specifically, material-
izing the join result is not always necessary, but rather, there
are space-time trade-offs and system-level solutions that can
improve query performance in the presence of joins. These
extensions are orthogonal to the techniques we present in this
work.

Although semantically valid, a query like Q2 would not
occur in practice, asmost application scenarios expect few, or
even exactly one result.We proceed to describe the additional
constraints in the example query Q (Fig. 2) that restrict the
number of package results.

Repetition constraints

The REPEAT 0 statement in query Q from Fig. 2 specifies
that each tuple from the input relation Recipe can appear in
a package result at most once (no repetitions are allowed). If
a tuple has duplicates in the input table (multiplicity greater
than 1), repetition restrictions are applied on each individual
duplicate. Formally, for input table R, REPEAT ρ, ρ ≥ 0,
implies ∀t ∈ U : mP(t) ≤ mR(t)(1 + ρ). If this restric-
tion is absent (as in query Q2), the multiplicity of a tuple is
unbounded. By allowing no repetitions, Q restricts the pack-
age space from infinite to 2n , where n is the size of the input
relation.Generalizing,REPEATρ allows apackage to repeat
tuples up to ρ times, resulting in (2 + ρ)n candidate pack-
ages. Tuple repetitions naturally appear in many problems
(e.g., Example 3, where multiple copies of the same invest-
ment asset can be included in a portfolio). While the PaQL
specification allows for an arbitrarily large number of repe-
titions, we expect that systems will impose a default bound

2 This syntax slightly differs from the one presented in [6].

123

Package queries: efficient and scalable computation of high-order constraints

in practice. In this paper, we focus on queries with explicit
repetition constraints.

Base and global predicates

A package query defines two types of predicates. A base
predicate, defined in the WHERE clause, is equivalent to a
selection predicate and can be evaluated with standard SQL:
any tuple in the package needs to individually satisfy the
base predicate. For example, query Q from Fig. 2 specifies
the base predicate: R.gluten = ‘free’. Since base predicates
directly filter input tuples, they are specified over the input
relationR.Global predicates are the core of package queries,
and they appear in the new SUCH THAT clause. Global
predicates are higher-order than base predicates: they cannot
be evaluated on individual tuples, but on tuple collections.
Since they describe package-level constraints, they are spec-
ified over the package result P, e.g., COUNT(P.∗) = 3,
which limits the query results to packages of exactly 3
tuples.

The global predicates in query Q abbreviate aggre-
gates that are in reality SQL subqueries. For example,
COUNT(P.∗) = 3, abbreviates (SELECT COUNT(∗)

FROM P)= 3. Using subqueries, PaQL can express arbi-
trarily complex global constraints among aggregates over a
package.

Objective clause

The objective clause specifies a ranking among candidate
package results and appears with either the MINIMIZE
or MAXIMIZE keyword. It is a condition on the package
level, and hence it is specified over the package result P,
e.g., MINIMIZE SUM(P.sat_fat). Similar to global pred-
icates, this form is a shorthand for MINIMIZE (SELECT
SUM(sat_fat) FROM P). A PaQL query with an objec-
tive clause returns a single result: the package that optimizes
the value of the objective. The evaluation methods that we
present in this work focus on such queries. In prior work [7],
we described preliminary techniques for returning multiple
packages in the absence of optimization objectives, but a
thorough study of such methods is left to future work.

While PaQL allows arbitrary aggregate functions in the
global predicates and the objective clause, in this work, we
only support package queries with linear aggregates over
numerical variables. A linear aggregate can be a constant or
an attribute valuemultiplied by a constant, or any linear com-
bination thereof. We defer the study of non-linear aggregates
and UDFs to future work.

2.4 Expressiveness and complexity of PaQL

Package queries can model a great variety of problems. They
are at least as expressive as integer linear programs (ILP),
and, therefore, at least as hard.

Theorem 1 (Expressiveness of PaQL) Every integer linear
program can be expressed as a package query in PaQL.

Proof We prove the result through a reduction from an ILP
problem to a PaQL query. The reduction involves two map-
pings: (1) a mapping from a general ILP instance I to a PaQL
query QI; (2) a mapping from a solution to the ILP problem
to a package p. Themappings are such that the solution to the
ILP is an optimal solution to I iff p is an optimal package for
QI. Let I be an ILP problem involving n integer variables,3

k linear constraints, and real coefficients ai , bi j and c j :

I : max
∑n

i=1 ai xi
s.t

∑n
i=1 bi j xi ≤ c j ∀ j = 1, . . . , k

xi ≥ 0, xi ∈ Z ∀i = 1, . . . , n

The PaQL query QI constructed from I is:

QI:SELECT PACKAGE(∗) AS P FROM (
SELECT a1 AS attrobj , b11 AS attr1, . . ., b1k AS attrk
UNION · · ·
SELECT an AS attrobj , bn1 AS attr1, . . ., bnk AS attrk)

SUCH THAT SUM(P.attr1)≤c1 AND . . .SUM(P.attrk)≤ck
MAXIMIZE SUM(P.attrobj)

Let x̂ be an assignment to the variables in I. Package p is
constructed from x̂ by including tuple ti exactly x̂i times.
(⇒) Suppose x̂ is an optimal feasible solution to I. Then
∀ j = 1, . . . , k,

∑n
i=1 bi j x̂i ≤ c j and

∑n
i=1 ai x̂i is maximal.

Thus, by construction of p, ∀ j = 1, . . . , k,SUM(p.attr j) =∑n
i=1 bi j x̂i ≤ c j , andSUM(p.attrobj) = ∑n

i=1 ai x̂i is max-
imal. Therefore, p is an optimal package for query QI.
(⇐) If p is an optimal package for QI, then, by definition,
∀ j = 1, . . . , k,

∑n
i=1 bi j x̂i ≤ c j and

∑n
i=1 ai x̂i is maximal.

�
As a direct consequence of Theorem 1, we obtain the fol-

lowing result on the complexity of package query evaluation.

Corollary 1 (Complexity of Package Queries) Package
queries are NP-hard.

In Sect. 3, we extend the result of Theorem 1 to also show
that every PaQL query over any database instance can be
encoded as an integer linear program, through a set of trans-
lation rules. This transformation is the first step in package
evaluation, but, due to the limitations of ILP solvers, it is not
efficient or scalable in practice. To make package evaluation
practical, we develop SketchRefine (Sect. 4), a technique
that augments the ILP transformation with a partitioning
mechanism, allowing package evaluation to scale to large

3 For ease of presentation, we show an ILP with nonnegative variables,
but themapping generalizes to arbitrary integer variables: negative vari-
ables negate the corresponding values in the query; for arbitrary bounds
on each variable, add cardinality constraints to individual tuples.

123

M. Brucato et al.

datasets. In Sect. 7, we show how to parallelize SketchRe-
fine, in order to efficiently answer queries that require most
of the partitions to be accessed. Finally, in Sect. 8, we show
how starting solutions can improve the performance of the
ILP solver.

3 ILP formulation of package queries

In this section, we present an ILP formulation for package
queries. This formulation is at the core of our evaluation
methods Direct and SketchRefine. The results presented
in this section are inspired by the translation rules employed
byTiresias [27] to answer how-to queries. However, there are
several important differences between how-to and package
queries, which we extensively discuss in the overview of the
related work (Sect. 9).

3.1 PaQL to ILP translation

Let R indicate the input relation of the package query,
n = |R| be the number of tuples in R, R.attr an attribute
of R, P a package, f a linear aggregate function (such as
COUNT and SUM), � ∈ {≤,≥} a constraint inequality,
and v ∈ R a constant. For each tuple ti from R, 1 ≤ i ≤ n,
the ILP problem includes a nonnegative integer variable xi ,
xi ≥ 0, indicating the number of times ti is included in an
answer package. We also use x̄ = 〈x1, x2, . . . , xn〉 to denote
the vector of all integer variables. A PaQL query is formu-
lated as an ILP problem using the following translation rules.

Repetition constraint. The REPEAT keyword, express-
ible in the FROM clause, restricts the domain that the
variables can take on. Specifically, REPEAT ρ implies
0 ≤ xi ≤ ρ + 1.

Base predicate. Let β be a base predicate, e.g., R.gluten =
‘free’, and Rβ the relation containing tuples from R satisfy-
ing β. We encode β by setting xi = 0 for every tuple ti /∈ Rβ .

Global predicate. Each global predicate in theSUCHTHAT
clause takes the form f (P) � v. For each such predicate,
we derive a linear function f ′(x̄) over the integer variables.
A cardinality constraint f (P) = COUNT(P.∗) is trans-
lated into a linear function f ′(x̄) = ∑

i xi . A summation
constraint f (P) = SUM(P.attr) is translated into a lin-
ear function f ′(x̄) = ∑

i (ti .attr)xi . We further illustrate the
translation with two non-trivial examples:

– AVG(P.attr) ≤ v is translated as
∑

i (ti .attr)xi/
∑

i xi ≤ v ≡ ∑
i (ti .attr − v)xi ≤ 0

Fig. 3 Example ILP formulation and solution for queryQ, on a sample
Recipe dataset. There are only two packages that satisfy all the con-
straints, namely {t2, t3, t5} and {t1, t2, t5}, but the first one is the optimal
because it minimizes the objective function

– (SELECT COUNT(∗) FROM P WHERE P.carbs >

0) ≥ (SELECT COUNT(∗) FROM P WHERE
P.protein ≤ 5) is translated as
∑

i (1Rc(ti) − 1Rp(ti))xi ≥ 0

where

Rc:={ti ∈ R | ti .carbs > 0}
Rp:={ti ∈ R | ti .protein ≤ 5}
1Rc(ti):=1 if ti ∈ Rc; 0 otherwise
1Rp(ti):=1 if ti ∈ Rp; 0 otherwise.

General Boolean expressions over the global predicates can
be encoded into a linear program using Boolean variables
and linear transformation tricks found in the literature [4].

Objective clause. WeencodeMAXIMIZE f (P) asmax f ′(x̄),
where f ′(x̄) is the encoding of f (P). Similarly MINIMIZE
f (P) is encoded as min f ′(x̄).
We call the relations Rβ , Rc, and Rp described above

base relations. This formulation, together with Theorem 1,
shows that package queries with linear constraints and linear
objective functions correspond exactly to ILP problems.

Example 4 (ILP translation) Figure 3 shows a toy exam-
ple of the Recipes table, with two columns and 5 tuples.
To transform Q into an ILP, we first create a nonnegative,
integer variable for each tuple: x1, . . . , x5. The cardinality
constraint specifies that the sum of the xi variables should be
exactly 3. The global constraint on SUM(P.kcal) is formed
by multiplying each xi with the value of the kcal column
of the corresponding tuple, and specifying that the sum
should be between 2 and 2.5. The objective of minimizing
SUM(P.sat_fat) is similarly formed by multiplying each xi
with the sat_fat value of the corresponding tuple.

3.2 Query evaluation with DIRECT

Using the ILP formulation, we develop Direct, our basic
evaluation method for package queries. In Sect. 4, we extend
this technique to our main algorithm, SketchRefine, which
supports efficient package evaluation in large datasets.

Package evaluation with Direct employs three steps:

123

Package queries: efficient and scalable computation of high-order constraints

1

02

2 1

G1 G2

G3

G4

2

G1 G2

G3

G4

1

0
G1 G2

G3

G4

2 1

G1 G2

G3

G4

(b) Initial query using
representative tuples

(c) Initial package (e) Skipping G2 (g) Refinement
query for group G4

(h) Final approximate
package

REFINEPARTITION SKETCH

(d) Refinement
query for group G1

(f) Refinement
query for group G3

(a) Original tuples

Multiplicity of representative
tuples in the initial package

Representative and original tuples selected during previous steps, shown by
hatching lines, are aggregated and used to modify later refinement queries

Fig. 4 The original tuples (a) are partitioned into four groups, and a
representative is constructed for each group (b). The initial sketch pack-
age (c) contains only representative tuples, with possible repetitions up
the size of each group. The refine query for group G1 (d) involves the
original tuples from G1 and the aggregated solutions to all other groups

(G2, G3, and G4). Group G2 can be skipped (e) because no representa-
tives could be picked from it. Any solution to previously refined groups
are used while refining the solution for the remaining groups (f and g).
The final approximate package (h) contains only original tuples

1. Base relations.We first compute the base relations, such
asRβ ,Rc, andRp, with a series of standard SQL queries,
one for each, or by simply scanning R once and populat-
ing these relations simultaneously.

2. ILP formulation.We transform the PaQL query to an ILP
problem using the rules described in Sect. 3.1. After this
phase, all variables xi such that xi = 0 can be eliminated
from the ILP problem because the corresponding tuple ti
cannot appear in any package solution. This can signifi-
cantly reduce the size of the problem.

3. ILP execution. We employ an off-the-shelf ILP solver,
as a black box, to get a solution to each of the integer
variables xi . Each xi informs the number of times tuple
ti should be included in the answer package.

Example 5 (ILP solution) The ILP solver operating on the
program of Fig. 3 returns the variable assignments to xi that
lead to the optimal solution; xi = 0 means that tuple ti is not
included in the output package, and xi = k means that tuple
ti is included k times in the output package. Thus, the result
of Q is the package: {t2, t3, t5}.

4 Scalable package evaluation

The Direct algorithm has two crucial drawbacks. First, it
is only applicable if the input relation is small enough to
fit entirely in main memory: ILP solvers, such as IBM’s
CPLEX, require the entire problem to be loaded in mem-
ory before execution. Second, even for problems that fit in
main memory, this approach may fail due to the complexity
of the integer problem. In fact, integer linear programming
is a notoriously hard problem, and modern ILP solvers use
algorithms, such as branch-and-cut [30], that often perform
well in practice, but can “choke” even on small problem sizes
due to their exponential worst-case complexity [8]. This may
result in unreasonable performance due to solvers using too

many resources (main memory, virtual memory, CPU time),
eventually thrashing the entire system.

In this section, we present SketchRefine, an approxi-
mate divide-and-conquer evaluation technique for efficiently
answering package queries on large datasets. Rather than
solving the original large problemwithDirect, SketchRe-
fine smartly decomposes a query into smaller queries,
formulates them as ILP problems, and employs an ILP solver
as a black-box evaluation method to answer each individual
query. By breaking down the problem into smaller subprob-
lems, the algorithm avoids the drawbacks of the Direct
approach. Our implementation of SketchRefine uses an
ILP solver as its underlining black box for solving the smaller
queries; however, SketchRefine is more general in that it
can be used to scale any other black-box solution for solv-
ing package queries. Further, we prove that SketchRefine
is guaranteed to always produce feasible packages with an
approximate objective value (Sect. 5.1).

The algorithm is based on an important observation: sim-
ilar tuples are likely to be interchangeable within packages.
A group of similar tuples can therefore be “compressed” to a
single representative tuple for the entire group. SketchRe-
fine sketches an initial answer package using only the set
of representative tuples, which is substantially smaller than
the original dataset. This initial solution is then refined by
evaluating a subproblem for each group, iteratively replac-
ing the representative tuples in the current package solution
with original tuples from the dataset. Figure 4 provides a
high-level illustration of the three main steps of SketchRe-
fine:

1. Offline partitioning (Sect. 4.1). The algorithm assumes
a partitioning of the data into groups of similar tuples.
This partitioning is performed offline (not at query time),
and our experiments show that SketchRefine remains
very effective even with partitionings that do not match
the query workload (Sect. 6.2.3). In our implementation,

123

M. Brucato et al.

Algorithm 1 Scalable package query evaluation
1: procedure SketchRefine(Q: Package query, P: Partitioning)
2: pS ← Sketch(Q, P)
3: if failure then
4: return infeasible
5: else
6: (p,F) ← Refine(Q, P, pS)
7: if F �= ∅ then � Refine failure
8: return infeasible
9: else � Refine success
10: return p

we partition data using k-dimensional quad trees [13],
but other partitioning schemes are possible.

2. Sketch (Sect. 4.2.1). SketchRefine sketches an initial
package by evaluating the package query only over the
set of representative tuples.

3. Refine (Sect. 4.2.2). Finally, SketchRefine transforms
the initial package into a complete package by replacing
each representative tuple with some of the original tuples
from the same group, one group at a time.

SketchRefine always constructsapproximate feasiblepack-
ages, i.e., packages that satisfy all the query constraints, but
with a possibly sub-optimal objective value that is guaran-
teed to be within certain approximation bounds (Sect. 5.1).
SketchRefine may suffer from false infeasibility, which
happens when the algorithm reports a feasible query to be
infeasible. The probability of false infeasibility is, however,
low and bounded (Sect. 5.2).

In the subsequent discussion, we use R(attr1, . . . ,attrk)
to denote an input relation with k attributes. R is parti-
tioned into m groups G1, . . . ,Gm . Each group Gi ⊆ R,
1 ≤ j ≤ m, has a representative tuple t̃i , which may not
always appear in R. We denote the partitioned space with
P = {(Gi , t̃i) | 1 ≤ j ≤ m}. We refer to packages that con-
tain representative tuples as sketch packages and packages
with only original tuples as complete packages (or simply
packages).Wedenote a complete packagewith p and a sketch
packagewith pS, whereS ⊆ P is the set of groups that are yet
to be refined to transform pS to a complete answer package
p.

4.1 Offline partitioning

SketchRefine relies on an offline partitioning of the input
relationR into groups of similar tuples. Partitioning is based
on a set of partitioning attributes from the input relationR, a
size threshold, and a set of diameter bounds. The partitioning
attributes can be any subset of the numerical attributes of R.

Definition 1 (Size threshold, τ) The size threshold τ , 1 ≤
τ ≤ n, restricts the size of each partitioning group Gi ,
1 ≤ j ≤ m, to amaximumof τ original tuples, i.e., |Gi | ≤ τ .

Definition 2 (Diameter bounds) The diameter di j ≥ 0 of a
group Gi , 1 ≤ i ≤ m, on attribute attr j , 1 ≤ j ≤ k, is the
greatest absolute distance between all pairs of tuples within
group Gi :

di j = max
t1,t2∈Gi

|t1.attr j − t2.attr j | (1)

The diameter bounds ωi j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ k,
require all diameters to be bounded by di j ≤ ωi j .

The size threshold, τ , affects the number of partitions,m: a
lower τ leads to smaller partitions, but more of them (larger
m). As we discuss later (Sect. 4.2), for best response time
of SketchRefine, τ should be set so that both m and τ are
small. Our experiments show that a proper setting can lead to
an order of magnitude improvement in query response time
(Sect. 6.2.2).

The diameter bounds, ωi j , are not required, but they can
be enforced to ensure a desired approximation guarantee
(Sect. 5.1). Note that the same partitioning can be used to
support a multitude of queries over the same dataset. In
our experiments, we show that a single partitioning per-
forms consistently well across different queries. In general,
enforcing the diameter limits may cause the resulting parti-
tions to become excessively small. While still obeying the
approximation guarantees, this could increase the number of
resulting partitions and thus degrade the running time per-
formance of SketchRefine. This is an important trade-off
between running time and quality that we also observe in our
experiments (Sect. 6.2.4), and it is a very common charac-
teristic of most approximation schemes [36].

Partitioning method

Different methods can be used for partitioning. Our imple-
mentation is based on k-dimensionalquad-tree indexing [13].
The method recursively partitions a relation into groups until
all the groups satisfy the size threshold and meet the diame-
ter limits. First, relation R is augmented with an extra group
ID column gid, such that t.gid = i iff tuple t is assigned to
group Gi . The procedure initially creates a single group G1

that includes all the original tuples from relation R, by ini-
tializing gid = 1 for all tuples. Then, it recursively proceeds
as follows:

– The procedure computes the sizes and diameters of the
current groups via a query that groups tuples by their gid
value. The same group-by query also computes the cen-
troid tuple of each group. The centroid is computed by
averaging the tuples in the group on each of the partition-
ing attributes.

– If group Gi has more tuples than the size threshold, or
a diameter larger than the allowed bound, the tuples in
groupGi are partitioned into 2k subgroups, where k is the

123

Package queries: efficient and scalable computation of high-order constraints

number of partitioning attributes. The group’s centroid is
the split point to generate sub-partitions: tuples that reside
in the same sub-partition are grouped together.

Our method recursively executes two SQL queries on each
subgroup that violates the size or the diameter conditions.

Stored representatives

After partitioning, a group-by query computes the mini-
mum, maximum, and average values of all the partitioning
attributes and stores them in a relational table. At query time,
the algorithm loads representatives from this table, selecting
only one aggregate type per query attribute (either mini-
mum, maximum of average), into a representative relation
R̃(gid,attr1, . . . ,attrk). To ensure approximation guaran-
tees (Sect. 5.1), the maximum (minimum, resp.) value is
chosen for a maximization (minimization, resp.) query. For
all other attributes, the algorithm picks the average value.

Alternative partitioning approaches

We experimented with different clustering algorithms, such
as k-means [18], hierarchical clustering [24] and DBSCAN
[11], using off-the-shelf libraries such as Scikit-learn [32].
Existing clustering algorithms present various problems:
First, they tend to vary substantially in the properties of the
generated clusters. In particular, none of the existing clus-
tering techniques can natively generate clusters that satisfy
the size threshold τ and diameter limits ωi j . In fact, most of
the clustering algorithms take as input the number of clusters
to generate, without offering any means to restrict the size
of each cluster nor their diameter. Second, existing imple-
mentations only support in-memory cluster computation, and
DBMS-oriented implementations usually need complex and
inefficient queries.On the other hand, space partitioning tech-
niques frommulti-dimensional indexing, such as k-d trees [3]
and quad trees [13], can be more easily adapted to satisfy the
size and diameter limits, and to work within the database:
our partitioning method works directly on the input table via
simple SQL queries.

Finally, partitioning could be dynamically generated at
query time: By maintaining the entire hierarchical structure
of the quad-tree index, one can traverse the index at query
time to generate the coarsest partitioning that satisfies the
required size and diameter limits. However, index traversal
incurs additional overhead at query time, compared to using
a precomputed static partitioning.

One-time cost

Partitioning is an expensive procedure. To avoid paying its
cost at query time, the dataset is partitioned in advance and
used to answer a workload of package queries. For a known
workload, our experiments show that partitioning the dataset

on the union of all query attributes provides the best perfor-
mance in terms of query evaluation time and approximation
error for the computed answer package (Sect. 6.2.3). We also
demonstrate that our query evaluation approach is robust to a
wide range of partition sizes, and to imperfect partitions that
cover more or fewer attributes than those used in a particular
query. This means that, even without a known workload, a
partitioning performed on all of the data attributes still pro-
vides good performance.

Enforcing a diameter limit guarantees the theoretical
approximation bounds of SketchRefine (Sect. 5.1). How-
ever, partitioning only with a size threshold can also achieve
good quality in practice: Since partitioning splits a group
on its centroid, the resulting sub-partitions will naturally
have smaller diameters. Our experiments (Sect. 6) show that
partitioning on a size threshold alone results in good approxi-
mations while reducing the offline partitioning cost: Meeting
a size threshold requires fewer partitioning iterations than
meeting a diameter limit especially if the dataset is sparse
across the attribute domains.

4.2 Query evaluation with SKETCHREFINE

During query evaluation, SketchRefine first sketches a
package solution using the representative tuples (Sketch),
and then it refines it by replacing representative tuples with
original tuples (Refine). We describe these steps using the
example query Q from Fig. 2.

4.2.1 Sketch

Using the representative relation R̃ (Sect. 4.1), the Sketch
procedure constructs and evaluates a sketch query,Q(R̃). The
result is an initial sketch package, pS, containing represen-
tative tuples that satisfy the same constraints as the original
query Q:

Q(R̃):SELECT PACKAGE(∗) AS pS
FROM R̃
WHERE R̃.gluten = ‘free′
SUCH THAT

COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid=1)≤|G1|
AND…
(SELECT COUNT(∗) FROM pS WHERE gid=m)≤|Gm|

MINIMIZE SUM(pS.sat_fat)

The new global constraints, highlighted in bold, ensure
that every representative tuple does not appear in pS more
times than the size of its group, Gi . This accounts for the
repetition constraint REPEAT 0 in the original query. Gen-
eralizing, with REPEAT ρ, each t̃i can be repeated up to
|Gi |(1+ρ) times. These constraints are simply omitted from
Q(R̃) if the original query does not contain a repetition con-
straint.

123

M. Brucato et al.

Since the representative relation R̃ contains exactly m
representative tuples, the ILP problem corresponding to this
query has only m variables. This is typically small enough
for the black-box ILP solver to manage directly, and thus
we can solve this package query using the Direct method
(Sect. 3.2). If m is too large, we can solve this query recur-
sively with SketchRefine: the set of m representatives is
further partitioned into smaller groups until the subproblems
reach a size that can be efficiently solved directly.

The Sketch procedure fails if the sketch query Q(R̃) is
infeasible, in which case SketchRefine reports the original
queryQ as infeasible (Algorithm1). Thismay constitute false
infeasibility, if Q is actually feasible. In Sect. 5.2, we show
that the probability of false infeasibility is low and bounded,
and we present simple methods to avoid this outcome.

4.2.2 Refine

Using the sketched solution over the representative tuples,
the Refine procedure iteratively replaces the representative
tuples with tuples from the original relationR, until no more
representatives are present in the package. The algorithm
refines the sketch package pS one group at a time. For a
group Gi with representative t̃i , let p̃i ⊆ pS be the set of
representatives picked from Gi (i.e., t̃i with possible dupli-
cates). The algorithm proceeds as follows:

– It derives package p̄i from pS, by eliminating all
instances of t̃i from pS. That is, p̄i = pS \ p̃i . This
is a solution to all groups except Gi .

– The algorithm then constructs a refine query, Qi (pS),
which searches for a set of tuples pi ⊆ Gi to replace the
eliminated representatives:

Qi (pS):SELECT PACKAGE(∗) AS pi
FROM Gi REPEAT 0
WHERE Gi .gluten = ‘free’
SUCH THAT
COUNT(pi .∗) + COUNT(p̄i .∗) = 3 AND
SUM(pi .kcal)+SUM(p̄i .kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(pi .sat_fat)

– The algorithm adds the result ofQi (pS), pi , in the current
solution, pS. Now, groupGi is refined with actual tuples.

In Qi (pS), COUNT(p̄i .∗) and SUM(p̄i .kcal) are values
computed directly on p̄i before the query is formed. They
are used to modify the original constraint bounds to account
for tuples and representatives already chosen for all the other
groups. The global constraints inQi (pS) ensure that the com-
bination of tuples in pi and p̄i satisfies the original query
Q. Thus, this step produces the new refined sketch package
p′
S′ = p̄i ∪ pi , where S′ = S \ {(Gi , t̃i)}.
Since Gi has at most τ tuples, the ILP problem corre-

sponding to Qi (pS) has at most τ variables. This is typically

small enough for the black-box ILP solver to solve directly,
and thus we can solve this package query using the Direct
method (Sect. 3.2). Similarly to the sketch query, if τ is too
large, we can solve this query recursively with SketchRe-
fine: the tuples in group Gi are further partitioned into
smaller groups until the subproblems reach a size that can
be efficiently solved directly.

Ideally, the Refine step will only process each group with
representatives in the initial sketch package once. However,
the order of refinement matters as each refinement step is
greedy: it selects tuples to replace the representatives of a
single group, without considering the effects of this choice
on other groups. As a result, a particular refinement step
may render the query infeasible (no tuples from the remain-
ing groups can satisfy the constraints). When this occurs,
Refine employs a greedy backtracking strategy that recon-
siders groups in a different order.

Greedy-backtracking Refine
activates backtrackingwhen it encounters an infeasible refine
query, Qi (pS). Backtracking greedily prioritizes the infeasi-
ble groups. This choice is motivated by a simple heuristic: if
the refinement on Gi fails, it is likely due to choices made
by previous refinements; therefore, by prioritizing Gi , we
reduce the impact of other groups on the feasibility ofQi (pS).
This heuristic does not affect the approximation guarantees
(Sect. 5.1).

Algorithm 2 details the Refine procedure. The algorithm
logically traverses a search tree (which is never constructed,
but is the result of recursive calls and backtracking), where
each node corresponds to a unique sketch package pS. The
traversal starts from the root, corresponding to the initial
sketch package, where no groups have been refined (S = P),
and finishes at the first encountered leaf, corresponding to a
complete package (S = ∅). The algorithm terminates as soon
as it encounters a complete package, which it returns (line 4).
The algorithm maintains a set of failed groups, F, initially
empty (line 2), and assumes a (initially random) refinement
order for all groups in S, stored in a priority queueU (line 6).
It then tries to solve the refine query corresponding to each
of the groups in the queue (line 12). When a refine query
succeeds, the algorithm recursively proceeds with the next
group in the queue (lines 13–18). If any of the refine queries
fails, the failing group is added toF, and the algorithm imme-
diately backtracks, reporting the failure to the parent node in
the search tree (lines 25–29). Failures can occur at any depth
of the traversal. If a recursive call fails, all the failing groups
(F′) are prioritized (lines 19–22).

Theorem 2 (Correctness ofRefine)A package produced by
Refine is guaranteed to satisfy the query constraints.

The theorem follows from the fact that, by construction,
the refine query, Qi (pS), identifies tuples replacements for

123

Package queries: efficient and scalable computation of high-order constraints

Algorithm 2 Greedy backtracking Refine
input:

– Q: the package query to be evaluated
– P = {(G1, t̃1), . . . , (Gm , t̃m)}: partitioning groups
– S: partitioning groups yet to be refined (initially S = P)
– pS: the refining package (initially the result of Sketch)

output: a feasible package containing only tuples, or failure
1: procedure Refine(Q, P, pS)
2: F ← ∅ � Failed groups
3: if S = ∅ then � Base case: all groups already refined
4: return (pS,F)

5: � Arrange S in some initial order (e.g., random)
6: U ← priori t yQueue(S)

7: while U �= ∅ do
8: (Gi , t̃i) ← dequeue(U)

9: � Skip groups that have no representative in pS
10: if t̃i /∈ pS then
11: continue
12: pi ← Direct(Qi (pS))
13: if Qi (pS) is feasible then
14: � Replace representative with tuples
15: p′

S′ ← pS \ p̃i ∪ pi
16: S′ ← S \ {(Gi , t̃i)}
17: � Greedily recurse with refinable group
18: (p,F′) ← Refine(Q,P, p′

S′)
19: if F′ �= ∅ then � Refine failure
20: F ← F ∪ F′
21: � Greedily prioritize non-refinable groups
22: priori ti ze(U,F)

23: else � Refine success
24: return (p,F)

25: else � Qi (pS) is infeasible
26: if S �= P then � If pS is not the initial package
27: � Greedily backtrack with non-refinable group
28: F ← F ∪ {(Gi , t̃i)}
29: return (null,F)

30: � None of the groups in S can be refined (invariant: F = S)
31: return (null,F)

the representatives that do not break the overall constraints
of the original query.

Let T (τ) be the time taken by the black box (in our case,
Direct using an ILP solver) to solve a problem of size τ .
We express the time complexity of the refine procedure as
a function of T (τ) and m, the number of partitions used
by SketchRefine. In the best case, all refine queries are
feasible and the algorithm never backtracks. In this case, the
algorithmmakes up tom calls to the solver to solve problems
of size up to τ , one for each refining group. In the worst
case, SketchRefine tries every group ordering leading to
a factorial number of calls to the solver, O(T (τ)m!). Our
experiments show that the best case is the most common and
backtracking occurs infrequently.

False infeasibility and hybrid sketch queries

For a feasible query Q, false negatives, or false infeasibility,
may happen in two cases: (1) when the sketch query Q(R̃)

is infeasible; (2) when greedy backtracking fails (possibly

due to sub-optimal partitioning). In both cases, SketchRe-
fine would (incorrectly) report a feasible package query as
infeasible. False negatives are, however, extremely rare, as
Theorem 4 establishes in Sect. 5.2.

In our evaluation, we use a small heuristic modification
to SketchRefine to deal with these cases, which creates a
hybrid query by merging the sketch query Q(R̃) with one of
the refine queries. The hybrid sketch query, executed in place
of the original sketch query, selects tuples from a group and,
at the same time, representative tuples from all the remain-
ing groups. This simple technique can greatly reduce false
infeasibility by circumventing three potential cases of fail-
ure: (1) The original sketch query, Q(R̃), may be infeasible
due to a bad representative from one of the groups. An hybrid
sketch query over that group could render the sketch phase
possible. (2) If a group fails in a later refine stage, solving
that group upfront with a hybrid sketch query could render
the group’s problem feasible, thanks to having representa-
tives for the other groups. (3) If a group fails in a later refine
stage, a hybrid sketch query on a different group could avoid
selecting representatives for the failing group altogether. The
algorithm tries a hybrid sketch query on each group when-
ever the original sketch query is infeasible or when all refines
fail; it then proceeds normally if one of the hybrid queries
is feasible. Hybrid sketch proves extremely effective on our
experimental workload (Sect. 6):SketchRefinewith hybrid
sketch does not encounter even a single case of false infea-
sibility, i.e., there is no query for which Direct produces a
solution but SketchRefine does not.

5 Theoretical analysis of SKETCHREFINE

SketchRefine scales package evaluation by breaking the
problem into smaller, manageable subproblems: the Sketch
phase evaluates a package query over the representative
tuples of the partitions, and theRefine phase evaluates pack-
age queries over each partition. This scalability comes at
the price of accuracy. A package returned by SketchRe-
fine is guaranteed to satisfy all the query constraints, but it
may have a worse objective value than the package produced
byDirect evaluation. Moreover, SketchRefinemay incor-
rectly determine that a package query is infeasible, when
in fact it has a solution (false infeasibility). In this section,
we provide a theoretical analysis of the quality of results
produced by SketchRefine. Specifically, we present two
theoretical results. First, we show that SketchRefine offers
strong approximation guarantees: a package produced by
SketchRefine is guaranteed to be within a (1 ± ε)-factor
from the package produced by Direct. Second, we show
that SketchRefine fails to produce a package to a feasible
query (false infeasibility) with low probability.

123

M. Brucato et al.

5.1 Approximation guarantees

Direct and SketchRefine employ a black-box solver to
evaluate either the original query (Direct), or the subqueries
(the sketch and refine queries of SketchRefine). If the
solver is exact, thenDirect returns optimal solutions, and the
approximation guarantees of SketchRefine arewith respect
to the true optimal. In general however, solvers may not be
exact (e.g., ILP solvers typically provide approximations),
in which case the approximation bound of SketchRefine is
with respect to the approximation of the solver. SketchRe-
fine allows control of its approximation bounds through its
offline partitioning. Specifically, we prove that, for a desired
approximation parameter ε, we can derive diameter bounds
ωi j (for each partitioning groupGi and attribute attr j) for the
offline partitioning that guarantee that the solution produced
by SketchRefine (if any) has objective value (1 ± ε)-factor
close to the objective value of the solution produced by the
solver for the same query.

Theorem 3 (ApproximationBounds) LetR(attr1, . . . ,attrk)
be a relation with k attributes, and letQ be a feasible package
query with a maximization (minimization, resp.) objective
over R. Let S be an exact solver that produces an answer to
Q with optimal objective value OPT . We denote with ALG
the objective value of the package returned by SketchRe-
fine using S as a black-box solver. For any ε ∈ [0, 1)
(ε ∈ [0,∞), resp.), there exists β ∈ [0, 1) (β ∈ [1,∞),
resp.) that depends on ε, such that if R is partitioned into m
groups with diameter limits:

ωi j = min
t∈Gi

{|1−β|·|t.attr j |}, ∀i ∈ [1,m], ∀ j ∈ [1, k] (2)

then ALG ≥ (1 − ε)OPT (ALG ≤ (1 + ε)OPT , resp.).

We present the proof of the theorem for the case of maxi-
mization queries. The minimization case follows analogous
reasoning. Without loss of generality, we consider a feasible
package query Q with a summation constraint on each of the
k attributes, SUM(attr j) ≤ Uj , j ∈ [1, k], and a maximiza-
tion objective on SUM(attrobj). A COUNT constraint is a
special case of a SUM over an attribute that is equal to 1.
Partitioning over this attribute would result in groups with
zero diameter (the value of the attribute for all tuples in the
group is the same). Therefore, with respect to this attribute,
representatives are exact. Essentially, COUNT constraints
do not affect the approximation of the result.

We prove Theorem 3 in two steps. First, we show that
the initial Sketch package approximates the optimal pack-
age by a factor β. Second, we show that the final package
returned by the Refine procedure approximates the initial
Sketch package by a factorβ aswell. Thus, the final result of
SketchRefine approximates the optimal package by a fac-
tor of β2.We conclude the proof by showing an explicit value

forβ as a function of ε. The proof requires two lemmas (Lem-
mas 2 and 3 below). The first lemma shows that if a package
satisfies Q, replacing the tuples in the package with their rep-
resentative tuples generates a package that satisfies a relaxed
version of Q, where each constraint is relaxed by a factor
β. Below, we define such relaxed queries as β-relaxations.
The second lemma shows that if a package p1 optimizes Q
and another package p2 optimizes its β-relaxation, then the
objective value of p1 cannot beworse than the objective value
of p2 by more than a factor β.

We first introduce some needed notation and definitions.
Given a package p, we denote the summation of its tuples on
attribute attr with SUM(p.attr), and its objective value with
OBJ(p), where OBJ(p) = SUM(p.attrobj). We now pro-
ceed to define the concepts of ordering, and feasible, optimal,
and approximate packages, that are at the core of the proof.

Definition 3 (Package ordering�) A package p1 dominates
a package p2, denoted by p1 � p2, iff the objective value of
p1 is at least as good the objective value of p2: OBJ(p1) ≥
OBJ(p2). With slight abuse of notation, we write p1 � β p2
to denote that the objective value of p1 is as least as good as
the objective value of p2 by a factor β.

Definition 4 (Feasible package |) We say that a package p
is feasible for Q, denoted by p |	 Q, iff for all 1 ≤ j ≤ k:
SUM(p.attr j) ≤ Uj .

Definition 5 (Optimal package |	∗) A package p is optimal
for Q, denoted by p |	∗ Q, iff p |	 Q and for all p′ |	 Q,
p � p′.

Definition 6 (β-approximation) A package p is a β-
approximation for query Q if p |	 Q and for all p′ |	 Q,
p � β p′.

Definition 7 (β-relaxation) The β-relaxation of query Q,
denoted by Qβ , is a query with the same objective function
as Q, and with k global constraints, for all 1 ≤ j ≤ k:

SUM(attr j) ≤ β−1Uj

Definition 8 (Representative projection π) The representa-
tive projection of a package p, denoted by π(p), is a function
that substitutes each tuple in p with its representative tuple.

Because representative tuples have the best value on the
objective attribute attrobj of all the tuples in its group, π

satisfies the following property:

Property 1 The representative projection of a package dom-
inates the package: π(p) � p.

Before stating Lemma 2, we introduce another interme-
diate result. Lemma 1 states that the diameter conditions

123

Package queries: efficient and scalable computation of high-order constraints

of Equation (2) guarantee that all the tuples in a group are
“close” to each other by a factor no larger than β. We refer to
this as β-closeness, and we generalize this concept to pairs
of packages: two packages are β-close to each other if their
sums (on any attribute) are close to each other by a factor β.

Definition 9 (β-closeness) Any two tuples t1 and t2 are β-
close to each other iff for all 1 ≤ j ≤ k:

t1.attr j ≥ β t2.attr j and t2.attr j ≥ β t1.attr j

Any two packages p1 and p2 are β-close to each other iff for
all 1 ≤ j ≤ k:

SUM(p1.attr j) ≥ β SUM(p2.attr j) and

SUM(p2.attr j) ≥ β SUM(p1.attr j)

Lemma 1 If the partitioning satisfies the diameter limits of
Equation (2), then all tuples within the same group are β-
close to each other.

Proof Consider any group Gi , any attribute attr j , any pair
of tuples t1, t2 in Gi . First, |1 − β| = (1 − β) as
β ∈ [0, 1). By Equation (1), t1.attr j ≥ t2.attr j − di j .
By Equation (2), di j ≤ (1 − β)|t2.attr j |. Thus, either (i)
−di j ≥ (1 − β) t2.attr j or (ii) −di j ≥ (β − 1) t2.attr j :
If (i): t1.attr j ≥ t2.attr j + (1 − β) t2.attr j > β t2.attr j
If (ii): t1.attr j ≥ t2.attr j + (β − 1) t2.attr j = β t2.attr j
�

The following lemma states that the representative projec-
tion of a feasible package for query Q satisfies a β-relaxed
version of the same query.

Lemma 2 (Representative projection relaxation) For any
package p: p |	 Q 	⇒ π(p) |	 Qβ .

Proof By hypothesis, for all 1≤ j ≤k,Uj ≥ SUM(p.attr j).
By Lemma 1,SUM(p.attr j) ≥ β SUM(π(p).attr j). There-
fore, SUM(π(p).attr j) ≤ β−1 Uj .
�
Lemma 3 (β-relaxation approximation) For any packages
p1, p2: p1 |	∗ Q and p2 |	∗ Qβ 	⇒ p1 � β p2.

Proof Because p2 |	 Qβ , for all 1 ≤ j ≤ m,SUM(p2.attr j)
≤ β−1Uj . Thus, β SUM(p2.attr j) ≤ Uj and therefore,
with abuse of notation, β p2 |	 Q. Since p1 |	∗ Q, p1 �
β p2.
�
Proof of Theorem 3 Let the initial sketchpackagebedenoted
by p(0). Suppose, without loss of generality, that the algo-
rithm refines the initial package in the order: G1,G2, . . . ,

Gm . Let p(i) denote the intermediate refined package pro-
duced at the i-th iteration of the algorithm. The final complete
package returned by the algorithm is thus p(m). Let p∗ |	∗ Q

be an optimal package. To prove the theorem, we show that
there exist a β such that p(m) � β2 p∗. We do so in two
steps:

p(0) � β p∗ (Sketch) p(m) � βp(0) (Ref ine)

(Sketch) First, notice that p(0) |	∗ Q because p(0)

optimizes the Sketch query Q(R̃) (Sect. 4.2.1), which has
identical constraints and maximization objective as Q. Con-
sider p′ |	∗ Qβ , the optimal package for the relaxed query
Qβ constructed with representative tuples. By Lemma 3,
we know that p(0) � β p′. By Lemma 2, we also know
that π(p∗) |	 Qβ . Since p′ is the optimal package for Qβ ,
p′ � π(p∗). Finally, by Property 1 of π , we also know that
π(p∗) � p∗. Putting these together, we have that:

p(0) � β p′ � β π(p∗) � β p∗

(Refine) Consider package p(i)
i , the solution the i-th

Refine query (Sect. 4.2.2) computed at the i-th iteration of
the algorithm. Clearly, p(i)

i |	∗ Qi (pS) because it optimizes
theRefine query. SketchRefinemaintains this solution for
group Gi until the end of the procedure, thus p(m)

i = p(i)
i

and, therefore, p(m)
i |	∗ Qi (pS). Consider now p(0)

i , the set
of representatives computed during the Sketch phase for
group Gi . Because of Lemma 1, during the course of the
algorithm, the constraints of a Refine query can only vary
by a factor β. Thus, it must be that p(0)

i |	 Qi (pS)β . Let
p′′ |	∗ Qi (pS)β be the optimal package for the relaxed ver-

sion of Qi (pS). Then, p′′ � p(0)
i . Also, by Lemma 3, we

know that p(m)
i � β p′′. Putting these together, we have

that:

p(m)
i � β p′′ � β p(0)

i

Finally, because p(m) = ∑m
i=1 p

(m)
i and p(0) = ∑m

i=1 p
(0)
i ,

by linearity of sum we have that p(m) � β p(0).

Thus, for β = (1 − ε)
1
2 (β = (1 + ε)

1
2 , resp.), we get

approximation factor 1 − ε (1 + ε, resp.).
�
The theorem implies that, in order to obtain (1±ε)-factor

approximation, the partitioning must satisfy the following
diameter conditions for each group Gi and attribute attr j :

ωi j =

⎧
⎪⎨

⎪⎩

min
t∈Gi

|1 − (1 − ε)
1
2 | · |t.attr j | for maximization

min
t∈Gi

|1 − (1 + ε)
1
2 | · |t.attr j | for minimization

5.2 False-infeasibility bounds

The following theorem establishes that the probability that
SketchRefine will fail to find a solution to a feasible query
is low and bounded.

123

M. Brucato et al.

Theorem 4 For any query Q and any random package P,
if P |	 Q, then with high probability: (1) the Sketch query
Q(R̃) is feasible; (2) all Refine queries Qi (pS), 1 ≤ i ≤ m,
are feasible. Thus, SketchRefine returns a feasible result.

Proof (1)Wefirst show that the sketch queryQ(R̃) is feasible
with high probability.

Suppose, by hypothesis, that P |	 Q. Thus, P satisfies
all constraints of Q. Let SUM(A) be any such constraint,
where A is either a constant, an attribute from the schema of
the input relation R, or a linear combination of attributes
of R. Because P is random, its representative projection
π(P) (Definition 8), constructed from P by replacing tuples
with representatives, is also a random package. Thus, both
SUM(P.A) and SUM(π(P).A) are random variables. We
show that, with high probability, SUM(π(P).A) does not
differ from the expected SUM(P.A) and, thus, since P is
feasible, so is π(P). This implies that the sketch query Q(R̃)

is feasible with high probability, as at least one solution to it
exists, namely π(P).

As a first step, we apply Hoeffding’s inequality [19]
to SUM(π(P).A). For all c > 0, let γc,P = 2 exp(
− 2t2

|P|(MAX(A)−MIN(A))2

)
. Hoeffding’s inequality establishes

that the probability of SUM(π(P).A) deviating from its
expectation by more than t is bounded by a term, γc,P, that
is exponentially small in t and |P|:
Pr

[|SUM(π(P).A) − E[SUM(π(P).A)]| ≥ c
] ≤ γc,P (3)

Let A be the random variable corresponding to the value
of attribute A of a random tuple in P, and let E[A] be its
expected value. Similarly, let Ã be the random variable corre-
sponding to a random representative tuple in π(P), and E[Ã]
its expected value. Finally, let G be the group a random rep-
resentative tuple in π(P) belongs to. Because representative
tuples are the centroids (mean) of all the tuples in their group
along the attributes involved in the constraints, we have that:

E[Ã] = E
[

1
|G|

∑
G A

]
= 1

|G|
∑

G E[A] = E[A] (4)

The expected sum over package π(P) is therefore:

E[SUM(π(P).A)]=∑
P E[Ã]=∑

P E[A]
= E[SUM(P.A)]

Thus Equation (3) becomes:

Pr
[|SUM(π(P).A) − E[SUM(P.A)]| ≥ c

] ≤ γc,P (5)

Equation (5) shows that the probability that the sum of A
overπ(P) differs from the expected sum overP bymore than
c > 0 is bounded. Since SUM(P.A) is feasible (by hypothe-
sis), so is SUM(π(P.)A), and the sketch query is feasible on
this constraint with high probability. This is independently

true for all query constraints. Thus, the probability of the
overall sketch query being infeasible is one minus the proba-
bility of all constraints being feasible.With k constraints, this
probability (sketch being infeasible) is small and bounded by
1− (1−γc,P)k . This term is exponentially small in t and |P|,
so, with high probability, the sketch query Qi (pS) is feasi-
ble.

(2) Now, we show that all refine queries are feasible
with high probability. Equation 4 allows reasoning about
each refine query independently, as replacing representa-
tives with tuples does not change the expected sum in each
group.

Let Pi be the tuples in P that belong to group Gi .
Then, π(Pi) is the set of representatives in π(P) that
belong to group Gi . We apply Hoeffding’s inequality on
SUM(Pi .A), obtaining an equation similar to Eq. (3). The
proof now follows the same steps as the proof of (1), now
applied on SUM(Pi .A). From Equation (4), we have that
E[SUM(Pi).A)] = E[SUM(π(Pi))]. This results in an
equation similar to (5), showing that, if π(Pi) is feasi-
ble for the i-th refine query, then Pi must also be feasible
for the same query. When π(P) is feasible, π(Pi) is a
feasible package for the i-th refine query Qi (pS); other-
wise, the sketch query would be infeasible. This is inde-
pendently true for all constraints, and the probability of
the overall query being infeasible, with k constraints, is
bounded by 1 − (1 − γc,P)k . Thus, for every group Gi ,
with high probability, the Refine query Qi (pS) is feasi-
ble.
�

Let the selectivity of a query be the probability of a random
package being infeasible. Thus, the lower the selectivity of
Q, the higher the probability Pr

[
P |	 Q

]
. Therefore, a con-

sequence of Theorem 4 is that the lower the selectivity of
Q, the higher the probability that Q(R̃) and all Qi (pS) are
feasible, which implies that SketchRefine will eventually
find a feasible package with high probability as well.

6 Experimental evaluation of SKETCHREFINE

In this section, we present an extensive experimental evalu-
ation of our techniques for package query execution, both
on real-world and on benchmark data. Our results show
the following properties of our methods: (1) SketchRefine
evaluates package queries an order of magnitude faster than
Direct; (2) SketchRefine scales up to sizes that Direct
cannot handle directly; (3) SketchRefine produces pack-
ages of high quality (similar objective value as the packages
returned byDirect); (4) the performance of SketchRefine
is robust to partitioning on different sets of attributes as long
as a query’s attributes are mostly covered. This makes offline
partitioning effective for entire query workloads.

123

Package queries: efficient and scalable computation of high-order constraints

6.1 Experimental setup

Software

We implemented our package evaluation system as a layer
on top of a traditional relational DBMS. The data itself
resides in the database, and the system interacts with the
DBMS via SQL when it needs to perform operations on
the data. We use PostgreSQL v9.3.9 for our experiments.
The core components of our evaluation module are imple-
mented in Python 2.7. The PaQL parser is generated in
C++ from a context-free grammar, using GNU Bison [15].
We represent a package in the relational model as a stan-
dard relation with schema equivalent to the schema of the
input relation. A package is materialized into the DBMS
only when necessary (for example, to compute its objective
value).

We employ IBM’s CPLEX [20] v12.6.1 as our black-
box ILP solver. When the algorithm needs to solve an
ILP problem, the corresponding data is retrieved from the
DBMS and passed to CPLEX using tuple iterator APIs
to avoid having more than one copy of the same data
stored in main memory at any time. We used the same set-
tings for all solver executions: we set its working memory
to 512MB; we instructed CPLEX to store exceeding data
used during the solve procedure on disk in a compressed
format, rather than using the operating system’s virtual mem-
ory, which, as per the documentation, may degrade the
solver’s performance; we instructed CPLEX to emphasize
optimality versus feasibility to dampen the effect of inter-
nal heuristics that the solver may employ on particularly
hard problems; we enabled CPLEX’s memory emphasis
parameter, which instructs the solver to conserve memory
where possible; we set a solving time limit of 1h; we also
made sure that the operating system would kill the solver
process whenever it uses the entire available main mem-
ory. Our code is publicly available on our project website:
http://packagebuilder.cs.umass.edu.

Environment

We run all experiments on a ProLiant DL160 G6 server
equipped with two twelve-core Intel Xeon X5650 CPUs at
2.66GHz each, with 15GB or RAM, with a single 7200 RPM
500GB hard drive, running CentOS release 6.5.

Datasets and queries

We demonstrate the performance of our query evaluation
methods using both real-world and benchmark data. The real-
world dataset consists of approximately 5.5 million tuples
extracted from the Galaxy view of the Sloan Digital Sky
Survey (SDSS) [34], data release 12. For the benchmark
datasets, we used TPC-H [35], with table sizes up to 11.8
million tuples.

TPC-H query Q1 Q2 Q3 Q4 Q5 Q6 Q7
Max # of tuples 6M 6M 6M 6M 240k 11.8M 6M

Fig. 5 Size of the tables used in the TPC-H benchmark

We constructed a workload of seven feasible pack-
age queries for each dataset, by adapting existing SQL
queries originally designed for each of the two datasets.
For the Galaxy dataset, we adapted real-world sample SQL
queries available directly from the SDSS website.4 For the
TPC-H dataset, we adapted seven SQL query templates
provided with the benchmark that contained enough numer-
ical attributes. We performed query specification manually,
by transforming SQL aggregates into global predicates or
objective criteriawhenever possible, selection predicates into
global predicates, and by adding cardinality bounds. We
did not include any base predicates in our package queries
because they can always be pre-processed by running a stan-
dard SQL query over the input dataset (Sect. 3), and thus
eliminated beforehand. For the Galaxy queries, we synthe-
sized the global constraint bounds bymultiplying the original
selection bounds by the package cardinality bounds. For the
TPC-H queries, we generated global constraint bounds uni-
formly at random by multiplying random values in the value
range of a specific attribute by the cardinality bounds. We
transformed the original TPC-H SQL queries into single-
relation package queries by joining the original TPC-H tables
using full outer joins, containing all attributes needed by
all the TPC-H package queries in our benchmark. This pre-
joined table contained approximately 17.5million tuples. For
each TPC-H package query, we then extracted the subset of
tuples having non-NULL values on all the query attributes.
The size of each resulting table is reported in Fig. 5. Finally,
we do not allow tuple repetitions in any of the queries as
they only affect the domains of the ILP integer variables.
We observed that allowing tuple repetitions results in easier
problems for the ILP solver.

Comparisons

We compareDirectwith SketchRefine. Bothmethods use
the ILP formulation (Sect. 3) to transform package queries
into ILP problems: Direct translates and solves the original
query; SketchRefine translates and solves the subqueries
(Sect. 4), and uses hybrid sketch query (Sect. 4.2.2) as the
only strategy to cope with infeasible initial queries.

Metrics

We evaluate methods on their efficiency and effectiveness.
Response time:Wemeasure response time aswall-clock time
to generate an answer package. This includes the time taken
to translate the PaQL query into one or several ILP problems,
the time taken to load the problems into the solver, and the

4 http://cas.sdss.org/dr12/en/help/docs/realquery.aspx.

123

http://packagebuilder.cs.umass.edu
http://cas.sdss.org/dr12/en/help/docs/realquery.aspx

M. Brucato et al.

time taken by the solver to produce a solution. We exclude
the time to materialize the package solution to the database
and to compute its objective value.
Approximation ratio: Recall that SketchRefine is always
guaranteed to return an approximate answer with respect to
Direct (Sect. 5.1). In order to assess the quality of a package
returned by SketchRefine, we compare its objective value
with the objective value of the package returnedbyDirecton
the same query. Using ObjS and ObjD to denote the objec-
tive values of SketchRefine and Direct, respectively, we
compute the empirical approximation ratio ObjD

ObjS
for max-

imization queries, and ObjS
ObjD

for minimization queries. An
approximation ratio of one indicates that SketchRefinepro-
duces a solution with same objective value as the solution
produced by the solver on the entire problem. Typically, the
approximation ratio is greater than or equal to one. However,
since the solver employs several approximations and heuris-
tics, values lower than one, whichmeans that SketchRefine
produces a better package than Direct, are possible in prac-
tice.

6.2 Results and discussion

We evaluate four fundamental aspects of our algorithms:
(1) their query response time and approximation ratio with
increasingdataset sizes; (2) the impact of varyingpartitioning
size thresholds, τ , on SketchRefine’s performance; (3) the
impact of the attributes used in offline partitioning on query
runtime; (4) the impact of enforcing approximation guaran-
tees, ε, on the performance of SketchRefine.

6.2.1 Query performance as dataset size increases

In our first set of experiments, we evaluate the scalability
of our methods on input relations of increasing size. First,
we partitioned each dataset using the union of all package
query attributes in the workload: we refer to these partition-
ing attributes as the workload attributes. We did not enforce
diameter conditions, ωi j , during partitioning for three rea-
sons: (1) because the diameter conditions may affect the
size of the resulting partitions, and we want to tightly con-
trol the partition size through the parameter τ ; (2) to show
that an offline partitioning can be used to answer efficiently
and effectively bothmaximization andminimization queries,
even though they would normally require different diame-
ters; (3) to demonstrate the effectiveness of SketchRefine
in practice, even without having theoretical guarantees in
place. Because we do not enforce approximation guaran-
tees, the group centroids are used as representatives for all
queries. In Sect. 6.2.4, we specifically test how varying the
diameter requirements through ε affects the running time of
SketchRefine.

Dataset Dataset size Size threshold τ Partitioning time
Galaxy 5.5M tuples 550k tuples 348 sec.
TPC-H 17.5M tuples 1.8M tuples 1672 sec.

Fig. 6 Partitioning time for the two datasets, using the workload
attributes and with no diameter condition

We perform offline partitioning setting the partition size
threshold τ to 10% of the dataset size. Figure 6 reports the
partitioning times for the two datasets. We derive the par-
titionings for the smaller data sizes (less than 100% of the
dataset) in the experiments, by randomly removing tuples
from the original partitions. This operation is guaranteed to
maintain the size condition.

Figure 7 reports our scalability results on the Galaxy and
TPC-H benchmarks. The figure displays the query runtimes
in seconds on a logarithmic scale, averaged across 10 runs
for each datapoint. At the bottom of each plot, we also report
the mean and median approximation ratios across all dataset
sizes. The graph for Q2 on the galaxy dataset does not report
approximation ratios, becauseDirect evaluation fails to pro-
duce a solution for this query across all data sizes.Weobserve
that Direct can scale up to millions of tuples in three of the
seven Galaxy queries, and in all of the TPC-H queries. Its
runtime performance degrades, as expected, when data size
increases, but even for very large datasets Direct is usually
able to answer the package queries in less than a fewminutes.
However,Direct has high failure rate for some of theGalaxy
queries, indicated by the missing data points in some graphs
(queries Q2, Q3, Q6 and Q7 in the Galaxy dataset). This
happens when CPLEX uses the entire available main mem-
ory while solving the corresponding ILP problems. For some
queries, such as Q3 and Q7, this occurs with bigger dataset
sizes. However, for queries Q2 and Q6,Direct even fails on
small data. This is a clear demonstration of one of the major
limitations of ILP solvers: they can fail evenwhen the dataset
can fit in main memory, due to the complexity of the integer
problem. In contrast, our scalable SketchRefine algorithm
is able to perform well on all dataset sizes and across all
queries.SketchRefine consistently performs about an order
of magnitude faster than Direct across all queries, both on
real-world data and benchmark data. Its running time is con-
sistently below one or two minutes, even when constructing
packages from millions of tuples.

Both the mean and median approximation ratios are very
low, usually all close to one or two. This shows that the sub-
stantial gain in running time of SketchRefine over Direct
does not compromise the quality of the resulting packages.
Our results indicate that the overhead of partitioning with
diameter limits is often unnecessary in practice. Since the
approximation ratio is not enforced, SketchRefine can
potentially produce bad solutions, but this happens rarely.
In our experiments, this only occurred with query Q2 from
the TPC-H benchmark.

123

Package queries: efficient and scalable computation of high-order constraints

Scalability on Galaxy

Ti
m

e
(s

)

Q1

101

102

10% 40% 70% 100%

Mean: 1.00, Median: 1.00

Dataset size

Q2

101

10% 40% 70% 100%

Mean: —, Median: —

Dataset size

Q3

101

102

10% 40% 70% 100%

Mean: 1.13, Median: 1.06

Dataset size

Q4

101

102

10% 40% 70% 100%

Mean: 2.76, Median: 2.67

Dataset size

Q5

100

101

102

10% 40% 70% 100%

Mean: 1.00, Median: 1.00

Dataset size

Q6

101

102

10% 40% 70% 100%

Mean: 1.00, Median: 1.00

Dataset size

Q7

101

102

10% 40% 70% 100%

Mean: 1.01, Median: 1.00

Dataset size

Scalability on TPC-H

Ti
m

e
(s

)

Q1

101

102

10% 40% 70% 100%

Mean: 1.18, Median: 1.14

Dataset size

Q2

101

102

10% 40% 70% 100%

Mean: 8.27, Median: 6.04

Dataset size

Q3

101

102

10% 40% 70% 100%

Mean: 1.60, Median: 1.50

Dataset size

Q4

102

10% 40% 70% 100%

Mean: 1.00, Median: 1.00

Dataset size

Q5

100

10% 40% 70% 100%

Mean: 1.90, Median: 2.00

Dataset size

Q6

101

102

10% 40% 70% 100%

Mean: 1.80, Median: 2.00

Dataset size

Q7

101

102

10% 40% 70% 100%

Mean: 1.89, Median: 1.95

Dataset size

Fig. 7 Scalability on theGalaxy and TPC-H benchmarks. SketchRe-
fine uses an offline partitioning computed on the full dataset, using the
workload attributes, τ = 10% of the dataset size, and no diameter con-
dition. In Galaxy, Direct scales up to millions of tuples in about half
of the queries, but it fails on the other half. In TPC-H,Direct scales up

to millions of tuples in all queries. SketchRefine scales up nicely in
all cases, and runs about an order of magnitude faster than Direct. Its
approximation ratio is generally very low, even though the partitioning
is constructed without diameter conditions

6.2.2 Effect of varying partition size threshold

The size of each partition, controlled by the partition size
threshold τ , is an important factor that can impact the perfor-
mance of SketchRefine: Larger partitions imply fewer but
larger subproblems, and smaller partitions imply more but
smaller subproblems. Both cases can significantly impact
the performance of SketchRefine. In our second set of
experiments, we vary τ , which is used during partitioning
to enforce the size condition (Sect. 4.1), to study its effects
on the query response time and the approximation ratio of
SketchRefine. In all cases, along the lines of the previous
experiments, we do not enforce diameter conditions and pick
each group’s centroid as the representative. Figure 8 shows
the results obtained on the Galaxy and TPC-H benchmarks,
using 30 and 100% of the original data, respectively.We vary
τ from higher values corresponding to fewer but larger par-
titions, on the left-hand size of the x-axis, to lower values,
corresponding to more but smaller partitions. When Direct
is able to produce a solution, we also report its running time
(horizontal line) as a baseline for comparison.

Our results show that the partition size threshold has a
major impact on the execution time of SketchRefine, with
extremevalues of τ (either too lowor too high) often resulting
in slower running times than Direct. With bigger partitions,
on the left-hand side of the x-axis, SketchRefine takes
about the same time asDirect because both algorithms solve
problems of comparable size.When the size of each partition
starts to decrease, moving from left to right on the x-axis, the

response time of SketchRefine decreases rapidly, reach-
ing about an order of magnitude improvement with respect
to Direct. Most of the queries show that there is a “sweet
spot” at which the response time is the lowest: when all par-
titions are small, and there are not too many of them. The
point is consistent across different queries, showing that it
only depends on the input data size (refer to Fig. 5 for the
different TPC-H data sizes). After that point, although the
partitions become smaller, the number of partitions starts to
increase significantly. This increase has two negative effects:
it increases the number of representative tuples, and thus
the size and complexity of the initial sketch query, and it
increases the number of groups that Refine may need to
refine to construct the final package. This causes the running
time of SketchRefine, on the right-hand side of the x-axis,
to increase again and reach or surpass the running time of
Direct. We only report mean and median approximation
ratios, which are in all cases very close to one, indicating
that SketchRefine retains very good quality regardless of
the partition size threshold. We studied how different parti-
tioning size thresholds (τ) affect approximation ratios. We
observed that the ratio follows an inverse trend to that of
the running time in Fig. 8. In the two extreme cases, when
there is only one partition of size n (SketchRefine is a
single refine query that corresponds to Direct) and when
there are n partitions of size 1 (SketchRefine is a sketch
query over n groups of a single tuple each), SketchRe-
fine returns the optimal solution (approximation ratio 1).
Between these endpoints, for some queries, the approxima-

123

M. Brucato et al.

Effect of size threshold on Galaxy
Ti

m
e

(s
)

Q1

101

102

102104106

Mean: 1.00, Median: 1.00

Partition size threshold

Q2

101

102

102104106

Mean: —, Median: —

Partition size threshold

Q3

101

102

102104106

Mean: —, Median: —

Partition size threshold

Q4

101

102

102104106

Mean: 1.78, Median: 1.01

Partition size threshold

Q5

101

102

102104106

Mean: 1.00, Median: 1.00

Partition size threshold

Q6

101

102

102104106

Mean: —, Median: —

Partition size threshold

Q7

101

102

102104106

Mean: 1.01, Median: 1.00

Partition size threshold

Effect of size threshold on TPC-H

Ti
m

e
(s

)

Q1

101

102

104106

Mean: 1.08, Median: 1.12

Partition size threshold

Q2

101

102

103

102104106

Mean: 1.37, Median: 1.00

Partition size threshold

Q3

101

102

104106

Mean: 1.70, Median: 1.50

Partition size threshold

Q4

102

104106

Mean: 1.00, Median: 1.00

Partition size threshold

Q5

100

101

102104

Mean: 1.57, Median: 2.00

Partition size threshold

Q6

102

104106

Mean: 1.20, Median: 1.00

Partition size threshold

Q7

102

104106

Mean: 1.99, Median: 2.18

Partition size threshold

: : : : : : :

: : : : : : :

Fig. 8 Impact of partition size threshold τ on the Galaxy and TPC-H
benchmarks, using, respectively, 30 and 100% of the dataset. Partition-
ing is performed at each value of τ using all the workload attributes,
and with no diameter condition. The baseline Direct and the approx-

imation ratios are only shown when Direct is successful. The results
show that τ has a major impact on the running time of SketchRefine,
but almost no impact on the approximation ratio. SketchRefine can
be an order of magnitude faster than Direct with proper tuning of τ

tion ratio can be higher than 1. With a smaller number of
partitions, our partitioning algorithm produces larger parti-
tions with potentially large diameters, but each refine query
produces an optimal solution over a larger subproblem. As
the number of partitions increases, the refine query operates
over smaller subproblems leading to worse approximation
ratios, until the partitions start to have tighter diameters lead-
ing to better approximation.

6.2.3 Effect of varying partitioning coverage

In this experiment, we study the impact of offline parti-
tioning on the query response time and the approximation
ratio of SketchRefine. We define the partitioning cov-
erage as the ratio between the number of partitioning
attributes and the number of query attributes. For each query,
we test partitionings created using: (a) exactly the query
attributes (coverage = 1), (b) proper subsets of the query
attributes (coverage < 1), and (c) proper supersets of the
query attributes (coverage > 1).

For each query, we report the effect of the partitioning
coverage on query runtime as the ratio of a query response
time over the same query’s response time when coverage is
one: a higher ratio (> 1) indicates slower response time and
a lower ratio (< 1) indicates a faster response time. Figure 9
reports the results on theGalaxy and the TPC-H datasets. The
Galaxy dataset has many more numerical attributes than the
TPC-H dataset, allowing us to experiment with higher values
of coverage. The response time of SketchRefine improves

Ti
m

e
In

cr
ea

se
 R

at
io

Galaxy

0.1

1

10

1 3 5 7 9 11 13

Mean: 1.22, Median: 1.00

Partitioning coverage

TPC-H

0.1

1

10

1 3

Mean: 3.05, Median: 1.00

Partitioning coverage
: :

Fig. 9 Increase or decrease ratio in running time of SketchRefine
with different partitioning coverages. Coverage one, shown by the red
dot, is obtained by partitioning on the query attributes. The results show
an improvement in running time when partitioning is performed on
supersets of the query attributes, with very good approximation ratios

on both datasets when the offline partitioning covers a super-
set of the query attributes, whereas it tends to increasewhen it
only considers a subset of the query attributes. The mean and
median approximation ratios are consistently low, indicating
that the quality of the packages returned by SketchRefine
remains unaffected by the partitioning coverage.

These results demonstrate that SketchRefine is robust
to imperfect partitioning, which do not cater precisely to
the query attributes. Moreover, using a partitioning over a
superset of a query’s attributes typically leads to better perfor-
mance. The reason for this is twofold: First, higher coverage
achieves partitioning groups where tuples are similar across
all attributes pertinent to the query. Thus, the sketch query
uses better representatives and produces a more relevant

123

Package queries: efficient and scalable computation of high-order constraints

Ti
m

e
(s

)
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Fig. 10 Impact of the approximation parameter ε (increasingly stricter
approximation requirements) on theGalaxyworkload, using 10%of the
dataset size. Partitioning is performed on the query attributes, without
enforcing a limit on the size of the partitions, τ , while imposing diam-
eter limits governed by ε. The baseline Direct and the approximation

ratios are only shown when Direct is successful. The results show that
ε has amajor impact on the running time of SketchRefine, as a smaller
ε implies smaller partition diameters and, thus, more partitions, while
maintaining the approximation ratio always down to 1

initial package, and the refine queries are more likely feasi-
ble. Second, partitioning on more attributes can also achieve
smaller partitioning groups. As a result, this speeds up the
refine queries, and also reduces the diameter of each group,
with the potential of improving the approximation ratio. This
means that partitioning can be performed offline using the
union of the attributes of an anticipated workload, or even
using all the attributes of a relation.

6.2.4 Effect of varying ε

In our final set of experiments, we study the impact of differ-
ent approximation guarantees on the query response time
and the approximation ratio of SketchRefine. We vary
ε, the approximation parameter, from higher values (looser
approximation bound) to lower values (tighter approximation
bound), and enforce diameter limits according to Theorem 3.
A looser approximation bound can cause the algorithm to
produce package results with a worse objective value. More
specifically, ε = 0.4 guarantees approximation ratios not
worse than 1.4 for minimization queries and 1.67 for maxi-
mization queries, and ε = 0.0125 guarantees approximation
ratios not worse than 1.0125 for minimization queries and
1.0127 for maximization queries. Figure 10 presents the
results on the Galaxy workload, where ε varies from high
values, on the left-hand size of the x-axis, to lower values.
WhenDirect is able to produce a solution, we also report its
running time (horizontal line) as a baseline for comparison.

Enforcing stricter (lower) ε leads to an increase in the run-
ning time of SketchRefine. This is expected, as the stricter
diameter bounds result inmore partitions, and aswe observed
in our partition threshold experiments (Sect. 6.2.2), having
more partitions can negatively impact the running time of
SketchRefine. This trade-off between quality and runtime
performance is a known characteristic ofmost approximation
schemes [36].

Our results also show that enforcing even a loose ε, such
as 0.4, enables SketchRefine to compute a result to all

the queries faster than Direct with no cost in quality, as
the observed approximation ratios are always equal to 1.
Notably, this happens in all the queries, including those that
showed higher approximation ratio in the previous experi-
ments where the approximation guarantee was not enforced.

7 Parallelizing SKETCHREFINE

Our evaluation showed that SketchRefine outperforms
Direct on both the Galaxy and the TPC-H datasets. Specif-
ically, SketchRefine has three important advantages: First,
it scales naturally to very large datasets, by breaking down
the problem into smaller, manageable subproblems, whose
solutions can be combined to form the final result. Second,
it provides flexible approximations with strong theoretical
guarantees on the quality of the package results. Third,
while our current implementation employs ILP solvers,
SketchRefine can use any arbitrary black-box algorithm
to evaluate the generated package subproblems, even solu-
tions that work entirely in main memory [14,16,36], and
whose efficiency drastically degrades with larger problem
sizes. SketchRefine will offer the same efficiency gains
and approximation guarantees over the employed black-box
algorithm.

However, there are two scenarios that can degrade
SketchRefine’s performance. First, as we discussed in
Sect. 4.2.2, the worst-case running time of the algorithm is
exponential in the number of partitions, due to the backtrack-
ing logic in theRefine phase. TheRefine algorithmmay get
caught in a sequence of promising refine orderings that fail
at their last step. Our evaluation showed that this scenario is
uncommon in practice, and the algorithm was always able
to quickly find a successful refine order for the partitioning
groups. Second, SketchRefine achieves most of its gains
in the Sketch phase, which identifies the relevant partitions,
reducing the work of Refine. Thus, the algorithm is sus-
ceptible to bad performance when queries require tuples to

123

M. Brucato et al.

be picked from a large number of the partitions. We investi-
gate this scenario in more detail, starting with a motivating
example from the Galaxy dataset.

Example 6 (Varied red galaxies) Similar to Example 2, an
astrophysicist is looking for rectangular regions of the night
sky thatmay contain previously unseen celestial objects. This
time, the scientist is specifically looking for galaxies that span
different brightness levels on the red color component.

In this example, the astrophysicist requires each galaxy
(package) to include red color components from the entire
red spectrum. We can encode this in PaQL by dividing the
red spectrum into ranges, and requiring the resulting package
to include at least one tuple from each range interval. Each
such constraint would be of the following form:

(SELECT COUNT(∗) FROM P
WHERE r BETWEEN rlb AND rub) >= 1

where r is the name of the red color component from the
Galaxy schema, and rlb and rub are the lower and upper
bounds of one of the range intervals. The query has one such
constraint for each range interval. Each such constraint forces
the result package to contain at least one tuple in the specified
r range.

If the dataset is partitioned on the red color component, r,
these constraints will force SketchRefine to generate and
solve a subproblem for most of the partitions, causing a sub-
stantial increase to its running time. In theworst case,Refine
will need to operate on all partition groups, and its perfor-
mance can get as bad as Direct.

We implement the scenario of this example in our Galaxy
workload by partitioning the data on attribute r, generating
14 partitioning groups. We create constraints based on range
intervals that correspond to the partitioning on r. Then for
each Galaxy query, we generate a sequence of 14 queries, by
augmenting the query with more constraints on r, thus forc-
ing increasingly higher partition utilization. The first query
of the sequence only has one color constraint requiring at
least one tuple from a single partition, corresponding to the
lowest partition utilization (∼ 10%). The last query of the
sequence has 14 color constraints, one for each partition,
requiring at least one tuple from each partition. This corre-
sponds to the highest partition utilization (100%). Queries
with more constraints on r will require the Refine phase to
solve more partitions. We observe the impact of this work-
loadonSketchRefine’s performance inFig. 11:Aspartition
utilization increases (due to more constraints on r), the run-
time of greedy SketchRefine increases, and matches that
of Direct when most partitions are needed. In this experi-
ment, the runtime of Direct also increases, as the addition of
the partition constraints makes each query individually more
complex.

Since SketchRefine relies on solving several smaller
subproblems, a natural way to improve its performance is
by parallelizing the Refine step. Unfortunately, the greedy
backtracking algorithm (Algorithm 2) requires incremental
refinements, always maintaining the feasibility of the inter-
mediate solutions. Each step in the algorithm makes a local
decision based on results of the previous decisions and their
order. Thus, solving theRefine subproblems in parallel does
not guarantee that the overall package will be feasible.

In this section, we introduce a new iterative method
for performing the Refine phase of SketchRefine. The
iterative algorithm has the following advantages over Algo-
rithm 2: (1) It allows partitions to be evaluated in parallel,
independently from each other; (2) It eliminates the need
for backtracking and, thus, its exponential worst case; (3) It
can reach infeasibility faster than backtracking, while offer-
ing the same false-infeasibility bounds; (4) It guarantees the
same approximation bounds. Figure 11 shows that parallel
execution of our new iterative SketchRefine leads to sig-
nificant gains in performance, and avoids the degradation
that greedy SketchRefine demonstrates in cases of high
partition utilization. We proceed to describe the new Refine
algorithm, explain how it parallelizes, and demonstrate its
scalability.

7.1 Iterative Refine

The Refine step of SketchRefine processes the sketch
package pS to replace the representative tuples with tuples
from each partition. It does this by defining and solving
appropriate ILP problems within each partition (refinement).
The greedy backtracking implementation of Refine (Algo-
rithm2) performs refinements one at a time, and requires each
refinement to yield a feasible package for the original query;
if a refinement does not, the algorithm backtracks. We now
present an alternative strategy for theRefine step that relaxes
this requirement until a tuple solution for every partition-
ing group is found. Specifically, iterative Refine performs
refinements independently on each partition, modifying the
sketch package based on all the successful refinements, and
repeating any failed ones using the new revised sketch pack-
age. Only after all partitions are solved, the algorithm ensures
that feasibility of the resulting package. Algorithm 3 details
the procedure, which works in two phases:

Phase 1: Iterative refinements

The first phase of the algorithm (lines 2–19) performs refine-
ments on all unsolved partitions (S) iteratively. At each
iteration, for each unsolved partition, the algorithm solves
an ILP (constructed as in Sect. 4.2.2) to replace the repre-
sentative tuples with tuples from the partition. The algorithm
updates the sketch package (pS) based on the refinements
(line 15). This process repeats while there are still unsolved

123

Package queries: efficient and scalable computation of high-order constraints

Ti
m

e
(s

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Fig. 11 Impact of increased partition utilization on SketchRefine,
on 30% of the Galaxy data. Partitioning is over attribute r only, using
τ = 10% and no diameter bounds. The performance of SketchRefine

degrades as partition utilization increases, approaching the runtime of
Direct. The runtime of Direct also increases, as the constraints that
force higher partition utilization increase the complexity of the query

partitions, i.e., partitions that failed to produce a feasible solu-
tion in previous iterations (line 3). The refinement queries
Qi (pS) in the new iterations will be different from their ear-
lier versions, as the constraints on each refine query depend
on pS, which has been modified by the previous iterations.
Phase 1 fails (line 19) if, during an iteration, none of the parti-
tion groups can be solved: In this case, S remains unchanged,
and the algorithm cannot make progress toward the comple-
tion of the package.

During this phase, the algorithm does not check whether
pS is a feasible solution to the overall query. Rather, the
objective of this phase is to produce feasible solutions for
each of the partition groups.

Phase 2: Feasibility adjustment

If Phase 1 concludes successfully, the algorithm enters Phase
2 (lines 20–29) to verify whether pS is a feasible solution
to the overall query and attempt a correction if it is not. If
pS is not a feasible solution, the algorithm tries one more
refine round of all partitions based on the current pS. If any
of the refine queries succeeds in this round, then the new,
refined pS is guaranteed to be a feasible solution and the
algorithm returns it. If all refinement queries are infeasible,
the algorithm fails. Thus, iterative Refine may fail in two
cases: (1) if all refining queries fail in one iteration of Phase
1; or (2) if the refined sketch package pS is infeasible and
unfixable in Phase 2.

Runtime complexity

We denote with T (τ) the time taken by the solver to solve
a problem of size τ , and express the time complexity of the
refine procedure as a function of T (τ) and m, the number of
partitioning groups. The best case for Algorithm 3 is that all
refine queries succeed in the first iteration of Phase 1 and,
in Phase 2, the refined pS is already a feasible solution. In
this case, the algorithm makes up to m calls to the solver.
In the worst case, only one refine query succeeds in each
iteration of Phase 1, the refined package pS is not a feasi-
ble solution to the overall query, and only the last attempt
of Phase 2 succeeds in rendering pS feasible. In this case,

Algorithm 3 Iterative Refine
input:

– Q: the package query to be evaluated
– P = {(G1, t̃1), . . . , (Gm , t̃m)}: partitioning groups
– S: partitioning groups yet to be refined (initially S = P)
– pS: the refining package (initially the result of Sketch)

output: a feasible package containing only tuples, or failure
1: procedure Refine(Q, P, pS)
2: � Phase 1: Iterative refinements
3: while S �= ∅ do
4: � Solve all unsolved groups S independently
5: S′ = S

6: for all (Gi , t̃i) ∈ S do
7: � Skip groups that have no representative in pS
8: if t̃i ∈ pS then
9: pi ← Direct(Qi (pS))
10: if Qi (pS) is feasible then
11: S′ = S′ \ {(Gi , t̃i)}
12: if S′ ⊂ S then
13: � Combine independent solutions into pS
14: for all (Gi , t̃i) ∈ S do
15: pS ← pS \ {t̃i } ∪ pi
16: S ← S′
17: else if S′ = S then
18: � No progress could be made
19: return failure
20: � Phase 2: Feasibility adjustment
21: if pS is infeasible for Q then
22: � Attempt re-refining groups having at least one tuple
23: for all (Gi , t̃i) ∈ P s.t. pS ∩ Gi �= ∅ do
24: pi ← Direct(Qi (pS), pS)
25: if Qi (pS) is feasible then
26: p ← pS \ {t̃i } ∪ pi � Invariant: p is feasible for Q
27: return p

28: return failure
29: return pS

Algorithm 3 makes up to m(m+1)
2 + m calls to the solver

(O(T (τ)m2)).

Comparison with greedy backtracking
However, in sequential settings greedy backtracking can
outperform iterative Refine in practice. Specifically, if the
subproblems can be solved independently of each other, but
fail when combined, iterative Refine requires extra steps in

123

M. Brucato et al.

Ti
m

e
(s

)
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Fig. 12 Scalability of parallel SketchRefine compared to greedy
backtracking SketchRefine and Direct on the varied red Galaxy
workload. SketchRefine uses partitioning computed on attribute r,
τ = 10%, and no diameter condition. The running time of greedy back-
tracking SketchRefine and Direct are equal as all partitions need to

be refined (worst case of greedy backtracking). Parallel SketchRefine
scales up to nicely in all cases, and runs about an order of magnitude
faster than both Direct and greedy backtracking. The approximation
ratios of the two algorithms are both generally low, even though the
partitioning is constructed without quality guarantees in place

Phase 2 to adjust the solution. On the other hand, greedy
backtracking would terminate as soon as all subproblems are
solved, as it always maintains feasible solutions. With infea-
sible groups, iterativeRefinemay also require several Phase
1 iterations, while greedy backtracking would immediately
backtrack at the first infeasible group. This means that Algo-
rithm 2 is likely to beat Algorithm 3 in harder problems,
which have few feasible solutions.

7.2 Parallelizing iterative Refine

Iterative Refine is naturally amenable to parallelization,
since all refinement problems are solved independently from
each other. In particular, during Phase 1, the algorithm solves
groups independently without ensuring the feasibility of the
overall package. Therefore, all the refine queries in each
iteration of Phase 1 can be solved in parallel, and their
solutions can be combined by a central node at the end of
every iteration. During Phase 2, all the refine queries are
also independent because the algorithm can stop if any of
them succeeds. Thus, all refine queries of Phase 2 can also
be executed in parallel, and if any succeeds, the other ones
can be immediately terminated. A central node dispatches
the refine queries to be solved at each iteration to the parallel
worker nodes, and combines their result into pS, the refining
sketch package. Thus, every worker node is responsible for
a different partitioning group. If there are more partitioning
groups than workers, the load can be easily balanced among
the workers by assigning them to an equal number of groups.

7.3 Experimental evaluation of parallel SketchRefine

We evaluate the scalability and effectiveness of parallel
SketchRefine using a variation of the queries of our Galaxy
workload based on Example 6. Specifically, we partition our
data on the red color component attribute, r, with τ = 10%
of the original dataset size and no diameter conditions, and
we modify the Galaxy queries to include cardinality con-

straints on ranges of r. Our partitioning on r generates 14
groups, and the runtime improvements that we report in this
section are achievable with 14 parallel worker nodes (one for
each partitioning group). In each experiment, we measure
the running time and the approximation ratio (described in
Sect. 6.1) of the algorithms for increasing dataset sizes, com-
paringDirectwith two versions of SketchRefine: one that
uses greedy backtrackingRefine (Algorithm 2), and one that
uses iterative Refine (Algorithm 3).

In our first experiment, we change the number of cardi-
nality constraints on ranges of r for each query: the more
constraints, the more partitions SketchRefine will need to
explore.Aswehave seen, the performance of SketchRefine
with greedy backtracking degrades as partition utilization
increases (Fig. 11). In contrast, we observe that parallel
iterative SketchRefine maintains consistently better per-
formance than Direct.

For our second experiment, we pick the query workload
with the highest partition utilization (100%), which requires
all of the partitions to be refined. Figure 12 reports the
results. All queries show similar performance because they
all share the same 14 cardinality constraints on r. Both of the
SketchRefine versions scale to millions of tuples, whereas
Direct fails in many of the queries when the dataset gets too
big. Here, Direct fails for the same reasons as our earlier
experiments in Sect. 6.2.1. In all the cases in which Direct
succeeds, as the dataset size increases, greedy backtrack-
ing SketchRefine shows the same runtime performance as
Direct. In fact, requiring galaxies that span all of the red
color ranges requires tuples to be picked from each partition,
which corresponds to the worst case for greedy backtracking.
On the other hand, parallel SketchRefine is able to always
find an answer in about an order of magnitude less time than
greedy backtracking and Direct. This happens because the
algorithm is able to parallelize all the necessary refinements.

In this set of experiments, we did not enforce approxima-
tion guarantees, so the algorithms can potentially produce
bad solutions. However, our results show that this hap-

123

Package queries: efficient and scalable computation of high-order constraints

pens rarely, and the approximation ratios of both of the
SketchRefine algorithms are generally very low (close to
one). One exception is query Q2, for which SketchRefine
produces a 7-factor approximation. Finally, the approxima-
tion quality of parallel iterative SketchRefine is equal
(queries Q1–Q6) or better (Q7) than greedy backtrack-
ing. This shows that the gains obtained by parallelizing
SketchRefine do not come at the cost of quality and, in
some cases, can also produce better solutions.

8 Incremental package evaluation

At the core of our package evaluation methods, Direct is
used as a black-box evaluation strategy to solve each sub-
problem. Treating the subproblem evaluation as a black box
is a powerful abstraction: it allows our SketchRefine strate-
gies to benefit from using alternative evaluation algorithms
at this core, while the results of our theoretical analysis still
hold (Sect. 5). In this section, we explore the potential of
improving the performance of Direct directly, thus, slightly
“lifting the lid” on this black box and exploiting some of
its logic. Specifically, we will study the impact of precon-
ditioning, i.e., an initial assignment of the variables, to the
ILP solver’s performance. The intuition is that providing the
solver with a “good” starting package can reduce the search
space and allow the solver to reach a solution faster.

In this paper, we do not present a particular method for
identifying appropriate starting packages; our goal is to eval-
uate through a preliminary empirical analysis whether such a
method can improve the efficiency of package evaluation in
a meaningful way. Our analysis explores the following ques-
tions: (1) How does a starting package solution impact the
runtime of Direct? (2) Does the feasibility of the starting
package make a difference?

We evaluate the effect of seeding the solver with two types
of starting solutions: packages that already satisfy the query’s
constraints (feasible), and packages that do not (infeasi-
ble). We use the Galaxy workload to construct sequences of
queries with increasing strictness. Given a query Q, we con-
struct the sequence (Q1, . . . ,Qr), such that Qi+1 has stricter
constraints than Qi : if Qi has a constraint SUM(attr) ≥ 2
and the optimal solution to Qi has a value 2.2 for this sum,
then this constraint forQi+1 becomesSUM(attr) ≥ 2.2+μ,
for a small constantμ > 0. We construct three sequences for
each query as follows:

1. We modify all constraints at every step of the sequence
with a fixed μ,

2. We modify only one constraint at a time with a fixed μ,
3. We modify a random set of constraints with a random μ.

For all sequences (Q1, . . . ,Qr), the solution for Qi is fea-
sible for Qi−1, but the solution for Qi−1 is not feasible for

FEASIBLESTART INFEASIBLESTART

(a) (b) (c)

Fig. 13 Average speedup provided by FeasibleStart (green bars)
and InfeasibleStart (red bars) compared to NoStart, across differ-
ent query sequences and different methodologies for sequence creation.
a All constraints, fixed μ; b one constraint, fixed μ; c random con-
straints, random μ. The results show that starting packages do not
always improve the performance, but feasible starting packages gen-
erally offer better speedup than infeasible ones

Qi . We construct sequences of length up to 20 for each of
the 7 queries in the Galaxy workload. Sequences can have
fewer than 20 queries if constraint changes cause a query to
become infeasible. We execute each query Qi in a sequence
using Direct in three ways:

NoStart: Providing no starting solution.
FeasibleStart: Preconditioningwith theoptimal solu-

tion to Qi+1, which is a feasible pack-
age for Qi .

InfeasibleStart: Preconditioningwith theoptimal solu-
tion to Qi−1, which is an infeasible
package for Qi .

Wemeasure the runtime speedup of preconditioning as the
ratio of the running time of NoStart over FeasibleStart
and InfeasibleStart, for feasible and infeasible starting
packages, respectively. A speedup of 1 means that precon-
ditioning has no effect on the running time. A speedup
< 1 means that preconditioning led to worse performance
and a speedup > 1 means that preconditioning improved
the performance. Figure 13 shows the average speedup of
FeasibleStart and InfeasibleStart across each query
sequence, for the three types of generated sequences. Our
results show that preconditioning does not consistently
improve the performance of all queries. In fact, seeding the
solverwith an infeasible package can frequently lead toworse
performance.On the other hand,FeasibleStart rarely hurts
runtime performance, and can often help significantly—as
much as 12x improvement in our experiment. This contrast
between FeasibleStart and InfeasibleStart is intuitive:
Direct needs to derive a solution that is (1) feasible and
(2) has optimal objective value, so a seed that already satis-
fies the first condition is more likely to be useful.

Overall, the results of our empirical analysis indicate that
preconditioning is a promising strategy for improving pack-
age query performance that merits further study. We offer
additional discussion on this research direction in Sect. 10.

123

M. Brucato et al.

9 Related work

Package recommendations.Package or set-based recommen-
dation systems [37,38] are closely related to package queries.
A package recommendation system presents userswith inter-
esting sets of items that satisfy some global conditions. These
systems are usually driven by specific application scenar-
ios. For instance, in the CourseRank [31] system, the items
to be recommended are university courses, and the types of
constraints are course-specific (e.g., prerequisites, incompat-
ibilities, etc.). Satellite packages [1] are sets of items, such as
smartphone accessories, that are compatible with a “central”
item, such as a smartphone. Other related problems in the
area of package recommendations are team formation [2,26],
and recommendation of vacation and travel packages [9].
Queries expressible in these frameworks are also express-
ible in PaQL, but the opposite does not hold. The complexity
of set-based package recommendation problems is studied
in [10], where the authors show that the data complexity of
computing top-k packages [39] with a conjunctive query lan-
guage is FPNP-complete.
Semantic window queries. Packages are also related to
semantic windows [21]. A semantic window defines a con-
tiguous subset of a grid-partitioned space with certain global
properties. For instance, astronomers can partition the night
sky into a grid, and look for regions of the sky whose overall
brightness is above a specific threshold. If the grid cells are
precomputed and stored into an input relation, these queries
can be expressed in PaQL by adding a global constraint
(besides the brightness requirement) that ensures that all
cells in a package must form a contiguous region in the grid
space. Packages, however, are more general than semantic
windows because they allow regions to be non-contiguous,
or to contain gaps. Moreover, package queries also allow
optimization criteria, which are not expressible in semantic
window queries. A recent extension to methods for answer-
ing semantic window queries is Searchlight [22], which
expresses these queries in the form of constraint programs.
Searchlight uses in-memory synopses to quickly estimate
aggregate values of contiguous regions. However, it does not
support synopses for non-contiguous regions, and thus it can-
not solve arbitrary package queries.
Iceberg queries. Iceberg queries are SQL group-by aggrega-
tion queries with a highly selective HAVING clause [12,25,
29]. Package queries are much more powerful than iceberg
queries, which cannot return packages of items, (they can
only return group-by aggregates), and cannot express opti-
mization objectives.
How-to queries. Package queries are related to how-to
queries [27], as they both use an ILP formulation to translate
the original queries. However, there are several major differ-
ences between package queries and how-to queries: package
queries specify tuple collections, whereas how-to queries

specify updates to underlying datasets; package queries allow
a tuple to appear multiple times in a package result, while
how-to queries do notmodel repetitions; PaQL is SQL-based,
whereas how-to queries use a variant of Datalog; PaQL sup-
ports arbitrary Boolean formulas in theSUCHTHAT clause,
whereas how-to queries can only express conjunctive condi-
tions.
Answer set programming. In answer set programming (ASP)
[5,14], logic programs follow a Datalog-like syntax with
extended functionalities. ASP, extended with arithmetic, is
able to express package queries, and packages can be seen
as stable models of ASP programs. While ASP can express
packages, SQL-based PaQL offers a more natural extension
for most relational systems. More importantly, state-of-the-
art ASP solvers, like Clingo [14] from the Potassco bundle,
are not yet able to scale package computation to reasonable
data sizes. We observed these shortcomings by running ASP
problems for ourGalaxy queries: theASP solver did not scale
to more than a few dozens of tuples, while ILP solvers scale
up to millions of tuples.
Constraint query languages. The principal idea of constraint
query languages (CQL) [23] is that a tuple can be gener-
alized as a conjunction of constraints over variables. This
principle is very general and creates connections between
declarative database languages and constraint programming.
However, prior work focused on expressing constraints over
tuple values, rather than over sets of tuples. In this light,
PaQL follows a similar approach to CQL by embedding in
a declarative query language methods that handle higher-
order constraints. However, our package query engine design
allows for the direct use of ILP solvers as black-box com-
ponents, automatically transforming problems and solutions
from one domain to the other. In contrast, CQL needs to
appropriately adapt the algorithms themselves between the
two domains, and existing literature does not provide this
adaptation for the constraint types in PaQL.
ILP approximations. There exists a large body of research
in approximation algorithms for problems that can be mod-
eled as integer linear programs. A typical approach is linear
programming relaxation [36] in which the integrality con-
straints are dropped and variables are free to take on real
values. These methods are usually coupled with rounding
techniques that transform the real solutions to integer solu-
tions with provable approximation bounds. None of these
methods, however, can solve package queries on a large scale
because they all assume that the LP solver is used on the
entire problem. Another common approach to approximate
a solution to an ILP problem is the primal-dual method [16].
All primal-dual algorithms, however, need to keep track
of all primal and dual variables and the coefficient matrix,
which means that none of these methods can be employed
on large datasets. On the other hand, rounding techniques
and primal-dual algorithms could potentially benefit from

123

Package queries: efficient and scalable computation of high-order constraints

the SketchRefine algorithm to break down their complex-
ity on very large datasets.
Approximations to subclasses of package queries.Like pack-
age queries, optimization under parametric aggregation
constraints (OPAC) queries [17] can construct sets of tuples
that collectively satisfy summation constraints. However,
existing solutions to OPAC queries have several shortcom-
ings: (1) they do not handle tuple repetitions; (2) they only
addressmulti-attribute knapsack queries, a subclass of pack-
age queries where all global constraints are of the form
SUM() ≤ c, with a MAXIMIZE SUM() objective criterion;
(3) they may return infeasible packages; (4) they are con-
ceptually different from SketchRefine, as they generate
approximate solutions in a pre-processing step, and packages
are simply retrieved at query time using a multi-dimensional
index. In contrast, SketchRefine does not require pre-
computation of packages. Package queries also encompass
submodular optimization queries, whose recent approximate
solutions use greedy distributed algorithms [28].

10 Conclusions and discussion

In this paper, we introduced a complete system that supports
the specification and efficient evaluation of package queries.
We presented PaQL, a declarative extension to SQL, and the-
oretically established its expressiveness, and we developed a
flexible approximation method, with strong theoretical guar-
antees, for the evaluation of PaQL queries on large-scale
datasets. Our experiments on real-world and benchmark data
demonstrate that our scalable evaluation strategy is effective
and efficient over varied data sizes and query workloads,
and remains robust under sub-optimal conditions, parameter
settings, and queries that require most of the partitions to
be accessed at query time. We extended our SketchRefine
method to allow for effective parallelization, and we demon-
strated that it maintains good performance in adverse query
scenarios. Finally, we presented an empirical study showing
promise for using preconditioning to support incremental
package evaluation. We proceed to discuss some potential
research directions in package query evaluation.
Handling joins. In this paper we assumed that, in the pres-
ence of joins, the system simply evaluates and materializes
the join result before applying the package-specific transfor-
mations. However, the materialization of the join result is not
always necessary: Direct generates variables through a sin-
gle sequential scan of the join result, and thus the join tuples
can be pipelined into the ILP generation without being mate-
rialized. However, not materializing the join results means
that some of the join tuples will need to be recomputed to
populate the solution package. Therefore, there is a space-
time trade-off in the consideration of materializing the join.
Further, this trade-off can be improved with hybrid, system-

level solutions, such as storing the record IDsof joining tuples
to enable faster access during package generation.
Incremental evaluation.Our empirical study of precondition-
ing (Sect. 8) indicates that providing feasible packages as
starting solutions can significantly speed up the computation
of Direct. A system could take advantage of this in several
ways. First, the system can maintain results of past queries in
a solution pool that can be searched to identify good candi-
date starting packages for newly submitted queries. Second,
it may be possible to construct simple feasible packages by
executing a simplified package query, or even a set of tra-
ditional SQL queries. Furthermore, incremental evaluation
can also directly benefit iterative query refinement (such as
in data exploration), as results to previous queries are natural
starting packages for subsequent ones.
Top-k package queries. In this paper, we focused on pro-
ducing the single optimal result for a package query with
an optimization objective. Our algorithms, Direct and
SketchRefine, are not designed to efficiently produce top-
k packages, as ILP solvers typically return one solution. A
naïvewayof producing top-k results is to return one result at a
time, and modify the query in each iteration, so as to exclude
the previous result. However, such an approach is inefficient.
Efficient top-k packages are an important and interesting
research direction, which may benefit from solver-specific
solutions.

Acknowledgements This material is based upon work supported
by the National Science Foundation under Grants IIS-1420941, IIS-
1421322, and IIS-1453543.

References

1. Basu Roy, S., Amer-Yahia, S., Chawla, A., Das, G., Yu, C.: Con-
structing and exploring composite items. In: SIGMOD, pp843–854
(2010)

2. Baykasoglu, A., Dereli, T., Das, S.: Project team selection using
fuzzy optimization approach. Cybern. Syst. 38(2), 155–185 (2007)

3. Bentley, J.L.: Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM 18(9), 509–517 (1975)

4. Bisschop, J.: AIMMS Optimization Modeling. Paragon Decision
Technology, Haarlem (2006)

5. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: A 25-year perspec-
tive on logic programming. Chapter Answer Set Programming, pp.
159–182. Springer, Berlin (2010)

6. Brucato,M.,Beltran, J.F.,Abouzied,A.,Meliou,A.: Scalable pack-
age queries in relational database systems. PVLDB 9(7), 576–587
(2016)

7. Brucato, M., Ramakrishna, R., Abouzied, A., Meliou, A.: Pack-
ageBuilder: from tuples to packages. PVLDB 7(13), 1593–1596
(2014)

8. Cook, W., Hartmann, M.: On the complexity of branch and cut
methods for the traveling salesman problem. Polyhedral Comb. 1,
75–82 (1990)

9. De Choudhury, M., Feldman, M., Amer-Yahia, S., Golbandi, N.,
Lempel, R., Yu, C.: Automatic construction of travel itineraries
using social breadcrumbs. In: HyperText, pp. 35–44 (2010)

123

M. Brucato et al.

10. Deng, T., Fan, W., Geerts, F.: On the complexity of package rec-
ommendation problems. In: PODS, pp. 261–272 (2012)

11. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algo-
rithm for discovering clusters in large spatial databases with noise.
In: KDD, pp. 226–231 (1996)

12. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ull-
man, J.D.: Computing iceberg queries efficiently. In: VLDB’98,
Proceedings of 24th International Conference on Very Large Data
Bases, Aug 24–27, 1998, New York City, New York, USA, pp.
299–310 (1998)

13. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval
on composite keys. Acta Inform. 4(1), 1–9 (1974)

14. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo =
ASP + control: Preliminary report. In: Leuschel, M., Schrijvers,
T., (eds.) Technical Communications of the Thirtieth Interna-
tional Conference on Logic Programming (ICLP’14), volume
arXiv:1405.3694v1 (2014). Theory and Practice of Logic Program-
ming, Online Supplement

15. GNU Bison. https://www.gnu.org/software/bison/
16. Goemans, M.X., Williamson, D.P.: The primal-dual method for

approximation algorithms and its application to network design
problems. In: Approximation Algorithms for NP-Hard Problems,
pp. 144–191 (1997)

17. Guha, S., Gunopulos, D., Koudas, N., Srivastava, D., Vlachos, M.:
Efficient approximation of optimization queries under parametric
aggregation constraints. In: VLDB, pp. 778–789 (2003)

18. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means cluster-
ing algorithm. Appl. Stat. 28, 100–108 (1979)

19. Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

20. IBMCPLEXOptimization Studio. http://www.ibm.com/software/
commerce/optimization/cplex-optimizer/

21. Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data exploration
using semantic windows. In: SIGMOD, pp. 505–516 (2014)

22. Kalinin, A., Çetintemel, U., Zdonik, S.B.: Searchlight: enabling
integrated search and exploration over largemultidimensional data.
PVLDB 8(10), 1094–1105 (2015)

23. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query lan-
guages. J. Comput. Syst. Sci. 1(51), 26–52 (1995)

24. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Intro-
duction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

25. Laporte, M., Novelli, N., Cicchetti, R., Lakhal, L.: Computing full
and iceberg datacubes using partitions. In: Foundations of Intelli-
gent Systems, 13th International Symposium, ISMIS 2002, Lyon,
France, June 27–29, 2002, Proceedings, pp. 244–254 (2002)

26. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social
networks. In: SIGKDD, pp. 467–476 (2009)

27. Meliou, A., Suciu, D.: Tiresias: the database oracle for how-to
queries. In: SIGMOD, pp. 337–348 (2012)

28. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Identify-
ing representative elements in massive data. In: NIPS, Distributed
Submodular maximization (2013)

29. Ng, R.T.,Wagner, A.S., Yin, Y.: Iceberg-cube computationwith PC
clusters. In: Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, Santa Barbara, CA, USA,
May 21–24, 2001, pp. 25–36 (2001)

30. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems.
SIAM Rev. 33(1), 60–100 (1991)

31. Parameswaran, A.G., Venetis, P., Garcia-Molina, H.: Recommen-
dation systemswith complex constraints: a course recommendation
perspective. ACM TOIS 29(4), 1–33 (2011)

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel,M., Prettenhofer, P.,Weiss, R., Dubourg, V.,
Vanderplas, J., Passos,A., Cournapeau,D., Brucher,M., Perrot,M.,
Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

33. Pinel, F., Varshney, L.R.: Computational creativity for culinary
recipes. In: CHI, pp. 439–442 (2014)

34. The Sloan Digital Sky Survey. http://www.sdss.org/
35. The TPC-H Benchmark. http://www.tpc.org/tpch/
36. Williamson, D.P., Shmoys, D.B.: The Design of Approximation

Algorithms. Cambridge University Press, Cambridge (2011)
37. Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Breaking out of the box

of recommendations: from items to packages. In: Proceedings of
the 2010 ACM Conference on Recommender Systems, RecSys
2010, Barcelona, Spain, Sep 26–30, 2010, pp. 151–158 (2010)

38. Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Composite recommen-
dations: from items to packages. Front. Comput. Sci. 6(3), 264–277
(2012)

39. Xie, M., Lakshmanan, L.V.S., Wood, P.T.: Generating top-k pack-
ages via preference elicitation. PVLDB 7(14), 1941–1952 (2014)

123

http://arxiv.org/abs/1405.3694v1
https://www.gnu.org/software/bison/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.sdss.org/
http://www.tpc.org/tpch/

	Package queries: efficient and scalable computation of high-order constraints
	Abstract
	1 Introduction
	2 Language support for packages
	2.1 Expressing package queries with SQL
	2.2 Relation and package semantics
	2.3 PaQL: the Package Query Language
	2.4 Expressiveness and complexity of PaQL

	3 ILP formulation of package queries
	3.1 PaQL to ILP translation
	3.2 Query evaluation with Direct

	4 Scalable package evaluation
	4.1 Offline partitioning
	4.2 Query evaluation with SketchRefine
	4.2.1 Sketch
	4.2.2 Refine

	5 Theoretical analysis of SketchRefine
	5.1 Approximation guarantees
	5.2 False-infeasibility bounds

	6 Experimental evaluation of SketchRefine
	6.1 Experimental setup
	6.2 Results and discussion
	6.2.1 Query performance as dataset size increases
	6.2.2 Effect of varying partition size threshold
	6.2.3 Effect of varying partitioning coverage
	6.2.4 Effect of varying ε

	7 Parallelizing SketchRefine
	7.1 Iterative Refine
	7.2 Parallelizing iterative Refine
	7.3 Experimental evaluation of parallel SketchRefine

	8 Incremental package evaluation
	9 Related work
	10 Conclusions and discussion
	Acknowledgements
	References

