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Abstract

Explanations are an integral part of human behavior: people provide explanations to justify choices

and actions, and seek explanations to understand the world around them. The need for explanations

extends to technology, as semi-automated and fully-automated systems support crucial activities and

increasingly important societal functions. The interpretability of these systems and the ability to explain

their decision processes are crucial in developing trust in the systems’ function. Further, explanations

provide opportunities for systems to interact with human users and obtain feedback, improving their

operation. Finally, explanations allow domain experts and system developers to debug erroneous system

decisions, diagnose unexpected outcomes, and improve system function. In this paper, we study and

review existing data integration systems with respect to their ability to derive explanations. We present

a new classification of data integration systems by their explainability and discuss the characteristics of

systems within these classes. We review the types of explanations derived by the various data integration

systems within each explainability class. Finally, we present a vision of the desired properties of future

data integration systems with respect to explanations and discuss the challenges in pursuing this goal.

1 Introduction

Human perception of and reliance on explanations shape all aspects of human activity and our interactions with

the world: people rely on explanations to make decisions, justify actions, predict events, and understand the

world around them [35, 36]. At the same time, advances in technology and the big data revolution have fun-

damentally impacted human activity and interactions: data and algorithms play a major role in product recom-

mendations, news personalization, social media interactions, autonomous vehicle decisions, and even medical

diagnosis and treatment. The computer systems supporting these tasks are becoming increasingly complex, and

their function and decision processes are often poorly understood, even by domain experts. This obscurity is

detrimental to user trust in the system operation, and can potentially hinder adoption.

Explanations can significantly ease the interaction between humans and systems: they help humans un-

derstand, justify, and consequently trust system function, as well as provide humans with support to debug,

diagnose, and improve the systems. This has led to a strong push in several research domains to develop support

for explanations in computing systems, such as interpretable machine-learning [23], and DARPA’s explainable

AI initiative [30]. In the data management community we have also seen a fruitful line of research focusing on

supporting explanations in relational [60, 51, 43] and non-relational systems [15].
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In this paper, we focus on explanations in data integration systems. Data integration is a crucial component

in data analytics and data management applications, involving the acquisition, storage, and management of

data gathered from heterogeneous data sources, through a uniform query interface [38]. Unlike fully-automated

systems, data integration systems often interact with humans extensively. Many existing data integration systems

are semi-automated and require several iterations with human input. Even automated data integration tasks

may still rely on humans to remove the uncertainty from the results (e.g., in schema mapping). Support for

explanations in data integration systems facilitates the interactions between these systems and human users,

improving not only the user experience, but also the overall quality of these systems’ function.

In this paper, we offer a review of existing data integration research and systems with respect to their ability

to provide explanations. We present a new classification of the existing work into three explainability categories,

and discuss the characteristics of each class (Section 2). We review existing solutions for four core data integra-

tion tasks with respect to our classification (Section 3). We then conduct detailed comparison and analysis over

existing explanations in data integration systems (Section 4). Finally, we present a vision of desirable explana-

tion properties for future data integration systems and discuss the challenges in pursing this goal (Section 5).

2 Classifying data integration systems’ explainability

In this section, we present a new classification of data integration systems with respect to their explainability

and the type of explanations they produce. In general, explanations can be categorized into two major classes:

(1) causal explanations typically focus on how and why an outcome was derived; (2) non-causal explanations

typically focus on what the outcome is. For example, for the schema matching pair (class, course), the

explanation “more than 90% of the values in attribute class and attribute course match” is causal: it explains

why these attributes were matched. In contrast, the explanation, “attribute class in schema A and attribute

course in schema B match with each other” is non-causal: it explains what the schema matching output rep-

resents, but it does not reveal how or why it was derived. Some data integration systems focus on causal

explanations as an explicit objective. However, causal explanations may also be implicitly derived from systems

that do not target them directly. Systems that require human involvement often focus on non-causal explanations

to make their results understandable to and allow for feedback from human users. Finally, a large number of

data integration systems do not derive explanations of any kind (unexplainable systems). Figure 1 provides an

overview of our classification of data integration systems. We proceed to describe our classification and discuss

the characteristics of systems within each class.

Explaining systems

Our first class includes methods and systems that focus on providing causal explanations as an explicit objective.

We call this class explaining systems. Such systems build connections between evidence and results in an attempt

to explain how and why particular results are derived. The purpose of some of these systems is only to derive

explanations of a data integration process, and they treat data integration results as part of their input. Other

systems aim to derive results, as well as their explanations, at the same time. Explaining systems often use

conciseness as an objective and performance metric in generating and summarizing explanations. As a result,

the causal explanations they produce tend to be simple and understandable, and thus easily accessible to human

users. Explaining systems produce explanations that allow users to understand and validate results, and engineers

to debug, diagnose, and fix problems in the systems.

Explainable systems

Outside of the explaining systems class, causal explanations are not an explicit goal. The majority of data

integration systems focus on other goals and metrics, typically, higher accuracy, scalability, and efficiency.
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Figure 1: Explainability classification for data integration systems

However, causal explanations may still be present implicitly in approaches that do not target them directly,

derived as a by-product of the system processes. These systems comprise the explainable systems class. In this

class, since explanations are not an explicit objective, the explanations produced are typically suboptimal with

respect to common explanation quality metrics, such as conciseness. Frequently, these explanations are complex,

long, and hard or even impossible for humans to interpret and digest. However, there is potential to improve

these explanations in a post-processing step, which summarizes and abstracts them. Such a transformation would

convert explainable systems to explaining systems.

Illustrative systems

Our third class, illustrative systems, includes systems that provide non-causal explanations for their results

or processing steps. Non-causal explanations are common in data integration systems that prioritize human

involvement as a way to improve system function and result quality. In these systems, non-causal explanations,

such as simplification, examples, and visual demonstrations, are often used to ease the processes of tapping

into human knowledge as an information source and employing human intelligence to solve data integration

tasks. For example, non-causal explanations make it possible for a human user to provide feedback for a schema

mapping application by simplifying the possible mappings and demonstrating each mapping through examples.

Note that human-in-the-loop systems are not necessarily illustrative systems: some human-in-the-loop systems

may provide causal explanations and some may not provide any kind of explanation.

Unexplainable systems

The remaining data integration systems are unexplainable systems. Unexplainable systems often use highly

complex procedures or purpose-built code to generate results and they do not interact with humans during the

integration process. Unexplainable systems may derive high quality results extremely efficiently, but they can be

hard to debug and analyze. Note that although many data integration systems, especially those with probabilistic-

based approaches, are currently unexplainable, advances in explainable AI [30] could impact their explainability

classification in the future and may potentially transform unexplainable systems into explainable ones. We will

not discuss this class of systems further in this paper.
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Explaining systems Explainable systems Illustrative systems

Schema

Level

schema matching
iMap [17],

S-Match [28, 53]

mSeer [9]

CUPID [42],

Peukert et al. [48],

YAM++ [45],

AutoMatch [5]

AgreementMaker [13, 14]

COMA++ [3], CCQ [63]

schema mapping
Spider [1, 12],

TRAMP [27]

RiMOM [56],

CMD [37]

Clio [44, 62], Muse [2],

Tupelo [25],

Mweaver [50],

Prompt [47]

Data

Level

record linkage

entity resolution

deduplication

None

Davis et al. [16],

Whang et al. [57],

HIL [32], Li et al. [40],

ActiveAtlas [54, 55]

Alias [52], GCER [58],

DIMA [41],

C3D+P [11],

D-Dupe [8, 34]

data fusion

truth discovery

Dong & Srivastava [22],

Popat et al. [49],

PGM [46]

VOTE [18],

Wu & Marian [59]
CrowdFusion [10]

Table 1: Explainability classification of core techniques in data integration.

3 Data integration tasks through the lens of explainability

The field of data integration has expanded in many directions [31, 21, 29], including tasks such as schema

matching, schema mapping, record linkage, data fusion, and many more. In this section, we study and review

existing approaches for four core data integration tasks, two for schema level integration and two for data level

integration, and summarize them based on the classification of Table 1.

3.1 Schema matching

Schema matching, a fundamental requirement for schema mapping, focuses on finding the correspondence

among schema elements in two semantically correlated schemata. Existing schema matching solutions leverage

a wide variety of techniques, from heuristics, to rules, to learning-based approaches. These techniques give

them different abilities to provide explanations. Here we discuss some representative systems in each of the

three explainability classes.

Explaining systems. Explaining systems for schema matching have various goals, such as result justification

or system debugging. iMap [17] is a semi-automated schema matching system that leverages users to final-

ize matching decisions. To assist users in making matching decisions, iMap provides insight into the derived

matches by presenting causal explanations that are associated with each match. iMap does this by constructing a

dependency graph that abstracts the process and the major decisions in deriving a match; the explanations reflect

causality through the way they are generated. iMap further visualizes the dependency graph explanations such

that they can be easily interpreted by users. S-Match [28, 53] uses explanations to gain trust from the users: it

has a multi-level explanation module that generates high-level, concise explanations, as well as more verbose

explanations. A high-level explanation is typically a short piece of natural language without any technical detail

about the matching process; verbose explanations exploit both background knowledge and the logical reasoning

of the matching process. mSeer [9] is an analytic tool that uses explanations to debug schema matching sys-

tems. mSeer does not generate matches itself. Instead, it takes the output of a matching system and produces a

concise matching report, in which it displays all the derived matches, and the aggregated positive (e.g., matcha-

bility statistics) and negative (e.g., common matching mistakes) evidence for each match. iMap, S-Match, and

mSeer belong to the class of explaining systems as they all treat deriving causal explanations as an explicit goal:
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S-Match and iMap explain how a match is derived, and mSeer explores why a match is true (or false).

Explainable systems. Rule-based techniques, such as CUPID [42] and Peukert et al. [48], are known to be

explainable and interpretable as rules are often self-explaining. For example, a rule “two schema elements match

with each other if they are semantically similar” directly explains why two attributes are considered as a match.

Machine-learning techniques have also been widely applied to schema matching problems. Some of these

machine-learning techniques are likewise known to be explainable and interpretable, such as decision tree [26]

and naı̈ve Bayes [39]. For example, YAM++ [45] leverages decision trees to combine different terminological

similarity measures in order to justify the candidate matches. In each decision tree, non-leaf nodes represent the

similarity measures and the leaf nodes indicate whether the match is valid or not. Thus, the matching decision

is explainable by tracing the path through the decision tree. AutoMatch [5] uses naı̈ve Bayes analysis and

data samples of the attributes to determine the matching relationship. Their results are explainable since the

conditional probability for each matching decision is calculated independently and the probability value directly

reflects its contribution to the final matching decision. The key factor that distinguishes the above systems from

explaining systems is that they do not produce explanations as part of their output. In addition, their explanations

are often hard to understand as they do not restrict the number of rules ([48]), the size of the decision tree

(YAM++), or the number of data samples (AutoMatch).

Illustrative systems. Due to the complexity and intricacy of the schema matching process, researchers have

realized the limitations (in terms of precision and recall performance) of fully-automated schema matching

techniques [24]. Therefore, many schema matching systems require human intervention and user validation [17,

63, 14, 47, 3, 33] to further refine their results. Most of these human-in-the-loop systems will iteratively ask users

to accept or reject a selected set of candidates and then update their matching results accordingly. Meanwhile,

they also provide a variety of non-causal explanations to facilitate these interactive processes. Some systems

visualize the matches through user interfaces in order to help users understand the matches. Such systems

include AgreementMaker [13, 14], and COMA++ [3]. Another thrust of such systems focuses on leveraging

the intelligence of the crowd, instead of domain experts, to answer the questions (e.g., CCQ [63]). Since the

crowd often has little or even no background knowledge, these crowd-based systems typically simplify their

questions to make the requested matching feedback understandable and accessible. Instead of explaining how

the results are produced, illustrative systems in schema matching focus on explaining and demonstrating the

results themselves through visualization (AgreementMaker, COMA++) or question simplification (CCQ).

3.2 Schema mapping

Schema mapping, a core operation for all data integration systems, describes how a source database schema

relates to a target database schema [6, 4]. The mappings, typically generated from the matches between schema

elements, form the basis for transforming the data from the source into the target. Schema matching and mapping

are two strongly correlated components in data integration, and many schema mapping systems are also equipped

with a schema matching module.

Explaining systems. Explaining systems in schema mapping primarily focus on system debugging. Spi-

der [1, 12] is a debugging tool for exploring and understanding schema mappings. It does not identify mapping

errors, but rather generates routes that describe the causal relationship between source and target data with the

schema mapping. Thus it provides a platform that allows users to find the errors more easily. On the other

hand, TRAMP [27] assists users in identifying mapping errors; it uses mapping provenance to explore common

mapping errors and report the analysis, together with the evidence, to the users. Both systems consider deriving

concise explanations as one of their objectives: Spider ranks the explanations and only returns the top ones;

TRAMP always highlights the conclusion of the explanations – the identified errors – in its results.

Explainable systems. As with schema matching techniques, systems that leverage interpretable learning-based

approaches are also explainable. For example, RiMOM [56] uses naı̈ve Bayes to decide whether there exists
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a mapping and, further, the type of the mapping between schema elements. CMD [37] poses a new direction

for solving schema mapping problems by taking advantage of both rule-based and learning-based approaches.

It leverages probabilistic soft logic (PSL), a scalable probabilistic programming language over weighted first-

order logic rules, to derive the schema mapping. CMD first expresses the candidate mappings through first-order

logic and then infers the weights of the mappings. The results of CMD are explainable since one can learn

the contribution of a candidate mapping through learned weights. As with other interpretable learning-based

approaches, RiMOM and CMD do not return these explanations, hence they are explainable, but not explaining;

moreover, these explanations could be hard to understand due to the complexity and number of the sub-decisions

(RiMOM) and rules (CMD).

Illustrative systems. There are many schema mapping techniques that rely on users to reduce the uncertainty of

the mapping and to make the final mapping decisions. However, as the mappings are often complex programs,

explaining the mappings to the users becomes a critical issue. Some systems, such as Clio [44, 62], Muse [2],

Tupelo [25] and Mweaver [50], use data examples to explain the mappings; other systems, e.g., Prompt [47],

rely on graphical interfaces to visualize the mapping between the source schema and the target schema.

3.3 Record linkage

Record linkage (also known as entity resolution and deduplication) is the problem of identifying records that

refer to the same logical entity, and it is an important task in integrating data from different data sources. Un-

fortunately, to the best of our knowledge, none of the existing record linkage systems explicitly provide causal

explanations of their results. However, many record linkage systems are explainable because of the method they

use in determining the matching records.

Explainable systems. Explainable systems for record linkage often rely on approaches that naturally con-

tain explanations. Rule-based record linkage methods typically expose understandable logic. For example,

“same name(t1, t2) → duplication(t1, t2)”, intuitively means: “two records refer to the same entity if they

have the same name”. There are many rule-based record linkage systems, and they often rely on different meth-

ods to derive the linkage rules. For example, ActiveAtlas [54, 55] uses decision trees to learn the mapping

rules over the records; Whang et al. [57] and Li et al. [40] leverage dynamic rules, learned from an iterative

process, for discovering duplicate records; HIL [32] applies SQL-like syntax rules to accomplish entity resolu-

tion, mapping, and fusion tasks. Meanwhile, some record linkage solutions use explainable probabilistic-based

approaches, combined with rules, to resolve the uncertainty in the mappings. Such approaches can be explain-

able as well. For example, Davis et al. [16] is explainable since it combines two explainable components, rules

and naı̈ve Bayes, to solve the record linkage problem. Again, the explanations are implicit in the specifications,

not produced by the systems, so these are explainable, not explaining systems. Further, these systems usually

include many rules, sub-decisions, or explainable components, which increase the overall complexity of their

explanations. Therefore, in most cases, their explanations are still hard for humans to understand.

Illustrative systems. Researchers have developed a wide variety of record linkage solutions [52, 8, 58, 11, 41]

that employ human intelligence. However, obtaining user input efficiently and effectively remains challenging.

Many record linkage systems try to reduce the number of record pairs that need to be justified by humans.

Alias [52] attempts to limit the manual effort by reducing the number of record pairs according to the information

gained from them; GCER [58] measures the quality of questions (or record pairs) based on their impact over

the system and selects questions that lead to the highest expected accuracy; DIMA [41] evaluates the questions

according to their impact on the monetary cost and selects those that reduce the cost. We classify these as

illustrative systems since they offer, in the form of questions, non-causal examples of possible linkages, and

try to reduce the number of such questions to make it easier for the user to understand. C3D+P [11] eases

the tasks handed to humans along another dimension – it simplifies and summarizes record descriptions by

selecting a small subset of critical attributes. D-Dupe [8, 34] provides a visual interface that shows the relational
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neighborhood for each record in a candidate pair to facilitate users’ decisions.

3.4 Data fusion

Data errors and conflicting information are common occurrences across different data sources. Data fusion

focuses on resolving conflicts and determining the true data values, leveraging information in heterogeneous

data sources [7, 20].

Explaining systems. Explaining systems for data fusion explore explanations from both structured and un-

structured data. Dong & Srivastava [22] leverage Maximum A Posteriori (MAP) analysis to make data fusion

decisions about data stored in a DBMS. MAP analysis is explainable since a probability value for each candi-

date decision is calculated independently. However, the raw MAP explanations are complex and excessively

detailed; Dong & Srivastava [22] abstract them through categorization and aggregation to produce succinct and

understandable explanations for the decisions. Unlike the majority of data integration tools, which focus on

structured or semi-structured data, Popat et al. [49] fuses data in unstructured format. Instead of fusing conflict-

ing data values, this work tries to determine the credibility of natural language claims and explore the evidence,

identified from articles on the Web, to support or refute the claim through Conditional Random Field (CRF)

analysis. Explanations in this system are easy to understand as they are all in natural language. In a similar

vein, PGM [46] also targets discovering the truthfulness of natural language claims. PGM further improves the

understandability of the explanations by aggregating the evidence and visualizing them through a user interface.

Explainable systems. Many data fusion systems are based on probabilistic analysis, such as Bayesian analy-

sis [18], probabilistic graphical models [19, 64] and SVM [61], and most of these models are hard to explain to

humans with little domain knowledge. VOTE [18] discovers true values by incorporating both the data source

dependence, i.e. the copying relationship between data sources, and data source accuracy. VOTE is explain-

able since it relies on several explainable steps: First, it uses Bayesian analysis to calculate the probability of

dependence and accuracy among data sources; second, it estimates the vote count of values, combined with

the dependence probabilities, through a greedy algorithm; finally, it combines the vote count and accuracy of

the data source through a weighted sum formula. Wu & Marian [59] use a scoring mechanism, based on the

score of the source and scores of values within the data source, to decide the actual result of a query. Similar

to other explainable systems, VOTE [18] and Wu & Marian [59] do not derive explanations directly and their

explanations may also be too complex to interpret in practice.

Illustrative systems. Incorporating human intelligence in solving data fusion problems is challenging as hu-

mans may be misled by conflicting information in data sources and the Web. CrowdFusion [10] tackles this

challenge by allowing mistakes in the crowd answers: it assigns a probability for the correctness of an answer,

and assumes that crowd answers follow a Bernoulli distribution. CrowdFusion adjusts the fusion results upon

receiving relevant answers from the crowd and optimizes its questions by maximizing the questions’ entropy.

4 Properties of explanations

Explanation coverage and understandability. So far, in this paper, we have categorized explanations in

data integration as one of two types: causal or non-causal. A causal explanation is essentially evidence, or a

summary of evidence that supports or refutes a data integration outcome. A non-causal explanation does not

provide any evidence of the data integration process, but helps users understand the results. In this section, we

further examine these explanations along two metrics, coverage and understandability. Coverage measures the

amount of evidence with respect to the results of a data integration process. More precisely, 100% coverage

means that one can replicate all decisions of the algorithm purely based on the explanations, whereas lower

coverage means that one can only replicate a smaller portion of such decisions. Understandability intuitively

measures the difficulty in understanding the explanations.

53



C
o
v
er
a
g
e

Understandability

(Domain expert) (Educated user)

(L
es

s 
ev

id
en

ce
)

(M
o

re
 e

v
id

en
ce

)
Illustrative

Systems

(Non-expert)

Debug and 

Diagnose

Explainable 

Systems
Explaining 

Systems

Build Trust

Figure 2: Coverage vs. understandability

Figure 2 presents our three explainability classes with respect to coverage and understandability. Explainable

systems have high coverage since every step in their algorithm is interpretable. However, they are typically hard

to understand, even for domain experts, since the explanations are usually complex and long. Illustrative systems

present the opposite behavior: they do not cover any evidence of the data integration processes—their goal is to

explain what the results are, not how they were produced—but are easy to understand by most users. Explaining

systems show more diverse behavior depending on their motivation for providing explanations. Systems whose

goal is to build trust in the data integration process tend to have lower coverage but higher understandability.

In contrast, systems that focus on diagnosis and debugging typically produce explanations with higher coverage

but lower understandability, as they target more educated users and domain experts.

We proceed to review these properties in more detail for explaining systems and highlight differences in

their objectives and results.

Properties of explaining systems. Explaining systems provide evidence, in the form of explanations, that

supports or refutes the results. Such evidence can be found in the input, the algorithm, or the combination of

the two, and it is presented in various formats, such as examples, rules, or statistics. Discovering the evidence is

fundamental to deriving causal explanations, but many explanation systems explore beyond this point in order to

further improve their understandability. Some systems score the importance of the evidence and only report the

top indicators; some systems aggregate the evidence and report the aggregated values instead of other details.

In Table 4, we enumerate the properties of explanations for explaining systems along five dimensions, including

the goal of the explanations, whether the explanations include details of the algorithm, the audience for the

explanations, their format, and whether there is any post-processing associated with the discovered evidence.

Although all explaining systems provide causal explanations of their result, their coverage may be different

due to differing explanation objectives. Systems that derive explanations for debugging purposes usually provide

evidence not only from the input but also from the algorithms in order to reveal enough detail. However, this

is not the case for external analytic tools, including mSeer, Spider, and TRAMP. With the goal of justifying

the results and debugging the functionality of an existing data integration algorithm, these external analytic

tools often conduct independent analysis over a data integration algorithm and reason about the correctness and

the causes of the correctness of its results. Meanwhile, systems that use explanations to build trust typically

do not reveal many details from the algorithm, and often only highlight evidence discovered from the input.

The audience for the explanation correlates with the explanation objectives. Explanations meant for debugging

usually target educated users, who have some background knowledge of the problem and algorithm, and may
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System Goal Algorithm? Audience Format Post-processing?

iMap [17] Get feedback Yes Educated user Visualization None

S-Match [28, 53]
Build trust No Non-expert Text Summarization

Debug Yes Domain expert Rules None

mSeer∗ [9] Debug No Domain expert Statistics Summarization

Spider∗ [1, 12] Debug No Domain expert Rules TopK

TRAMP∗ [27] Debug No Domain expert Tuples, rules None

Dong & Srivastava [22] Build trust Yes Non expert Statistics Summarization

Popat et al. [49] Build trust No Non expert Natural Language Summarization

PGM [46] Build trust No Non expert Statistics Summarization

Table 2: Analysis of properties of explaining systems. Highlighted systems (mSeer, Spider, and TRAMP) are

external analytic tools; the others are a build-in component of the algorithms.

even be domain experts. In contrast, systems aimed at building trust are designed to be understandable even

for non-expert users, with little background knowledge of the problem and algorithm. Even with the same

explanation goal, systems may use different explanation formats, or post-process the discovered evidence to

further improve the understandability of their explanations. In general, visualizing explanations may help users

understand the explanations. In addition, condensing and summarizing the evidence may significantly reduce

the volume of the explanations, and therefore improve their understandability.

5 Summary, next steps, and challenges for explaining data integration

In this paper, we presented a new classification of data integration systems by their explainability, and studied the

systems and their characteristics within each class. The rich literature on data integration already demonstrates a

strong and established focus on explanations. Over the past few years, data integration systems have developed

a variety of explanations that serve diverse objectives. For example, human-in-the-loop systems frequently use

non-causal explanations to illustrate the meaning of their results, and many explaining systems leverage causal

explanations, associated with their results, to gain trust from the users. However, the portion of data integration

systems that provide explanations, in particular causal explanations, is still small. For example, causal explana-

tions are not an explicit objective of any existing approach in record linkage. The lack of explainability impedes

the usability and evolution of data integration systems: humans cannot understand the results, provide feedback,

or identify problems and suggest improvements.

We envision a future generation of data integration systems where flexible explanatory capabilities are a

primary goal. Our study showed that there is a natural trade-off between coverage and understandability (Fig-

ure 2), and it is often driven by the underlying goals of the explanations (e.g., debugging, trust). Explanations

that are used for debugging and diagnosis tend to be less understandable, however, they include more details

of the data integration process. In contrast, non-causal explanations focus on explaining what the result is, and

they typically offer little or no coverage of the process itself. The explanation goals also correlate with the target

audience and the explanation type and content. To cater to varied users, uses, and goals, data integration systems

need to support flexible, diverse, and granular explanation types. Such systems would seamlessly transition

from non-causal explanations facilitating interactions with non-experts, to causal explanations of the integration

process facilitating debugging by domain experts. We identify the following challenges in achieving this vision.

Interactive explanations. To allow flexibility in navigating across explanations of different granularities and

types, systems need to facilitate user interactions with the explanations. Users should be able to drill down,
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generalize, and even ask for explanations of the explanations themselves.

From explainable to explaining. Explainable systems produce rich causal explanation content. However, these

explanations are often not exploited, because they are typically complex, long, and hard or even impossible

for humans to interpret and digest. External application tools could process, summarize, and abstract these

explanations to different granularities, increasing the utility of explainable systems and essentially transforming

them into explaining systems.

Evaluating understandability. Understandability is an important factor in formulating explanations, but it is

a difficult factor to evaluate and measure. The fundamental challenge is that judgments of understandability are

often subjective and could vary among people with different levels of background knowledge. System designers,

knowledgeable users, and complete non-experts have different expectations from explanations. An explanation

that is understandable and useful for one group may not be for another. To evaluate understandability in practice,

researchers will have to rely on user studies with varied target users, ideally producing and generalizing guiding

principles in explanation design.

Accuracy vs. explainability. Explaining data integration systems need to balance the tradeoff between accuracy

and explainability. Sophisticated machine-learning approaches are widely used for solving data integration tasks.

These methods achieve high accuracy, but are typically not explainable. Any solution in this domain will need

to consider and balance these often conflicting objectives, to produce systems that are both effective and usable.
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