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Received: 9 March 2017 . Afast-growing stalagmite from the central California coast provides a high-resolution record of climatic

Accepted: 23 May 2017 . changes synchronous with global perturbations resulting from the catastrophic drainage of proglacial

Published online: 20 June 2017 . Lake Agassiz at ca. 8.2 ka. High frequency, large amplitude variations in carbon isotopes during the

. 8.2ka event, coupled with pulsed increases in phosphorus concentrations, indicate more frequent or

intense winter storms on the California coast. Decreased magnesium-calcium ratios point toward a
sustained increase in effective moisture during the event, however the magnitude of change in Mg/Ca
suggests this event was not as pronounced on the western North American coast as anomalies seen in
the high northern latitudes and monsoon-influenced areas. Nevertheless, shifts in the White Moon Cave
record that are synchronous within age uncertainties with cooling of Greenland, and changes in global
monsoon systems, suggest rapid changes in atmospheric circulation occurred in response to freshwater
input and associated cooling in the North Atlantic region. Our record is consistent with intensification of
the Pacific winter storm track in response to North Atlantic freshwater forcing, a mechanism suggested
by simulations of the last deglaciation, and indicates this intensification led to increases in precipitation
and infiltration along the California coast during the Holocene.

Greenland ice cores document an abrupt cooling event ~8200 years ago’. The “8.2ka event” lasted ~160years,
is the most distinctive isotope excursion in the Holocene ice core record?, and is thought to be the result of
suppressed Atlantic Meridional Overturning Circulation (AMOC) due to draining of glacial lakes Agassiz and
Ojibway into the North Atlantic>* or reorganization of North Atlantic Ocean and atmospheric circulation fol-
lowing collapse of the Laurentide Ice Sheet®. Records of the 8.2ka event at lower latitudes help to delineate the
response of near-modern climate to this perturbation. Although documenting the spatial extent and duration of
the 8.2 ka event from proxy records outside of Greenland has been challenging due to the brevity of the event®,
mounting evidence from mid-latitude and tropical records suggests cooling in the North Atlantic region’, and
a southward shift of the Intertropical Convergence Zone (ITCZ) and associated precipitation bands®. In British
Columbia, lake sediments suggest glacial advance, consistent with a cooler and/or wetter climate®, and marine
sediments indicate decreased sea surface temperatures along the northern California coast'®. At mid-latitudes in
western North America, however, the 8.2ka event has remained poorly characterized given a lack of records of
appropriate temporal resolution. This is unfortunate, as the region’s response to a freshening of the North Atlantic
under interglacial conditions is relevant to modeling possible future climate change in this hydroclimatically
sensitive region.

Here we present a new multi-proxy record from a fast-growing speleothem (WMC1) from White Moon Cave
on the central California coast that precipitated prior to, during, and after the 8.2ka event (Fig. 1). This record
provides some of the first high-temporal-resolution evidence of the response of coastal California climate to the
most distinctive climatic event of the Holocene. As shown below, the new record suggests that the 8.2ka event was
associated with a brief period of wetter conditions, potentially arising from increased storminess, and demon-
strates a near synchronous climatic response to this event on both sides of the Pacific.

Site and Sample Background. White Moon Cave (WMC) formed within late Paleozoic marble in the Santa
Cruz Mountains near Davenport, CA (N37°00, W122°11’, Fig. 1), approximately 18 km northwest of Santa Cruz.
The cave entrance is located in the wall of an abandoned quarry that transects the natural cave, ~170 m above
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Figure 1. Location of White Moon Cave (star) and seasonality of modern precipitation in surrounding region.
Boxes show locations of other Holocene speleothem records from the western United States: OC = Oregon
Caves®, MC/ML = Moaning and McLean’s Caves**; LC = Lehman Caves®. Circle shows location of ODP core
1019'. Triangles show locations where event-scale §'*0,, has been analyzed?. Background map is the percent
of average annual precipitation (1981-2010) that occurs during the cool season (Oct.-Mar) from the PRISM
dataset®. Map modified from the Western Regional Climate Center™.

sea level. WMCI (Fig. S2) is a 25.5 cm tall stalagmite collected >250 m from the modern entrance in the quarry
wall and >350m from the nearest natural entrance (Fig. S2). Petrographic analysis reveals that WMCI consists
of calcite displaying elongated columnar fabrics intercalated with fine layers of silicate detritus (Fig. S3)'"'2
Elongated columnar fabrics have been related to high seepage water discharge and commonly occur in speleo-
them from caves developed within rocks that contain dolomite or other Mg-rich phases!'"12.

The cave site experiences a warm-summer Mediterranean climate. The area receives on average 800 mm of
rain annually, with >80% of this rain occurring in the cool season (Oct.-Mar.) (Fig. 1). Given its coastal loca-
tion, the amplitude of seasonal temperature variability is small, with average winter temperatures of 11.3°C and
average summer temperatures of 18 °C'. Cool season rain comes in the form of winter storms, which may origi-
nate from the northern or mid-latitude Pacific. However, occasionally, this region is influenced by extra-tropical
cyclones that draw moisture from the central or eastern tropical Pacific. These systems can develop narrow fila-
ments of concentrated near-surface water vapor called atmospheric rivers, which are often associated with intense
flooding along the Pacific coast'.

Results

The stalagmite was cut into quarters along the growth axis (Fig. S2), eleven subsamples were dated using estab-
lished U-Th techniques, and the stalagmite was analyzed for 60, §*C, and trace elements including Mg, Sr, Ba, P,
Y, Zn, and U (see Methods). Elemental concentrations are reported as ratios to calcium (mmolX/molCa). Results
indicate that stalagmite WMCI1 grew between ~8.6 and 0.24 ka (see Table S1). We focus herein on an interval of
relatively rapid stalagmite growth (on average ~100 pm/year) around the 8.2ka event, from ~8.6 to 6.9ka. Ten
samples from this interval were dated. Three were unsuitable for precise (or accurate) U-Th dating because of
high levels of #*Th (probably derived from alumino-silicate detritus present in mm-scale voids). Seven other
dates on samples of relatively pure carbonate have a median uncertainty of +37 years and indicate stalagmite
growth at a relatively constant rate from 8604 + 34 to 6937 £ 32 calyr BP (i.e., age before 1950; see Methods for
further details, all errors 20). These dates were used to construct an age model for the proxy data via StalAge'® (see
Fig. S4). The mean rate of extension along the growth axis of ~100 pum/year facilitated constructing proxy records
of sub-annual (laser ablation) to multi-annual resolution (micromilling).

We acquired measurements of carbonate 6'*0 and 6"*C from ~6900 to 8600 cal yr BP at sub-decadal to decadal
temporal resolution and at higher, annual to bi-annual resolution in the vicinity of the 8.2 ka event, from ~8060 to
8340 calyr BP. 6180 varied between —1.92 and —3.83%o, and 6'°C varied between —6.73 and —9.45%o. The §'*C
record from WMCI displays large amplitude, rapid variations during the 8.2ka event (Fig. 2). The extremes of
these excursions fall more than two standard deviations (SD) outside of the mean of the entire dataset (Fig. 2).
Rapid shifts to the lowest §*C values observed in WMC1 occur near the middle of the 8.2ka event, and these are
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Figure 2. Select global proxy records of the 8.2ka event compared to the WMC record. From top to bottom:
GRIP ice core §'80%; speleothem, §'30 (red), and §°C (blue) from WMC (this study); and speleothem §'*0
from Kaite Cave, Spain*!, Padre Cave, Brazil®, and Heshang Cave, China®’. Associated U-series ages and 20
errors shown by circles and error bars above each speleothem record. For WMC, ages shown in black required
large, model-dependent corrections for initial Th and are not used in the age model; date for highly detritus-rich
sample AC-2 is not shown. The timing and duration of the 8.2ka event based on the GRIP record is shown by
the blue shaded bar. Dashed horizontal black lines delineate WMC records from this study. Solid and dashed
red and blue lines for the WMC stable isotope proxies designate the mean values for the entire record and the
1SD (oxygen) and 2SD (carbon) ranges, respectively.

synchronous within dating uncertainties with the central anomalies displayed in speleothem records of the event
from Spain, Brazil and China (Fig. 2). The 6'80 record shows less overall variability, with slightly above-average
values through the 8.2 ka event except for three shifts to lower values that last ~20-30 years each and occur at
the beginning, middle, and just after the 8.2ka event. These negative shifts fall outside 1 SD of the mean of the
6180 dataset (Fig. 2). However, overall more negative 6'30 values occur after the 8.2ka event between ~7650 and
7980 calyr BP.

We also measured trace element concentrations (Mg, S, Ba, P, Zn, Y, U) at sub-annual to annual resolution
between ~7850-8650 cal yr BP. WMC1 displays a shift to sustained lower Mg/Ca and correlative, high amplitude
oscillations in P/Ca across this interval (Fig. 3). Stalagmite Mg/Ca shows significant moderate negative Pearson
correlations with Sr/Ca and Ba/Ca (r= —0.41, p <0.001; r=—0.29, p < 0.001, from a two-tailed t-test, respec-
tively). As discussed below, we interpret these relations in terms of moisture-controlled variations in soil and host
rock inputs to epikarst solutions during the 8.2ka event.
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Figure 3. High resolution records of the 8.2 ka event. From top to bottom: Greenland ice core §'*0 from GRIP
(red), GISP2 (black), NGRIP (blue), and Dye 3 (green) on the GICCO5 time scale? the updated Heshang Cave
8180 record (black)*; WMCI1 Mg/Ca (brown); P/Ca (purple); 6'*C (blue); and 6'30 (red) (this study). Dark and
light blue shading depict, respectively, the central portion and entire duration of the 8.2ka event as described in
ref. 2 based on the Greenland ice core records.

Stalagmite Proxy Interpretations. WMC is a remote cave that was mostly dry during the course of this
study due to the recent California drought, and thus it was challenging to obtain regular drip water measure-
ments. However, the average §'%0 of drip water sampled three times at two locations within WMC in March and
December 2015 and March 2016, is —5.2%0 (VSMOW) (1 SD = 0.4; n="7) (Table S2). This falls within the range
of measured 6'®0, of monthly average rainfall in Santa Cruz collected between December 2015 and March 2016,
of —3.03 to —5.37%o0 (VSMOW) (Table S3). This value is also within the range of event-scale §'*0,, values reported
for Pinnacles National Park, ~145 km southeast of WMC, between 2001 and 2005 (—2.3 to —14.7%o, average of
—6.8%0)"°. Drip water §'0 values also showed minimal variations between drip sites on a given day (—0.22 to
—0.44%o) and showed the same direction of change at each site between each sampling interval.

Speleothem 6'30 may be influenced by non-equilibrium isotope fractionation that can occur due to rapid
degassing and calcite precipitation'’. There is only a moderate positive correlation between §*0 and 6"*C down
the growth axis of WMCI1 (r=0.37, p < 0.001), lending evidence that these two proxies are not predominantly
controlled by kinetic effects during calcite precipitation'®. Using the fractionation relationship of ref. 19 that is
calibrated for cave environments, and the average annual temperature in Santa Cruz (14.8°C), we calculate a 6'30
of —4.3%o (VPDB) for calcite precipitated in equilibrium with average modern drip water, and a range of —2.1 to
—4.9%0 (VPDB) for calcite precipitated in equilibrium with the range of measured monthly average rainfall §'*0,.
Although present slow growth rates prohibit analysis of modern calcite, this range is similar to that of measured
WMC1 6*80 for the Holocene (—1.92 to —3.83%0 VPDB), and suggests WMC1 faithfully records drip water iso-
tope values along its growth axis. The overall low range of variability in the WMC1 6'30 record (~1.6%o) is also
consistent with other Holocene speleothem records from the U.S. west coast®* 2. Given these findings, we believe
that the §'*0 of WMCI reflects local rainwater §'*0 (6'%0,).

Although speleothem studies tend to rely heavily on records of §'*0 variability, the subdued nature of vari-
ations in WMCI during the 8.2 ka event likely reflects regional complexities in the controls on §'*0,, that have
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only recently been appreciated. Previous speleothem and cave drip water studies from Oregon®*2? and central
California®*?* (Fig. 1) attributed water and speleothem 630 variability to changes in local atmospheric temper-
ature at the time of precipitation and moisture sources. Observations of modern event-scale §'*0,, at sites along
the US west coast, including central California'®?>2° (Fig. 1) suggest that seasonal and interannual variability in
6'%0, is due to varying proportions of moisture from subtropical (higher 6'*0,) versus mid-latitude and north
Pacific-derived (lower 61801,) sources. In contrast, recent isotope-enabled modeling of seasonal and interannual
variability in §'30, suggests that, although temperature and moisture sources are important elsewhere in the
western US, variations in droplet condensation height are the dominant control on 6'*0, throughout most of
California®®?’.

We analyzed monthly averaged rainwater samples from Santa Cruz for the winter of 2015-2016 and likewise
found no significant relationship between §'*0, and temperature or precipitation amount (Table S3). With this
small sample size, we were not able to discern the influence of moisture source on Santa Cruz 51801,, as March
2016, which experienced two large subtropical atmospheric river events, had the lowest value for 6'*0,, (Fig. S5).
Thus, it is possible that the isotopic source signal at this site is overprinted by vapor condensation processes, as is
suggested by isotope enabled models®>?’. The shifts to lower speleothem ¢'30 during the 8.2ka event, therefore,
might reflect periods when more northerly-sourced moisture reached the cave site. However, the effects of source
changes on 6'0, may be complicated by changes in droplet condensation height. For example, increased conden-
sation heights, which would drive decreased 5‘80P values, may occur in response to a more intense storm track
that drives upper level divergence”. Thus, due to the complexity of the controls on §'*0,, we posit that WMC1
d13C values and trace element concentrations provide a more informative assessment of local climate response to
the 8.2ka event at this site.

Cave monitoring studies and speleothem records from similar semi-arid, mountainous regions in western
North America including coastal Oregon®, the Sierra Nevada foothills?, and the Great Basin®® suggest that car-
bon isotope signatures in cave drip waters and speleothems reflect changes in water supply via their influence on
soil processes and degassing in the epikarst and within the cave itself. The §°Cp;¢ (DIC = dissolved inorganic car-
bon) of modern cave drip water was analyzed at three sites in WMC in December 2015 and March 2016. Values
ranged from —2.73 to —7.23%o0 (VPDB), and were 1 to 4%o lower in March than in December with decreases
occurring at all sample sites (Table S2). This direction of change is consistent with drip water §1°Cp¢ in the
Sierra Nevada which displays decreasing values from early winter through early summer when water supply is
adequate to high and soil respiration is increasing®. The shifts in early Holocene WMC1 6*C are likely too rapid
to have arisen through changing proportions of C; and C, plants above the cave or through long-term changes in
atmospheric pCO,?. In addition, with a mean annual precipitation of 800 mm, WMC presently falls outside the
range where soil respiration rate is likely to be sensitive to changes in moisture. Thus, we interpret the WMC1
813C record to reflect changes in water supply leading to variable degassing of CO, and prior calcite precipitation
(PCP) in the epikarst and cave, where preferential degassing of 1>)CO, leads to higher residual §'*Cp ¢ values.
We suggest that the 8.2ka event at WMC was characterized by highly variable water supply, punctuated by large
increases in infiltration that lead to sharply decreasing speleothem 8'*C values in the core of the 8.2 event.

Trace element time series support the interpretation that climatic conditions were highly variable during
the 8.2ka event (Fig. 3). A principal components analysis (PCA) of the trace element concentrations in WMCl1
reveals a first component (PC1) controlled by variations in the ratios of primarily soil-derived elements P, Zn,
and Y to Ca, while a second component (PC2) is controlled by variations in the ratios of primarily host-rock
derived elements Mg, Sr, and Ba to Ca (Fig. 4). The opposing relationship between Mg/Ca and Sr/Ca and Ba/Ca
along PC2, as well as the negative correlation between Mg/Ca and these elements (see also Fig. S6) suggests that
variations in Mg/Ca primarily reflect changes in dissolution of dolomite or other Mg-rich phases from the host
rock rather than PCP. White Moon Cave is developed in the San Vicente Creek marble deposit which is part of the
metamorphosed Sur Series and is locally interbedded and bounded by schist. These rocks were intruded by quartz
diorite, and are overlain by a series of Miocene sandstones and shales. Within the carbonate, some Mg is locally
present in silicates and dolomite, especially at the northern end of the San Vicente deposit near the cave®. On
average, marbles of the Sur Series contain ~ 3.5wt. % MgO, but this can be as high as 9wt. %> Slower weathering
of calcite than dolomite has been documented experimentally®? and in karst systems in the field**. Drip water
will tend to reach supersaturation with respect to calcite before dolomite®*, and slower flow rates can increase the
amount of dolomite dissolved and thus the amount of Mg in solution® *¢. This may be accompanied by a decrease
in Sr in solution as dolomite typically contains less Sr than calcite>*.

This interpretation is consistent with the behavior of Mg/Ca, Sr/Ca, and Ba/Ca, as variations in the propor-
tion of dolomite versus calcite dissolution due to changes in water residence time should lead to such opposing
trends in speleothem Mg/Ca with Sr/Ca and Ba/Ca®. Variable dissolution of limestone and dolomite marble has
also been interpreted as an important control on speleothem Mg/Ca in caves within the Sierra Nevada foothills
in California where speleothem Mg/Ca and Sr/Ca show negative correlations®*?*’, similar to what is noted in
WMCI1. Furthermore, the elongated columnar crystal fabric observed throughout WMC1 is common in spe-
leothems precipitating from seepage waters that have interacted with dolomite or other Mg-rich rocks'"'2. The
overall lower Mg/Ca during the core of the 8.2 ka event (Fig. 3) suggests decreased dolomite dissolution, consist-
ent with a wetter climate. PC1 is controlled by variations in P/Ca that co-occur with changes in Zn/Ca and Y/
Ca. These elements are associated with soil-derived organics in drip water, likely from decaying plants in the soil
zone above the cave®. Additionally, high fluxes of metals including Zn and Y in drip waters have been associated
with short-lived pulses of infiltration that also transport particulate organic matter®. Thus, we interpret the sharp
increases in P/Ca present in the WMCI record during the 8.2 ka event as reflecting periods of rapid infiltration
from the soil zone above WMC. Periods of increased P/Ca coeval with negative shifts in §'*C and decreased Mg/
Ca therefore point to intervals of increased soil inputs and decreased host rock dissolution and prior calcite pre-
cipitation, consistent with periods of increased water supply at the height of the 8.2ka event (Fig. 3)3> 3840,
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Figure 4. Principle components analysis of trace element variations in WMC1 showing PC1 and PC2. Results
were log-transformed prior to analysis to account for non-normal distributions. 95% confidence ellipses are
shown for the points that are older, younger, and coeval with the 8.2ka event (~8250-8100 cal yr. BP). For
simplicity, only points coeval with the 8.2 ka event are shown.

Discussion and Conclusions

Our new record of the climatic response to the 8.2ka event along the west coast of North America near 37° N
latitude shows shifts in several climate proxies that suggest this event was characterized by high but variable
infiltration, suggesting an overall wet climate punctuated by larger infiltration events. Shifts in the WMCI proxy
records occur that are closely contemporaneous with other records of the 8.2ka event. For example, a negative
shift in WMC1 §3C that precedes the 8.2ka event, near 8320 cal yr BP, is coeval within uncertainties of a nega-
tive 6'80 excursion in the speleothem record from Kaite Cave in Spain that has been interpreted to record the
first pulse of meltwater from proglacial Lake Agassiz between 8350 and 8340 cal yr BP*' (Fig. 2). Excursions in
6180 values in speleothems from monsoon regions of the northern and southern hemispheres reveal an abrupt
weakening of the Asian monsoon and strengthening of the South American monsoon at ca. 8250-8200 cal yrs
BP, when WMC1 Mg/Ca indicates sustained wetter conditions (Fig. 3). Within the core 8.2ka event, decreases in
WMCI1 Mg/Ca are matched by increases in P/Ca. The two-step decrease in Mg/Ca in the WMCI record within
the 8.2ka event period bears similarities to the variability noted in Greenland ice core records” and the high reso-
lution Heshang Cave 6'80 record of ref. 42 (Fig. 3), suggesting similar timing of responses of East Asian monsoon
strength and precipitation on the west coast of North America during this climatic event.

We interpret the WMCI record to indicate that the 8.2ka event was expressed on the California coast by
increased effective moisture. The high amplitude variability in the WMC §'*C record is most prominent between
~8190 and 8110, synchronous with the central period of Asian monsoon weakening and drying noted in the
Heshang Cave record. The coupled WMC1 §'*C and P/Ca records indicate episodic intervals of rapid infiltration,
consistent with more frequent or intense storms on the central California coast during the core of the 8.2ka event.
However, the changes during the 8.2ka event in some WMC proxies, such as Mg/Ca, are small in amplitude com-
pared to the overall variability in the WMCI records and that in other global records of the event (Fig. 2). This
suggests that, although the influence of the 8.2ka event was felt on the west coast of North America, the event
was not as pronounced there as it was in the high northern latitudes or monsoon-influenced areas. Furthermore,
although the WMCI record may reflect intervals of increased North Pacific sourced vapor to the region, our
record is consistent with recent findings that precipitation 6'%0 in this region is subject to complex controls that
are challenging to disentangle in coastal areas where the amplitude of $'*0 changes is small?’.

Transient climate model simulations suggest that the intensity of the winter storm track over the eastern
Pacific was sensitive to changes in meltwater flux to the North Atlantic during the last deglaciation®’. Meltwater
pulses can lead to a more intense and wetter storm track through alteration of the meridional temperature gra-
dient over the Pacific. Although most models do not show a significant change in precipitation in western North
America in response to hosing experiments*#, others have suggested precipitation increases along the central
California coast in response to freshwater hosing*. Our results are consistent with increased precipitation at the
height of the 8.2ka event, which was likely triggered by draining of lakes Agassiz and Ojibway®. Thus, we suggest
that this freshwater pulse led to an intensification of the eastern Pacific winter storm track that resulted in periods
of intensified rainfall on the central California coast. However, the influence of this intensified storm track on
rainfall further inland remains to be documented.

Comparison of the WMC1 record with records of Greenland temperature and Asian monsoon strength sug-
gest that near-synchronous changes in atmospheric circulation occurred across the Pacific in response to these
freshwater inputs and the resulting cooling in the North Atlantic region. Significant correlations between spe-
leothem records of Asian monsoon variability, Greenland ice core records, and speleothem 6'#0 records from
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western North America suggest strong teleconnections between these regions during the last deglaciation®'. High
latitude cooling, possibly associated with increased sea ice extent*, could influence monsoon systems in both
hemispheres and precipitation in western North America via a southward shift in the ITCZ and strengthening of
the northern Hadley cell and the winter northern subtropical jet*”. The WMCI record of the 8.2ka event indicates
that the relationship between high latitude cooling, decreased Asian monsoon strength, and increased precipita-
tion in western North America persisted into the early Holocene.

Methods

U-series Chronology. Eleven subsamples for 2°Th/U dating were collected from WMCI. U-series samples
were dissolved in 7N HNOj; and equilibrated with a mixed spike containing ?**Th, 2**U, and %*°U. Separation of
U and Th was completed with a two-stage HNO,-HCI cation exchange procedure, followed by treatment with
a mixture of HNO; and HCIO, to remove any residual organic material. U and Th fractions were analyzed on a
Thermo Neptune Plus Multi-collector ICP-MS. Measured peak heights were corrected for peak tailing, multi-
plier dark noise/Faraday baselines, instrumental backgrounds, ion counter yields, mass fractionation, interfering
spike isotopes, and procedural blanks. Mass fractionation was determined using the gravimetrically determined
231J/%6U ratio of the spike. Activity ratios and ages were calculated using the half-lives of ref. 48 for 28U, ref. 49
for *2Th, and ref. 50 for 2*°Th and **U.

Three samples, AC-U2, AC-U3, and AC-U4, have high ***Th concentrations and unfavorable »*Th/*8U
ratios (***Th/*®U > 0.001); thus, they are deemed unsuitable for precise, accurate U-Th dating. Nonetheless,
they can be used to estimate the appropriate detritus correction®'. To examine the effect of detritus composi-
tion on calculated ages, corrections for detrital U and Th were made assuming detritus with activity ratios of
either (3Th/2¥U) = 1.21 £ 0.6, (**Th/2¥U) = 1.0 £ 0.1, and (3**U/?¥U) = 1.0 £ 0.1; or (*2Th/>*U) =0.67 £ 0.34,
(®°Th/?*¥U) =1.040.1, and (***U/*8U) = 1.0 £ 0.1 (see Table S1). Applying the latter values brings the calculated
ages of the three detritus-rich samples (AC-U2, AC-U3, and AC-U4) into agreement within uncertainties with
the age model defined by the relatively pure calcite samples (see Figure S4). This suggests that a detritus correction
with (3?Th/?*8U) = 0.67 +0.34 is appropriate for WMC1 and we therefore adopt it as our preferred value for all
samples. We note that the dates of the pure samples are not sensitive to the choice of detritus correction, and vary
only within their uncertainties regardless of which detritus correction is applied (Table S1). The age-depth model
was generated using the Stal Age algorithm!®.

Speleothem proxy record construction. Samples for stable isotope analysis (6'*0 and §'*C) were milled
along the growth axis from one face of the quartered stalagmite using a CM-2 micromill or a handheld dental
drill, at ~1 mm spatial resolution for the early Holocene portion of the stalagmite. Further sampling at 200 pm
spatial resolution, yielding sub- to multi-annual temporal resolution, was conducted across the portion of the
stalagmite that grew during the 8.2 ka event. Stable isotope samples were packed in weigh paper envelopes, and
sent to the Stable Isotope Biogeochemistry Lab at Stanford University. There, the samples were analyzed using
a Thermo Finnigan Deltaplus XL coupled to a GasBench. Typical precision of stable isotope measurements is
<0.2%o for both oxygen and carbon. Final §"°C and 6'30 values are expressed relative to the international stand-
ard V-PDB (Vienna PeeDee Belemnite).

Trace element concentrations were analyzed on thick sections across this same portion of the stalagmite by laser
ablation ICP-MS a Photon Machines Excimer laser coupled to a Thermo Finnigan iCapQ at Vanderbilt University.
Analyses were conducted as either line scans or lines of individual spots. The lines of spots, conducted through the
8.2ka event interval, from ~8050-8255 calendar years BP, were done using 25 x 150 um rectangular slit at 20 um spac-
ing using 15% laser power and a repetition rate of 10 Hz. The line scans were conducted using a rectangular 20 x 100pum
rectangular slit at a scan speed of 5pum/s at 20% laser power and a repetition rate of 15Hz. The line scans followed a
pre-ablations step that was conducted over the sample path at a speed of 10pum/s at 50% laser power and a repetition
rate of 15Hz. The multi-element synthetic glass standard, NIST SRM 612 and the MACS3 synthetic pressed aragonite
powder were analyzed at the beginning and end of each run. The NIST SRM 612 glass standard was used for elemental
quantification. The data was processed using the Iolite software package. Gaps in the WMCI trace element record
result from mm-scale portions of the growth axis that were lost during cutting of billets for thin sections. Principal
components analysis was conducted on log-transformed trace element data using the FactoMineR package in R,

Water analysis. Drip water samples were collected at three locations within White Moon Cave in March and
December of 2015 and March of 2016. Water samples for O and H isotope analysis were collected in acid-cleaned
20 ml LDPE vials and capped with minimal headspace to reduce the potential for evaporative bias. Water samples
for carbon isotope analysis of DIC were filtered through 0.2 micron sterile filters and injected in the field into He
flushed Labco vials containing phosphoric acid. Water samples were kept refrigerated until analysis.

Integrated monthly precipitation samples were collected at the Long Marine Laboratory in Santa Cruz, CA
following the methods of ref. 53. One-liter Nalgene containers were pre-filled with a 1-cm thick layer of mineral
oil to eliminate the potential for evaporation after precipitation events and covered with a metal mesh filter to
minimize debris entering the sample container. Each month, collectors were sealed, replaced and transported
upright to the Santa Clara University Stable Isotope Laboratory for processing. Water samples were extracted
from beneath the oil layer with a syringe and passed through multiple paper filters to eliminate oil contamination
of the water sample. The stable isotope composition of drip and meteoric water samples was determined using
off-axis integrated cavity output spectroscopy with a Los Gatos Research TWIA-45EP water isotope analyzer. Each
measurement consisted of five preparatory injections to minimize memory effects and five measured injections.
Samples were measured in at least triplicate and corrected using internal and external (USGS) reference water
standards. 6'30 and 6*H values are reported relative to Vienna Standard Mean Ocean Water (VSMOW). Replicate
analyses demonstrated the typical precision of this technique to be <0.2%o for 60 and <1%o for °H (10).
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Water samples were analyzed for §°C at the UC Davis Stable Isotope Facility using a Thermo Finnigan Delta V
Plus IRMS. Evolved CO, was purged from the Labco vials through a double-needle sampler into a helium carrier
stream (20 mL/min). The gas was sampled using a six-port rotary valve (Valco, Houston TX) with either a 100 uL,
50 uL, or 10 uL loop programmed to switch at the maximum CO, concentration in the helium carrier. The CO,
was passed to the IRMS through a Poroplot Q GC column (25m x 0.32mm ID, 45°C, 2.5mL/min). A reference
CO, peak was used to calculate provisional delta values of the sample CO, peak. Final §'*C values are obtained
after adjusting the provisional values for changes in linearity and instrumental drift such that correct §'*C values
for laboratory reference materials are obtained. At least two laboratory reference materials were analyzed with
every 10 samples. Laboratory reference materials are lithium carbonate dissolved in degassed deionized water and
a deep seawater (both calibrated against NIST 8545). Final §°C values are expressed relative to the international
standard V-PDB.

Data Availability Statement. Data from this study will be archived with the NOAA National Centers for
Environmental Information (www.ncdc.noaa.gov).
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