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Hexagonal diamond (h-C) and wurtzite boron nitride (w-BN) are two superhard materials recently
identified to be comparable to or even harder than their cubic counterparts, cubic diamond (c-C) and
cubic boron nitride (c-BN). To understand the effect of lattice structure on thermal transport in these
materials, we conduct first-principles calculations to investigate their harmonic and anharmonic lattice
properties. Owing to the strong C-C or B-N bonds, h-C and w-BN are found to have a high lattice thermal
conductivity (k) exceeding the overall thermal conductivity of metals, albeit lower than that of their
cubic counterparts. By analyzing the phonon band structure and volume of the 3-phonon scattering
phase space, we attribute the lower «; of the hexagonal phases to their larger volume of 3-phonon
scattering phase space than the cubic ones. Moreover, we reveal that a high pressure of 125 GPa leads
to a two-to three-fold increase in the k; of these materials, because the pressure enlarges the optical-
acoustic phonon bandgap and thus reduces the volume of the 3-phonon scattering phase space. This
work uncovers the significant effect of lattice structure and pressure on phonon scattering and transport,
which is crucial for the application of superhard materials.
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scattering [5—7]. Owing to their outstanding performance in
dissipating heat, there is an increasing interest in applying dia-
mond, graphite, and graphene in thermal management applica-
tions [5,7,8]. Diamond, as an excellent electrical insulator, is even
preferred when electrical insulation is required.

Similar to those allotropes of carbon, various structures of boron
nitride have also been found to possess high «, though lower than
that of diamond and graphene. For example, the room-temperature
k in the basal plane of a bulk sample of pyrolytic hexagonal boron
nitride (h-BN) was measured to be up to 390 W/m-K [9]. In 2013, Jo
et al. measured the « of an 11-layer h-BN using a thermal bridge
approach and found a value of approximately 360 W/m-K at room
temperature, comparable to its bulk-limit value [10]. Later, Zhou

1. Introduction

Diamond, of which the lattice can be viewed as a pair of inter-
secting face-centered cubic lattices, is one of the “supermaterials”
that deliver extreme performance across a variety of applications.
In particular, it has long been known as one of the hardest and
thermally conductive materials on earth. In terms of its thermal
performance, theoretical and experimental studies [1—4] have been
conducted to investigate thermal transport in both naturally
occurring and isotopically pure diamond, revealing that it pos-
sesses one of the highest thermal conductivities («) reported so far
[5]. The ultrahigh « of diamond primarily stems from its strong sp>
C-C bonds and the light carbon atoms, which lead to high phonon

group velocities that are higher than most materials in nature.
Graphene, another allotrope of carbon with a hexagonal lattice, also
has very high « in the in-plane direction owing to the strong sp? C-C
bonds and restricted phase space for anharmonic phonon
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et al. obtained room-temperature «’s between 227 W/m-K and
280W/m-K for a 9-layer h-BN using the confocal micro-Raman
method [11]. Another allotrope of BN, cubic boron nitride (c-BN),
was also found to have a high « of 768 W/m-K from an early
experiment [12] or 940 W/m-K from a recent first-principles study
[13].

Recently, hexagonal diamond (h-C), a much less understood
allotrope of carbon also referred to as lonsdaleite, was found to be
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even harder than its cubic counterpart [ 14]. With a similar structure
as h-C, wurtzite boron nitride (w-BN) was also predicted to be
ultrahard [14]. As shown in Fig. 1, h-C and w-BN have the same
hexagonal lattice structure, which renders it more difficult for lat-
tice planes to glide than their cubic counterparts, c-C and c-BN.
Consequently, the hardness of h-C and w-BN are even superior than
that of cubic diamond (c-C) and c-BN. Nonetheless, the thermal
properties of h-C, c-BN, and w-BN are not well understood yet,
inspiring us to investigate their x and understand how their atomic
structures dictate thermal transport properties, which is of both
practical and fundamental importance. Moreover, as ultrahard
materials are usually used under high-pressure conditions, we will
also systematically study how high pressure affects thermal
transport in these materials.

2. Methodology

The four materials to be studied in this work are insulators with
wide electronic bandgap, in which thermal transport is primarily
contributed by phonons. Phonons are quanta of lattice vibrations
and are usually described with a quantum number, 1 = (v,q). In this
equation, q denotes wave vector and v denotes branch index. The
advancement in first-principles based calculation of lattice thermal
conductivity k; [15—18] has enabled an accurate solution to the
linearized phonon Boltzmann transport equation, and, corre-
spondingly, the tensor of k; can be calculated as [19].

1

07 = ggran 2o + (o), (1)
in which « and g are the Cartesian coordinates, kg is the Boltzmann
constant, Q is the volume of the unit cell, N is the number of
discrete q points of the I'-centered q grid for sampling the first
Brillouin zone (FBZ), fis the Bose-Einstein distribution function, # is
the Planck’s constant, w is phonon frequency, v is phonon group
velocity, and F is usually referred to as “mean free displacement”
[19]. The key to obtain x; through Eq. (1) is to calculate F; using

F,=10(v; +4)), (2)

where 7 is the relaxation time, or lifetime, of phonon mode 4 and
A, is a complicated function of F [19]. As a result, Eq. (2) has to be
solved iteratively. Phonon relaxation time in solids can be limited
by various phonon scattering mechanisms, for example, interaction
with other phonons, isotopes, impurities, electrons, etc. Under the
relaxation time approximation, the 3-phonon anharmonic scat-
tering contribution to the phonon scattering rate v;, or the inverse
phonon relaxation time, is given by the Fermi's golden rule (FGR) as
[20,21].
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In the above equation, the first term on the right hand side
denotes phonon absorption process, in which two phonons
combine into one higher energy phonon; while the second term
describes phonon emission process, in which one phonon splits
into two lower energy phonons. In addition to the conservation of
energy, the lattice or phonon quasi-momentum also needs to be
conserved as q, = q+q; + Q during the summation over phonon
modes in Eq. (3). Here, Q is the reciprocal lattice vector with Q = 0
denoting normal process while Q #0 denoting Umklapp process.
Besides, the Dirac function ¢ is approximated by a Gaussian func-
tion following the scheme in Ref. [ 19], even though the feasibility of
Lorentzian function was also demonstrated previously [22]. The 3-
phonon scattering matrix elements Vﬁ] 5, are calculated from the
density-functional theory (DFT), of which the details can be found
in Refs. [19,21,23,24], while the phonon band structures, or phonon
dispersion relations, are calculated through the Fourier transform
of the reciprocal-space dynamical matrices obtained from the
linear-response theory [25,26]. We only consider three-phonon
scattering processes in our calculations, as higher-order phonon
scattering processes play an insignificant role in determining the
lattice thermal conductivity of the superhard materials studied in
this work [27].

In this work, we will consider materials composed of elements
(C, B, or N) with natural isotopic distributions as well as isotopically
pure materials. The contribution to phonon scattering rates by
isotopic disorder can be captured by the well-established model

iso _ T0? S s )
Yin =5 _zl:g(l) e;(i)-e; (1)]“0(w; — wy,), (4)
1=

in which i sums over the unit cell. In the above equation, g(i)
characterizes the mass disorder among all isotopes as

12
gl) = 0| 1- 220 ] (%)

N

in which f;(i) and ms(i) denote the frequency of occurrence and the
atomic mass of the s'th isotope of atom i, respectively.

We conduct all the DFT calculations using the Quantum
ESPRESSO package [25,26]. The Troullier-Martins type normcon-
serving pseudopotentials [28] and the Perdew-Burke-Ernzerhof
generalized gradient approximation (PBE-GGA) are used. Prior to
calculating the force constants, we conduct structural relaxation

wurtzite boron nitride

Fig. 1. Lattice structures of the four materials studied in this work. (A colour version of this figure can be viewed online.)
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targeting at OPa or 125 GPa to obtain the optimized lattice pa-
rameters and atomic positions for the corresponding pressure. A
16 x 16 x 16 Monkhorst-Pack (MP) grid is used for c-C and c-BN,
and a 16 x 16 x 12 MP grid is used for h-C and w-BN in the
structural relaxation and phonon band structure calculations. A
plane-wave energy energy cut-off of Ecy = 120 Ry is used to
truncate the plane wave basis set in Quantum ESPRESSO. A 8 x 8 x
8 q-grid is used for phonon band structure calculations for c-C and
c-BN, while a 8 x 8 x 6 grid is used for h-C and w-BN. In the
supercell-based 3rd-order force constant (FC) calculations, super-
cells of 3 x 3 x 3 primitive unit cells are used for all cases, with
atomic interactions considered up to 5th nearest neighbors for c-C
and c-BN and to 7th nearest neighbors for h-C and w-BN. A 3 x 3 x
3 k-grid is used in the DFT calculations for 3rd-order FCs.

As the materials studied in this work are pristine, crystalline
insulators, the final phonon scattering rates are determined by
anharmonic phonon-phonon (p-p) scatterings and isotope scat-
terings (iso) through the Matthiessen's rule as v; = yP + v,
where yﬁp and 7&5" are the anharmonic p-p scattering rates and
phonon-isotope scattering rates, respectively. In particular, y%°
accounts for the effect of mass-difference scattering caused by the
coexistence of various isotopes in naturally occurring materials,
which can be obtained by integrating the ygsA"l in Eq. (4) over all the
possible final states ;.

3. Results and discussions

Fig. 2 shows the «; of the four materials studied in this work,
namely, cubic-diamond (c-C), hexagonal-diamond (h-C), cubic bo-
ron nitride (c-BN), and wurtzite boron nitride (w-BN), as a function
of temperature. Evidently, they all have very high «;, which

decreases with temperature owing to the enhanced Umklapp
scatterings. Besides, our results for c-C at zero pressure agree with
previous experimental data [3,29] and Broido et al.’s first-principles
calculations [4] very well, as shown in Fig. 2a, which validates the
methodology used in our work. Thermal transport in cubic dia-
mond is already well understood and it is not surprising to see an
anisotropic thermal conductivity of hexagonal diamond and
wurtzite boron nitride, either. However, it is interesting to see that
h-C and w-BN have significantly lower thermal conductivity than
their cubic counterparts, c-C and c-BN, respectively, at zero pres-
sure, even though they have the same bonding environment. In
particular, as shown in Fig. 2a, the room-temperature «; of isoto-
pically pure c-C is 3398 W/m-K, while that of isotopically pure h-C
is only 2389 W/m-K in the x-y directions. The «; of h-C is even
lower in the z direction (2009 W/m-K). Similarly, as shown in
Fig. 2c, the room-temperature k; of isotopically pure c-BN is
1905 W/m-K, while that of isotopically pure w-BN in the x-y di-
rections and z direction is only 1344 W/m-K and 1155 W/m-K,
respectively. A deeper understanding of the mechanism of such
difference in x; will shed light on how lattice structure and the
arrangement of atoms affect thermal transport in materials.
Typically, stiffer bonds, i.e., higher bond energy, would lead to
larger phonon group velocity and thus higher «;, which partly
contributes to the high «; of several carbon based allotropes,
including c-C, graphene, and carbon nanotube. Therefore, we
compare the bulk modulus B of c-C (c-BN) and h-C (w-BN) to check
whether a difference in bond energy causes the significant differ-
ence between their «;’s. Bulk modulus quantifies the compress-
ibility of the material, i.e., its volumetric change in response to the
applied hydrostatic pressure. It is one of the material properties
commonly used to quantify how hard the material is. Atomistically,
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Fig. 2. Thermal conductivity as a function of temperature for cubic diamond and hexagonal diamond at 0 GPa (a) and 125 GPa (b), and for cubic boron nitride and wurtzite boron
nitride at 0 GPa (c) and 125 GPa (d). In panel (a) and (b), we also compare our calculated values of k; with experimental (exp.) data [3,29] and theoretical (th.) data [4]. (A colour
version of this figure can be viewed online.)
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the stretchability of the chemical bonding, bond type, and bond
length dictate the bulk modulus. Here we calculate the B of the four
superhard materials based on the thermodynamic definition,

dp d’E

B= A Vm, (6)
where P is the pressure, V is the volume, and E is the total energy.
We apply pressures ranging from —25 kbar to 25 kbar to compress
or stretch the unit cell, which is fully relaxed to energy minimum
under the corresponding pressure in Quantum ESPRESSO. After-
ward, we fit the total energies and the corresponding volumes of
the relaxed unit cells quadratically using the least-mean-square
scheme [27], through which we can obtain d2E/dV2. Finally, B can
be obtained through Eq. (6).

Table 1 shows the calculated Bs. Obviously, the B of c-Cis only 1%
different from that of h-C and the B of c-BN is only 2% different from
that of w-BN. Moreover, c-C (c-BN) and h-C (w-BN) also share
almost the same C-C (B-N) bond length, as shown in Table 1. These
findings suggest that c-C (c-BN) has almost the same bonds as h-C
(w-BN). Therefore, bond energy difference is not the reason for the
difference in the «; of c-C (c-BN) and h-C (w-BN).

To confirm the above conclusion, we also conduct equilibrium
molecular dynamics simulations using the Tersoff potential [38,39]
for both c-C and h-C, and then use the Green-Kubo method [40—42]
to calculate k;. Specifically, the thermal conductivity tensor is
calculated from the heat current autocorrelation function (HCACF)
as

v .
= 2 0/ < a<t>15<0>>dt, (7)

in which V is the volume of the simulation domain, T is tempera-
ture, kg is the Boltzmann constant, | is the Cartesian components of
the heat flux vector J, and t is time. The subscripts « and ( are
Cartesian coordinates, X, y, or z. J is computed as

Jio) = {Zv,e, 5 Zru Fj-vi) + > 1;[F

(k) -v;] } (8)
ij,i#j ij.k
in which the subscripts i, j, and k are atom indexes, v is the atomic
velocity, ¢ denotes the energy of the atom, ry; is the distance vector
between atoms i and j, and F is force resulting from the 2-body (Fj;)
or 3-body (Fj) interactions between atoms i, j, and k. In our
snmulatlon a3.9 x 3.9 x 3.9 nm> c-Csupercelland a3.5 x 3.5 x 3.3
nm? h-C supercell are simulated in the LAMMPS package [43] with
the periodic boundary condition applied to all the three di-
mensions. The carbon atoms are initialized with random velocities
following a Gaussian distribution at 5 K. Then the structure is first
relaxed in the NPT ensemble by a Nose’-Hoover thermostat at zero
pressure with the temperature increasing from 5 K to 300 K in 400
ps, followed by a NPT relaxation at zero pressure and 300K for
another 1 ns. Finally, the simulation is switched to the NVE
ensemble for 10 ns, from which the instantaneous heat fluxes are

calculated and recorded for Green-Kubo calculations. In the fore-
going molecular dynamics simulations, a time step size of 1 fs is
used to ensure numerical accuracy. For the Green-Kubo calculation,
3 independent simulations for c-C and 9 independent simulations
for h-C are conducted, among which carbon atoms are initialized
with different velocities at the beginning of the simulation, so that
we can extract statistically more accurate x; from the integral of the
averaged HCACF curves. We find that the «; of c-Cis 1,866+126 W/
m-K, which agrees well with Fan et al.'s result (1950+40 W/m-K)
[44] obtained from Green-Kubo calculations using the same Ters-
off potential. Moreover, the ; of h-C in the x-y direction is found to
be 1,200+50 W/m-K and that in the z direction is 645+173 W/m-K,
which are lower than that of c-C. This is also true at other tem-
peratures, as shown in the Supplementary Materials [27]. Obvi-
ously, the bond strength of the c-C and h-C in our simulations
should be the same, because they are described by the same
interatomic potential; hence the notable difference in x; should
come from other resources.

The primitive unit cell of c-C has two carbon atoms while that of
h-C has four. Therefore, h-C has more optical phonon branches than
c-C, i.e., h-C has nine while c-C has three. In fact, we can view the
added optical branches in h-C as if they are generated by Brillouin
zone folding, through which each of the three acoustic phonon
branches in c-C is folded and split into one acoustic phonon branch
and one optical phonon branch. The folding process can generate a
bandgap, which effectively reduces the slope (phonon group ve-
locity) of the dispersion curves. This mechanism has been used to
explain the reduced «; of superlattices when the size of the unit cell
(period thickness) increases [45—47]. To isolate such effect of
phonon band structure from that caused by lattice anharmonicity,
we calculate the volumetric heat capacity and small-grain-limit
thermal conductivity, which are defined as

2
¢ - (2"75)3 / (,f‘B—‘*}) folfo + DdPq )
FBZ

and

af 1 (f D(h ZU%VE (10)
KL,SG*W;&J o+ 1)(hw;) v,

respectively. It is worth emphasizing that the ¢, and «; s calculated
in the above way are solely determined by harmonic lattice prop-
erties, if we neglect the effect of lattice anharmonicity on phonon
dispersion relations. As shown in Fig. 3a, there is no notable dif-
ference between the ¢, of c-C and h-C, and similarly for c-BN and w-
BN. This is expected because all the structures are closely packed
with a C-C bond length of 1.54 A or B-N bond length of 1.56 A based
on Table 1. According to Fig. 3b, however, the room-temperature
krsc of c-C (c-BN) is indeed higher than that of h-C (w-BN). Spe-
cifically, the k; s¢ of c-Cis 4.37 W/m-K, 7% higher than that (4.09) of
h-C. Similarly, the «; s; of c-BN is 4.45 W/m-K, 10% higher than that
(4.03) of w-BN. Evidently, ; s, or the phonon band structure, can
explain part of the observed higher «; of c-C (c-BN) than h-C (w-
BN), but the majority of the difference should arise from

Table 1
The bulk modulus and lattice parameters (a) of c-C, h-C, c-BN, and w-BN obtained from this work and from literature (lit.).
Material B (GPa) B (GPa), lit. a(A) a (A), lit.
cC 425.7 442 [30], 445.6 [31] 3.560 3.567 [32]
h-C 4314 456.0 [31] 2.504 2.52 [33,34]
c-BN 3743 369+14[35], 401 [36], 375 [36] 3.612 3.615 [37], 3.617 [36]
w-BN 366.1 373 [36] 2.546 2.549 [36]
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Fig. 3. Heat capacity (a) and small-grain-limit lattice thermal conductivity (b) of the four materials. (A colour version of this figure can be viewed online.)

anharmonic properties.

To test the above hypothesis, we compare the phonon scattering
rates of c-C with those of h-C. Fig. 4a and c shows the anharmonic
phonon scattering rates for the longitudinal acoustic (LA) phonon
modes located at the gx-qy plane of the FBZ of c-C and h-C,
respectively. As we can see, the scattering rates of the LA phonons
in h-C are significantly higher than those in c-C. In fact, the
contribution to the room-temperature «; by LA modes in c-C is
1403 W/m-K, while it has a much lower value of 635 W/m-K in h-C.
Other than LA modes, we also found similar behaviors for the TA
phonon modes in c-C and h-C. Since the harmonic lattice proper-
ties, e.g., ¢, and k; s, are not much different between c-C and h-C,
we can conclude that the different ; of the two materials is mainly
caused by the difference in phonon scattering rates. This conclusion
also applies to c-BN and w-BN. As shown in Fig. 4b and d, the
phonon scattering rates in w-BN are also much higher than those in
c-BN.

To explore the fundamental reason for the higher phonon
scattering rates in c-C (¢-BN) than in h-C (w-BN), we need to revisit
Eq. (3), based on which we obtained the anharmonic phonon
scattering rates. Obviously, there are two possible mechanisms for
the difference in «;: (1) the 3rd-order force constants, which
directly determines the value of the 3-phonon scattering matrix
elements Vﬁ]}q in Eq. (3), are larger in h-C than in c-C; (2) the 3-
phonon scattering phase space, which quantifies the amount of
possible 3-phonon combinations satisfying both momentum and
energy conservation, is larger for the acoustic phonon modes
(major heat carriers) in h-C than in c-C. The first mechanism is quite
unlikely, because our bulk modulus calculation already indicates
that the two materials have rather similar bonds. In fact, consid-
ering that there are more optical phonon branches in h-C than in c-
C, and that the optical-acoustic phonon bandgap is much smaller in
h-C, it is reasonable to expect a larger phonon scattering phase
space in h-C than in c-C.

Typically, the volume of the scattering phase space P is defined
for each g-mesh with a finite volume 6V, [19]. To make a fair
comparison between different material systems or different cal-
culations, in which there might be a mismatch in the size of q-mesh
in the FBZ, we define a differential 3-phonon scattering phase
space, oP/oVyg, as

%(q)—gﬂ)%;ﬁéé[wy(q)] +or(q)] ~0y (a+d -Q)|d*q
(11)

The physical meaning of 9P/0Vj is the total volume of scattering
phase space per unit volume of the q-mesh for a specific phonon

mode A = (v,q). As shown in Fig. 4e and f, the LA phonons in h-C has
a larger 0P/08Vy than those in c-C. Moreover, we also confirm that
this only occurs for absorption processes, in which one LA phonon
combines with another phonon into a higher-energy acoustic or
optical phonon. Evidently, a smaller optical-acoustic phonon
bandgap could facilitate such process, because it becomes easier for
the LA phonon to absorb another phonon to become higher-energy
optical phonons. Similar conclusion also holds for c-BN and w-BN,
which confirms our hypothesis above.

Since physical properties of superhard materials under high
pressure are always of great interest, herein we compare lattice
thermal transport in these materials at OPa and 125 GPa. By
comparing the data in Fig. 2a and b, we can see that a pressure of
125 GPa increases the k; of c-C and h-C greatly. Specifically, the
room-temperature k; of isotopically pure c-C has increased more
than two-fold from 3398 W/m-K to 7103 W/m-K, while that of
isotropically pure h-C (x-y direction) has increased from 2389 W/
m-K to 6911 W/m-K. Similarly, we can also find a more than two-
fold increase in k; for ¢-BN and w-BN by comparing the data in
Fig. 2c and d. A compressive strain typically increases the phonon
group velocity, which can increase the «; of materials baesd on Eq.
(1). To investigate whether this is the reason for the increased «; in
these materials under high pressure, we plot the phonon dispersion
relations in Fig. 5. Obviously, the high pressure has increased the
frequency of all phonon modes in the materials. In particular, the
slopes of all the 3 acoustic branches are increased, which means the
group velocities of those acoustic phonon modes have increased.
However, the increase is less than 10%, which cannot explain the
more than two-fold increase in «; displayed in Fig. 2. Therefore, we
further compare the phonon scattering rates of the four materials at
0Pa and 125 GPa. As revealed by Fig. 6a—d, the phonon scattering
rates in unstrained materials are obviously higher than those under
125 GPa. Specifically, an approximately two-fold difference be-
tween the scattering rates is induced by the applied pressure,
which should be the major cause of the more than two-fold dif-
ference in «;. In fact, we can observe a prominent enlargement in
the optical-acoustic bandgap in all the four panels in Fig. 5. An
increased phonon bandgap usually makes it more difficult for
phonon modes to pair with other modes to satisfy both momentum
and energy conservation for 3-phonon scattering processes to
occur or, in other words, reduces the volume of 3-phonon scat-
tering phase space. As shown in Fig. 6e and f, 9P/8Vy of the LA
phonons is generally lower in the materials under 125 GPa, which
explains our observation of the weakened phonon scatterings and
thus enhanced thermal conductivity at high pressure.

Finally, as these materials are usually found in polycrystalline
forms or of very small size, it is beneficial to understand how
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structure size affects the lattice thermal conductivity. The cumu-
lative lattice thermal conductivities (as a function of the phonon
mean-free-path) of the four materials at 0 Pa and 300 K are plotted
in Fig. 7, which approximately quantify how k; can be truncated by
a specific material size. As we can see, lattice thermal transport in
these materials is mainly contributed by phonons with a mean-
free-path of 0.2—2 um. In other words, grain size or material size
in or smaller than this range can reduce the k; of these materials
significantly.

4. Summary

To summarize, we have conducted first-principles calculations
of the lattice properties of cubic diamond, hexagonal diamond,
cubic boron nitride, and wurtzite boron nitride. We found that the
cubic phases have a much higher lattice thermal conductivity than
the hexagonal phases at room temperature, despite of their similar
bonding environments. By analyzing phonon properties, we
revealed that hexagonal phases have significantly higher phonon
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scattering rates than their corresponding cubic phases. This is
caused by the enlarged phonon scattering phase space in hexagonal
phases, which arises from the increased number of optical phonon
modes in hexagonal structures. We also explored the effect of high
pressure on thermal transport in those four materials and found
that a high pressure of 125 GPa, which is typical in applications of
superhard materials, can lead to a two-to three-fold increase in k; at
room temperature in isotopically pure samples. This is caused by
the combined effect of increased phonon group velocity (minor)
and reduced phonon scattering rates (major). In particular, the
reduction in the phonon scattering rates under high pressure is
attributed to the shrinked volume of 3-phonon scattering phase
space, which is caused by the enlarged optical-acoustic phonon
bandgap. This work revealed the significant role of lattice structure
in determining the lattice thermal transport properties of mate-
rials. It also uncovered the prominent effect of high pressure on the
k; of diamonds and boron nitrides, which is crucial for the appli-
cation of these superhard materials.

Acknowledgment

P.C., G.X,, and Y.W. would like to thank the faculty startup fund
from the University of Nevada, Reno. P.C. and L.C. are also grateful to
the financial support from the National Science Foundation (Grant
No. CMMI-1727428) and the faculty startup fund from the Univer-
sity of Nevada, Reno.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.carbon.2018.06.025.

References

[1] R. Berman, P.R.W. Hudson, M. Martinez, Nitrogen in diamond: evidence from

thermal conductivity, J. Phys. C Solid State Phys. 8 (21) (1975) L430. http://

stacks.iop.org/0022-3719/8/i=21/a=003.

E. Burgemeister, Thermal conductivity of natural diamond between 320 and

450 k, Phys. B+C 93 (2) (1978) 165—179. https://doi.org/10.1016/0378-

4363(78)90123-7. http://www.sciencedirect.com/science/article/pii/

0378436378901237.

L. Wei, P.K. Kuo, RL. Thomas, T.R. Anthony, W.F. Banholzer, Thermal con-

ductivity of isotopically modified single crystal diamond, Phys. Rev. Lett. 70

(1993) 3764—3767, https://doi.org/10.1103/PhysRevLett.70.3764. https://link.

aps.org/doi/10.1103/PhysRevLett.70.3764.

D.A. Broido, L. Lindsay, A. Ward, Thermal conductivity of diamond under

extreme pressure: a first-principles study, Phys. Rev. B 86 (2012), 115203,

https://doi.org/10.1103/PhysRevB.86.115203. https://link.aps.org/doi/10.

1103/PhysRevB.86.115203.

[5] A.A. Balandin, Thermal properties of graphene and nanostructured carbon
materials, Nat. Mater. 10 (8) (2011) 569.

[6] L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in

[2]

[3

[4]

graphene, Phys. Rev. B 82 (2010), 115427, https://doi.org/10.1103/Phys-

RevB.82.115427. https://link.aps.org/doi/10.1103/PhysRevB.82.115427.

Y. Wang, AK. Vallabhaneni, B. Qiu, X. Ruan, Two-dimensional thermal

transport in graphene: a review of numerical modeling studies, Nanoscale

Microscale Thermophys. Eng. 18 (2) (2014) 155—182.

Y. Wang, A. Vallabhaneni, J. Hu, B. Qiu, Y.P. Chen, X. Ruan, Phonon lateral

confinement enables thermal rectification in asymmetric single-material

nanostructures, Nano Lett. 14 (2) (2014) 592—596, https://doi.org/10.1021/

nl403773f pMID: 24393070, https://doi.org/10.1021/nl403773f, https://doi.

org/10.1021/nl403773f.

E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi, Heat capacity and thermal

conductivity of hexagonal pyrolytic boron nitride, Phys. Rev. B 13 (1976)

4607—4611, https://doi.org/10.1103/PhysRevB.13.4607. https://link.aps.org/

doi/10.1103/PhysRevB.13.4607.

L. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal

conductivity and phonon transport in suspended few-layer hexagonal boron

nitride, Nano Lett. 13 (2) (2013) 550—554, https://doi.org/10.1021/n1304060g

PMID: 23346863, https://doi.org/10.1021/n1304060g, https://doi.org/10.1021/

nl304060g.

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P.M. Ajayan,

J:-M. Tour, High thermal conductivity of suspended few-layer hexagonal boron

nitride sheets, Nano Res. 7 (8) (2014) 1232—1240, https://doi.org/10.1007/

$12274-014-0486-z. https://doi.org/10.1007/s12274-014-0486-z.

N. V. Novikov, T. D. Osetinskaya, A. A. Shul’zhenko, A. P. Podoba, A. N. Sokolov,

L. A. Petrusha, Akad. Nauk Ukr. RSR, Ser. A: Fiz.-Tekh. Mat. Nauki 72.

L. Lindsay, D.A. Broido, T.L. Reinecke, First-principles determination of ultra-

high thermal conductivity of boron arsenide: a competitor for diamond? Phys.

Rev. Lett. 111 (2013), 025901 https://doi.org/10.1103/Phys-

RevLett.111.025901. https://link.aps.org/doi/10.1103/PhysRevLett.111.

025901.

Z. Pan, H. Sun, Y. Zhang, C. Chen, Harder than diamond: superior indentation

strength of wurtzite bn and lonsdaleite, Phys. Rev. Lett. 102 (2009), 055503,

https://doi.org/10.1103/PhysRevLett.102.055503. https://link.aps.org/doi/10.

1103/PhysRevLett.102.055503.

M. Omini, A. Sparavigna, Beyond the isotropic-model approximation in the

theory of thermal conductivity, Phys. Rev. B 53 (1996) 9064—9073, https://

doi.org/10.1103/PhysRevB.53.9064. https://link.aps.org/doi/10.1103/

PhysRevB.53.9064.

M. Omini, A. Sparavigna, Heat transport in dielectric solids with diamond

structure, Nuovo Cimento-Soc. Itali. Fisi. Sezione D 19 (1997) 1537—1564.

A. Sparavigna, Influence of isotope scattering on the thermal conductivity of

diamond, Phys. Rev. B 65 (2002), 064305, https://doi.org/10.1103/Phys-

RevB.65.064305. https://link.aps.org/doi/10.1103/PhysRevB.65.064305.

D.A. Broido, M. Malorny, G. Birner, N. Mingo, D.A. Stewart, Intrinsic lattice

thermal conductivity of semiconductors from first principles, Appl. Phys. Lett.

91 (23)(2007), 231922, https://doi.org/10.1063/1.2822891. https://doi.org/10.

1063/1.2822891. https://doi.org/10.1063/1.2822891.

W. Lj, J. Carrete, N.A. Katcho, N. Mingo, Shengbte: a solver of the Boltzmann

transport equation for phonons, Comput. Phys. Commun. 185 (6) (2014)

1747-1758. https://doi.org/10.1016/j.cpc.2014.02.015. http://www.

sciencedirect.com/science/article/pii/S0010465514000484.

[20] J.M. Ziman, Electrons and Phonons: the Theory of Transport Phenomena in
Solids, Oxford University Press, 1960.

[21] A. Ward, D. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice
thermal conductivity in diamond, Phys. Rev. B 80 (12) (2009), 125203.

[22] AJ. Ladd, B. Moran, W.G. Hoover, Lattice thermal conductivity: a comparison

of molecular dynamics and anharmonic lattice dynamics, Phys. Rev. B 34 (8)

(1986), 5058.

G. Deinzer, G. Birner, D. Strauch, Ab initio calculation of the linewidth of

various phonon modes in germanium and silicon, Phys. Rev. B 67 (14) (2003),

144304.

[24] Y. Wang, Z. Lu, X. Ruan, First principles calculation of lattice thermal

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[23]



[25]

[26]

[27]
[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

P. Chakraborty et al. / Carbon 139 (2018) 85—93 93

conductivity of metals considering phonon-phonon and phonon-electron
scattering, J. Appl. Phys. 119 (22) (2016), 225109, https://doi.org/10.1063/

1.4953366. https://doi.org/10.1063/1.4953366. https://doi.org/10.1063/1.
4953366.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,

G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov,
P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source
software project for quantum simulations of materials, J. Phys. Condens.
Matter 21 (39) (2009) 395502. http://stacks.iop.org/0953-8984/21/i=39/
a=395502.

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra,
R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo,
A.D. Corso, S. de Gironcoli, P. Delugas, RA.D. Jr, A. Ferretti, A. Floris, G. Fratesi,
G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, ]. Jia, M. Kawamura,
H.-Y. Ko, A. Kokalj, E. Kkbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri,
N.L. Nguyen, H.-V. Nguyen, A.O. de-la Roza, L. Paulatto, S. PoncA®©, D. Rocca,
R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov,
T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for
materials modelling with q uantum espresso, J. Phys. Condens. Matter 29 (46)
(2017) 465901. http://stacks.iop.org/0953-8984/29/i=46/a=465901.
Supplementary materials.

N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calcula-
tions, Phys. Rev. B 43 (1991) 1993—-2006, https://doi.org/10.1103/Phys-
RevB.43.1993. http://link.aps.org/doi/10.1103/PhysRevB.43.1993.

D.G. Onn, A. Witek, Y.Z. Qiu, T.R. Anthony, W.F. Banholzer, Some aspects of the
thermal conductivity of isotopically enriched diamond single crystals, Phys.
Rev. Lett. 68 (1992) 2806—2809, https://doi.org/10.1103/PhysRevLett.68.2806.
https://link.aps.org/doi/10.1103/PhysRevLett.68.2806.

D. Tabor, The hardness of solids, Rev. Phys. Technol. 1 (3) (1970) 145.

B. Wu, ].-a. Xu, Total energy calculations of the lattice properties of cubic and
hexagonal diamond, Phys. Rev. B 57 (21) (1998), 13355.

H. Holloway, K. Hass, M. Tamor, T. Anthony, W. Banholzer, Isotopic depen-
dence of the lattice constant of diamond, Phys. Rev. B 44 (13) (1991) 7123.
F.P. Bundy, J.S. Kasper, Hexagonal diamonda new form of carbon, J. Chem.
Phys. 46 (9) (1967) 3437—3446, https://doi.org/10.1063/1.1841236. https://
doi.org/10.1063/1.1841236. https://doi.org/10.1063/1.1841236.

S.R.P. Silva, G.AJ. Amaratunga, E.K.H. Salje, KM. Knowles, Evidence of hex-
agonal diamond in plasma-deposited carbon films, J. Mater. Sci. 29 (19) (1994)
4962—-4966, https://doi.org/10.1007/BF01151085. https://doi.org/10.1007/
BF01151085.

E. Knittle, RM. Wentzcovitch, R. Jeanloz, M.L. Cohen, Experimental and
theoretical equation of state of cubic boron nitride, Nature 337 (6205) (1989)
349.

A. Nagakubo, H. Ogi, H. Sumiya, K. Kusakabe, M. Hirao, Elastic constants of

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44

[45]

[46]

[47]

cubic and wurtzite boron nitrides, Appl. Phys. Lett. 102 (24) (2013), 241909,
https://doi.org/10.1063/1.4811789. https://doi.org/10.1063/1.4811789.
https://doi.org/10.1063/1.4811789.

R.H.W. Jr, Cubic form of boron nitride, J. Chem. Phys. 26 (4) (1957), https://
doi.org/10.1063/1.1745964, 956—956, https://doi.org/10.1063/1.1745964,
https://doi.org/10.1063/1.1745964.

J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multi-
component systems, Phys. Rev. B 39 (1989) 5566—5568, https://doi.org/
10.1103/PhysRevB.39.5566. https://link.aps.org/doi/10.1103/PhysRevB.39.
5566.

J. Tersoff, Erratum: modeling solid-state chemistry: interatomic potentials for
multicomponent systems, Phys. Rev. B 41 (1990), https://doi.org/10.1103/
PhysRevB.41.3248.2, 3248—-3248, https://link.aps.org/doi/10.1103/PhysRevB.
41.3248.2.

M.S. Green, Markoff random processes and the statistical mechanics of
timedependent phenomena. ii. irreversible processes in fluids, ]. Chem. Phys.
22 (3)(1954) 398—413, https://doi.org/10.1063/1.1740082. https://doi.org/10.
1063/1.1740082. https://doi.org/10.1063/1.1740082.

R. Kubo, M. Yokota, S. Nakajima, Statistical-mechanical theory of irreversible
processes. ii. response to thermal disturbance, J. Phys. Soc. Jpn. 12 (11) (1957)
1203—1211, https://doi.org/10.1143/JPS].12.1203. https://doi.org/10.1143/
JPSJ.12.1203. https://doi.org/10.1143/]JPS].12.1203.

R. Vogelsang, C. Hoheisel, G. Ciccotti, Thermal conductivity of the lennard-
jones liquid by molecular dynamics calculations, J. Chem. Phys. 86 (11) (1987)
6371—6375, https://doi.org/10.1063/1.452424. https://doi.org/10.1063/1.
452424, https://doi.org/10.1063/1.452424.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J. Comput. Phys. 117 (1) (1995) 1—-19. https://doi.org/10.1006/jcph.1995.1039.
http://www.sciencedirect.com/science/article/pii/S002199918571039X.

Z. Fan, LE.C. Pereira, H.-Q. Wang, ].-C. Zheng, D. Donadio, A. Harju, Force and
heat current formulas for many-body potentials in molecular dynamics sim-
ulations with applications to thermal conductivity calculations, Phys. Rev. B
92 (2015), 094301, https://doi.org/10.1103/PhysRevB.92.094301. https://link.
aps.org/doi/10.1103/PhysRevB.92.094301.

S.-i. Tamura, Y. Tanaka, H.J. Maris, Phonon group velocity and thermal con-
duction in superlattices, Phys. Rev. B 60 (1999) 2627—2630, https://doi.org/
10.1103/PhysRevB.60.2627. https://link.aps.org/doi/10.1103/PhysRevB.60.
2627.

E.S. Landry, AJ.H. McGaughey, Effect of film thickness on the thermal resis-
tance of confined semiconductor thin films, J. Appl. Phys. 107 (1) (2010),
013521, https://doi.org/10.1063/1.3275506. https://doi.org/10.1063/1.
3275506. https://doi.org/10.1063/1.3275506.

Y. Wang, H. Huang, X. Ruan, Decomposition of coherent and incoherent
phonon conduction in superlattices and random multilayers, Phys. Rev. B 90
(2014), 165406, https://doi.org/10.1103/PhysRevB.90.165406. https://link.aps.
org/doi/10.1103/PhysRevB.90.165406.



