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EXTENDED ABSTRACT 
Despite the phenomenal advances in the computational power 

and functionality of electronic systems, human-machine 
interaction has largely been limited to simple control panels, 
keyboard, mouse and display. Consequently, these systems either 
rely critically on close human guidance or operate almost 
independently from the user. An exemplar technology integrated 
tightly into our lives is the smartphone. However, the term 
“smart” is a misnomer, since it has fundamentally no intelligence 
to understand its user. The users still have to type, touch or speak 
(to some extent) to express their intentions in a form accessible to 
the phone. Hence, intelligent decision making is still almost 
entirely a human task. 

A life-changing experience can be achieved by transforming 
machines from passive tools to agents capable of understanding 
human physiology and what their user wants [1]. This can 
advance human capabilities in unimagined ways by building a 
symbiotic relationship to solve real world problems cooperatively. 
One of the high-impact application areas of this approach is 
assistive internet of things (IoT) technologies for physically 
challenged individuals. The Annual World Report on Disability 
reveals that 15% of the world population lives with disability, 
while 110 to 190 million of these people have difficulty in 
functioning [1]. Quality of life for this population can improve 
significantly if we can provide accessibility to smart devices, 
which provide sensory inputs and assist with everyday tasks.  

This work demonstrates that smart IoT devices open up the 
possibility to alleviate the burden on the user by equipping 
everyday objects, such as a wheelchair, with decision-making 
capabilities. Moving part of the intelligent decision making to 
smart IoT objects requires a robust mechanism for human-
machine communication (HMC). To address this challenge, we 
present examples of multimodal HMC mechanisms, where the 
modalities are electroencephalogram (EEG), speech commands, 
and motion sensing. We also introduce an IoT co-simulation 
framework developed using a network simulator (OMNeT++) and 
a robot simulation platform Virtual Robot Experimentation 
Platform (V-REP). We show how this framework is used to 
evaluate the effectiveness of different HMC strategies using 
automated indoor navigation as a driver application. 

1. MULTIMODAL HUMAN-MACHINE 
COMMUNICATION 

Unimodal devices such as keyboard and mouse have grown to 
be familiar, but they tend to restrict the information and command 

flow between the user and the computer system.  Therefore, they 
are not practical in an IoT scenario. As evident from numerous 
studies [3][4], the interaction of humans with their environment is 
naturally multimodal. In order to achieve the smoothness and 
error tolerance of human-human interaction, we consider 
multimodel communication with the IoT devices [5].  

The accuracy problem in interpreting the HMC events is a key 
issue in practical HMC. Fusion of multisensory data, such as 
EEG, speech, and motion, can be accomplished at three levels: 
data, feature, and decision level. Since the monitored signals are 
of different nature and sensed using different types of sensors, 
data-level fusion is not appropriate for multimodal HMC. In 
feature-level fusion, each stream of sensory information is first 
analyzed for features and then the detected features are fused. 
However, experimental studies show that decision level 
integration can improve the recognition accuracy [6]. Hence, in 
this work we implemented the HMC system using a decision-level 
fusion of multiple modalities. 

We consider a multimodal HMC system consisting of a brain-
machine interface (BMI), a speech recognizer, and a motion 
detector, as shown in Figure 1. Each classifier {hmotion, hBMI, 
hspeech} calculates the features from an observation, x, compares 
the features and makes a decision. For example, consider a user 
intent of steering Left while navigating a power wheelchair. The 
motion detector captures the accelerometer and gyroscope sensor 
data from the observation, Left Gesture. The classifier, hmotion, 
calculates the features, such as roll, pitch, and yaw, compares the 
feature values and reaches a decision, Dmotion, which can be one of 
the events supported by the motion detector, such as forward and 
left gestures. All the supported events across all classifiers map to 
commands required in the navigation application, for example, {F, 
R, L, S, …}. Then, the proposed fusion classifier, hf, calculates 
the credibility of the decisions {DBMI, Dmotion, Dspeech} from the 
prior probabilities of correct interpretation. We use these values as 
weights to determine the fused decision Df, as shown in Figure 1. 
Evaluating the effectiveness of the proposed HMC system 
requires modeling of the communication as well as the physical 
world. The following section discusses the co-simulation 
framework used for evaluation.  

2. IOT CO-SIMULATION FRAMEWORK 
The proposed IoT co-simulation framework consists of three 

interconnected layers, as shown in Figure 2. 
1. Physical Layer for modeling the physical world, 
2. Control Layer for modeling the behavior of the objects in 

the physical layer, 
3. Network Layer for modeling the communication network. 
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Figure 1. System architecture of the proposed multimodal 

HMC system. 
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The physical layer is implemented in V-REP [7]. To model a 
realistic building in V-REP, we first place physical entities, such 
as walls, doors, and sensors, in a scene. Then, we add the human 
models and the IoT objects, such as a wheelchair, to the scene. V-
REP accurately models the movements of the human models and 
wheelchair in the 3-dimensional space. 

The control and network layers are implemented using 
OMNeT++, a C++ simulation library and network simulation 
framework [8]. Communication between V-REP and OMNeT++ 
is enabled through the application programming interface (API) 
provided by V-REP. In OMNeT++, entities, such as the 
wheelchair, sensors, doors, servers, or a central controller, are 
each represented by C++ classes and a network description file 
(NED). The C++ classes correspond to the control layer of the 
simulation, representing each object’s response to network 
messages. When responses include physical motion, such as 
controlling the wheelchair, the C++ class also acts on the V-REP 
model, such as by triggering the corresponding V-REP object to 
set the motor speeds. The network layer is represented by the 
NED files, which specify the wireless protocols being used to 
send packages, physical locations of sensors, and variables on the 
capabilities of the network, such as speed and capacity. 

2.1 Overview of the Operation 
To illustrate the dynamics of the simulation, we use assisted 

indoor navigation as a driver application. The floor plan, 
containing positions of all the objects in the V-REP model, 
including the initial positions of the human models and the 
wheelchair, is passed from VREP to OMNeT++ in the beginning 
of the simulation. The wheelchair model receives the navigation 
commands from the user. This interaction employs multimodal 
communication, as explained in Section 1. In our setup, a BMI 
headset and a motion sensor pack send the user commands to the 
host computer using Bluetooth LE. The C++ class that models the 
wheelchair uses the fused command, along with its current 
position and orientation, to compute the target velocity of the 
wheelchair. The target velocity is then used to compute the speed 
of the right and left wheels of the wheelchair using a kinematic 
model. V-REP takes these inputs and moves the wheelchair 
accordingly. The control classes in OMNeT++ requests the V-
REP representation's position at regular intervals (1s by default) to 
make course adjustments. Sensor proximity generates additional 
feedback on the position. It is assumed the wheelchair controller 
would not be able to accurately gauge the position of the chair as 
it moves in a realistic setting, so localization error is randomly 
accumulated on the wheelchair positions stored in the C++ class.  

Communication between objects is simulated in OMNeT++. 
For example, if the wheelchair is in the vicinity of an RFID used 
for global positioning, the broadcast message from the RFID is 
transmitted following the wireless communication protocol 
specified in the simulation setup. Similarly, if two distant object 
need to communicate, the messages are transmitted through a 
multi-hop ad hoc network modeled using OMNeT++.  

2.2 Sample Results   
The proposed co-simulation framework enables evaluation of 

complex IoT application by considering the tight interactions 
among different layers. Hence, it eliminates the design gap due to 
the late integration of different layers. Our framework calculates 
parameters, such as positioning error, navigation time, user effort, 
communication energy and false event generations. The type of 
results that can be obtained using the proposed co-simulation 
framework are illustrated in Figure 3. In this experiment, we 
considered three different scenarios in which a wheelchair is 
navigated to 18 different destinations in a virtual home. First, 
ideal user inputs are used to control a wheelchair. Then, realistic 
inputs derived from user gestures and BMI are used to control the 
wheelchair. Ideal inputs allow perfect control of the wheelchair 
and hence reduced communication energy than realistic inputs. 
Finally, we simulated an automated indoor navigation algorithm 
that uses minimal number of realistic inputs from the user. The 
automated navigation saves significant amount of communication 
energy by reducing number of command transmitted from the 
user. That is, moving part of the intelligent decision making to the 
object under control reduces the communication energy. 

In summary, design choices in the physical, control, and 
network layer affect the overall performance. Our co-simulation 
framework enables optimization at each layer thorough exhaustive 
experimentation, leading to a better understanding of how the 
entire system interacts.  
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Figure 2.  Structure of the proposed IoT co-simulation 

framework. 
 

 
Figure 3. Simulation result for communication energy 

consumption when realistic, ideal inputs, and automated 
navigation using realistic inputs are used in navigation. 
 

E
ne

rg
y 

(J
)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Communication Energy Cost for Navigation

Avg
Destinations

Realistic Inputs Ideal Inputs Automated Navigation

http://www.coppeliarobotics.com/
https://omnetpp.org/

	1. MULTIMODAL HUMAN-MACHINE COMMUNICATION
	2. IOT CO-SIMULATION FRAMEWORK
	2.1 Overview of the Operation
	2.2 Sample Results

	3. REFERENCES

