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Abstract—Despite the phenomenal advances in the computa-
tional power of electronic systems, human-machine interaction
has been largely limited to simple control panels, such as key-
boards and mice, which only use physical senses. Consequently,
these systems either rely critically on close human guidance
or operate almost independently. A richer experience can be
achieved if cognitive inputs are used in addition to the physical
senses. Towards this end, this paper introduces a simple wearable
system that consists of a motion processing unit and brain-
machine interface. We show that our system can successfully
employ cognitive indicators to predict human activity.

1. INTRODUCTION

The way in which humans interact with machines is
rapidly evolving. The complexity of human involvement is
sometimes hidden behind the seemingly simple interaction
methods itself, which can use physical, cognitive or affective
inputs [1]. The physical aspect is related to the mechanics
of interaction. It is the most commonly used method today,
since physical interaction allows for simple devices, such
as keyboards, mice and displays. However, in this form of
interaction, machines are passive agents that can only respond
to physical inputs. Cognitive inputs can significantly improve
the user experience by facilitating intellectual interaction, e.g.,
household electronics controlled by brain activity. Similarly,
affective inputs can help machines understand emotional state
of the user, e.g., a music player selecting the tracks based
on user’s mood. Consequently, we can enable machines to
understand what their user wants by enriching current physical
interaction with cognitive and affective inputs.

Pervasive use of cognitive and affective inputs for human-
machine interaction relies critically on two technologies. First,
there is a need for methodologies and algorithms that can
process physiological signals, such as electroencephalogram
(EEG), to decode the users’ intentions and needs. To enable
a seamless interaction, this processing has to be in situ and
real-time. Therefore, the second requirement is a wearable
system that can monitor and process the relevant physiological
signals. This capability can enable a symbiotic human-machine
relationship by providing a continuous interaction and real-time
feedback between the human and machines.

This paper first presents a simple wearable system prototype
capable of sensing, processing and communicating user motion.
Together with a commercial brain machine interface (BMI) [2],
this system enables us to analyze user gestures and brain activity
reflected by EEG signals. In order to do so, we designed an
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experiment involving a repetitive task, i.e., moving small boxes
from one side of a table to the other side. Before completing this
task, the user may be given a second task to stimulate cognitive
activity, e.g., drawing a picture. If the second task is given,
the user starts performing it upon completing the repetitive
task. Our objective is to determine whether the second task is
given or not by monitoring cognitive activity. To achieve this
objective, we developed a methodology to analyze the EEG
signals with the help of timing information extracted from the
hand movement data. We successfully show that EEG signals
can be used as an indicator of future user activity. Therefore,
this work serves as a first step towards a wearable system that
can decode human intent using multi-modal sensor data.

The rest of the paper is organized as follows. Section II
presents the related work. Section III presents the methodology
for human intent decoding. Finally, Section IV discusses the
experimental results, and Section V concludes the paper.

II. RELATED RESEARCH

The term human intent has been used to express the partial
intent sufficient enough in the context of a specific target
application. For example, in a car disassembly task, the intent
is the desired direction and magnitude change in the position
of the end-effector [3]. Similarly, a driver’s turn intent [4, 5] is
sufficient to represent the intent in driver assistance applications.
In our context, human intent refers to whether the user is
preparing to perform a second task upon completing the
current one or not. It has been shown that the human intent
can be predicted by low-level limb movements [6], vision
processing [7], and using physiological signals [8]. There
have been numerous attempts at human decoding intent by
classification of single modalities, such as speech [9], body
movement [10], head movement [11], gestures [12], facial
expression [13], eye movement [14], hand pressure [15] and
brain-activity [16]. However, single modality is not sufficient
for robust human-machine communication [17], which is the
first step towards symbiosis. Indeed, intuitive human-human
communication leverages multiple modalities, such as speech,
gestures, mimics, and body language [18]. In this work, we
employ two modalities. The main modality is EEG processing
with the help of the Emotiv EPOC+ EEG headset. To improve
the effectiveness of the EEG signal processing, we also use a
tri-axis gyroscope and accelerometer data which encodes the
hand movements.
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Brain machine interfaces (BMI) have become a promising
technology to interface directly with computers [19]. Impressive
progress in novel BMI technologies is discussed in [20].
The first symbiotic BMI was introduced by Mahmoudi and
Sanchez [21]. This approach has an adaptive actor interface to
the motor cortex and a critic that evaluates the value of actor’s
actions using Nucleus Accumbens. The authors show that a
continuous perception-action-reward cycle enables operation
in changing environments by adapting the BMI decoder.

III. MULTI-MODAL INTENT DECODING METHODOLOGY
A. Overview

The proposed multi-modal intent decoding methodology
is illustrated in Figure 1. The flow consists of hand motion
processing and EEG signal processing. Hand motion is mon-
itored using a wearable prototype described in Section III-B.
The purpose of hand motion processing is to provide timing
information about the user activity. More precisely, we seg-
ment the EEG data non-uniformly into multiple blocks with
the help of hand motion processing. EEG processing itself
consists of conditioning the raw data, segmentation and feature
extraction using spatiotemporal eigenspectrum construction.
The following subsections detail each step of this flow.
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Fig. 1: Multi-modal intent decoding methodology flow.
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B. Wearable System Prototype

We record the brain activity using Emotiv EPOC+ EEG
headset [2] shown in Figure 2. The Emotiv headset uses 14
channels and two reference electrodes The first reference is an

absolute voltage reference called common mode sense (CMS).

The second one, referred to as driven right leg (DRL), is a
feedback cancellation system to float the reference level on
the common mode body potential. The raw EEG data is stored
using wireless connection at a sampling rate of 128H z.

The user hand motion was recorded at a sampling rate
of 100H~z using a motion processing unit that integrates
a tri-axis gyroscope and accelerometer, and a TI-CC2650
microcontroller [22] on a flexible polyimide substrate. It senses
motion, processes the raw data locally, and supports both
Bluetooth low energy and Zigbee wireless communication

protocols. The maximum supported data rate is 192kbps,

and the average power consumption is 12.2mW at 1.44kpbs

(a) (b)
Fig. 2: (a) Emotiv EPOC+ headset, (b) motion processing unit.

throughput. Our prototype device occupies 3.8cm x 3.8cm and
weighs 50mg including the programming interfaces. Its area
and low weight allow us to attach it directly to the skin or
clothing. Detailed design specification can be found in [23].

C. Hand Motion Processing

As a reminder, the repetitive task in our experiment is moving
a set of boxes on a table from one side to the other side. The
repetitive task is said to be complete, if all the boxes are moved
from one side to the other. To infer the start time of each new
round, we employed accelerator and gyroscope measurements.
The accelerator gives acceleration along x—, y— and z— axis
in terms of gravitational constant g. Gyroscope measures the
rate of rotation, i.e., angular velocity, in three components
called roll, pitch and yaw. The raw tri-axial accelerometer and
gyroscope readings are plotted in Figure 3(a) and Figure 3(b),
respectively.

Both gyroscope and accelerometer readings are preprocessed
using a 5-point moving average filter to suppress the measure-
ment noise. Then, the filtered data is used to find the angular
velocity of the hand. The local minima of the angular velocity
indicate the start time of each new round. We find the local
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Fig. 3: Raw motion data that encodes the hand movements.
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Fig. 4: Flow diagram for eigenspectrum computation. The EEG signals along the y-axis of the left-most graph belong to 14
different channels. More information about the electrode locations corresponding to each labels can be found at [2].

minima using a peak finder algorithm, and identify the start
times, as illustrated by the vertical lines in Figure 3.

D. EEG Signal Processing

To remove the irrelevant artifacts from the measure data, we
first filter the raw EEG data using a high pass filter with a
pass band starting at 41z and a notch filter at 60H z. Then,
we use the time instances from motion processing to segment
the input data into multiple blocks. Let T be the sampling
interval and n. be the number of EEG channels. The EEG
signal sampled at time k7 in block b can be represented as:

zp(k) = [2p1(k), zp2(k), ..., 2pm. (k)] 0<k<ng, (1)

where each column represents a different channel and n is the
number of samples. Hence, the measured signal is represented
by a ns X n. matrix, i.e., zp(k) € R™*"e,

Spatiotemporal correlation has been proven to be an effective
method to extract features from EEG data [24]. Therefore,
we use zp(k) first to construct the space-delay data matrix.
Then, we use the resulting matrix to compute the space-delay
correlation matrix. Let us denote the time-delayed multichannel
signal as z(k — d7), where d is the delay scale and 7 is the
delay amount. By using multiple delay scales, we can construct
the space-delay data matrix for block b as:

Xpa = [2o(k — 17), zp(k —27),..., (k. —dT)] (2)

Using d time delay scales grows the dimension of the space-
delay matrix to ns X dn.. This helps characterizing the
spatiotemporal correlation efficiently over a long span of
relative time [24]. Let g(-) be a function that shifts and
normalizes each column of its input to zero mean, unit variance.
We approximate the spatiotemporal correlation matrix for block
b Ry, using the normalized zero-mean data as:

Ry = —9(Xa)" 9(Xpa) €)
Spatiotemporal Eigenspectrum — Next, we compute the
eigenvalues of the spatiotemporal correlation matrix R,. Rank
order of the eigenvalues gives the spatiotemporal eigenspectrum,
which encodes invaluable information about the cognitive

activity as a function of time (i.e., blocks) as illustrated by our
experiments. The whole process starting from the EEG signals
to eigenspectrum computation is summarized in Figure 4 for
reference.

Parameters Used in this Work — In this work we used 14
EEG channels (n. = 14) sampled at T = 1285 intervals. We
used three different delay scales (d = 3), and minimum delay
amount of 7 = 1 sample. Finally, the EEG data is segmented
nonuniformly into 5 blocks using the data obtained from motion
processing. The first three blocks correspond to the repetitive
task performed by the user, the fourth block contains the trigger
event, and the last block covers the cognitive task.

IV. EXPERIMENTAL RESULTS
A. Experiment Setup

During our experiments, subjects wore the Emotiv EPOC+
headset and the motion processing prototype. Then, the subject
remained seated on a chair in front of a desk, as shown in
Figure 5. We placed four small boxes on the one side of
the table, and asked the subject to move all boxes from one
side to another. The task is considered complete when all the
boxes are moved to the opposite side. The subject repeated the
whole task until s/he was asked to stop, or draw an arbitrary
object on a piece of paper upon completing the current task.
Four neurologically healthy subjects participated in the study.

Motion
Processing
Unit

EEG |m
Headset

Fig. 5: The experimental setup.
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Subjects were not under the influence of any medication that
could interfere with EEG. The execution of the repetitive
task and drawing lasted approximately 50s, and each subject
repeated the experiment five times.

B. Analysis of the EEG Data

We first used the accelerometer and gyroscope data to
identify the start and end times of each repetitive task. Then,
this information is used to divide the EEG data into multiple
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Fig. 6: Space-delay eigenspectra for three different subjects.

blocks labeled as hand movement, trigger event and drawing.
Hand movement corresponds to the repetitive task. If the subject
is asked to draw an object, we refer to the corresponding block
as the trigger event. Finally, if the subject draws an object, the
corresponding block is labeled as drawing.

The eigenvalues of the space-delay correlation matrix are
shown in Figure 6. In particular, Figure 6(a) plots the eigen-
values for Subject 1, when he performed only the repetitive
task. We observe that the eigenvalues follow a very similar
pattern for each of block. Eigenvalues for two other subjects,
who were asked to draw an object, are plotted in Figure 6(b)
and Figure 6(c). The eigenvalues show a very clear distinction,
when the trigger happens. This means that the subject starts
thinking about the drawing before completing the repetitive
task. This is clearly reflected in the eigenvalue distribution of
the fourth block. Similarly, the spectra shown in Figure 7 shows
that the trigger event has a distinctive signature. Each column in
these plots correspond to a different block of time, while each
row shows the eigenvalues at a given rank. All three blocks
in Figure 7(a) have a similar behavior as they all correspond
to repetitive task as in Figure 6(a). However, the spectra that
correspond to the trigger event can be easily distinguished from
the other blocks, as shown in Figure 7(b) and Figure 7(c). The
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last spectrum, that corresponds to Subject 3, used 12 out of
14 EEG channels, since two channels were discarded due to
sensor displacement. This shows that the proposed approach
can also work effectively with fewer channels.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a methodology for cognitive activity
detection to predict future human action for human intent
decoding. The proposed approach employs a wearable system
that can monitor hand movements and sense EEG signals. Hand
movement is used to divide the EEG signals into multiple
blocks. For each block, the eigenspecta extracted from space-
delay covariance matrix is used as to classify multi-channel
EEG data. Our experiments show that the cognitive activity
can be used successfully to predict future human activity.
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