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ABSTRACT

This study presents new results on a method to solve large

kinematic synthesis systems termed Finite Root Generation. The

method reduces the number of startpoints used in homotopy con-

tinuation to find all the roots of a kinematic synthesis system. For

a single execution, many start systems are generated with cor-

responding startpoints using a random process such that start-

points only track to finite roots. Current methods are burdened

by computations of roots to infinity. New results include a char-

acterization of scaling for different problem sizes, a technique for

scaling down problems using cognate symmetries, and an appli-

cation for the design of a spined pinch gripper mechanism. We

show that the expected number of iterations to perform increases

approximately linearly with the quantity of finite roots for a given

synthesis problem. An implementation that effectively scales the

four-bar path synthesis problem by six using its cognate struc-

ture found 100% of roots in an average of 16,546 iterations over

ten executions. This marks a roughly six-fold improvement over

the basic implementation of the algorithm.

INTRODUCTION

The kinematic synthesis of (fairly simple) linkages often

leads to polynomial systems that cannot be completely solved

by today’s methods. A common approach to avoid this problem

is to reformulate equations in order to find some best linkage so-

lution. Instead, direct solution of these equations can unveil a
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diversity of designs otherwise not found. These solutions can be

used to construct an atlas useful for exploring the space of design

possibilities [1].

The state of the art technique for solving large polynomial

systems is homotopy continuation. In this technique, a start sys-

tem is continuously deformed to a target system. The roots of the

start system (called startpoints) are already known or easily ob-

tained, and are tracked across the homotopy to roots of the target

system (endpoints). The use of continuation in kinematic syn-

thesis was first performed by Roth and Freudenstein in 1963 [2].

During the next two decades, mathematicians matured this tech-

nique to construct homotopies with the same number of start-

points as the total degree [3], tracking in complex space to avoid

path variable turning points [4], and tracking in projective space

to compute roots at infinity and shorten paths [5]. From that

point, improvements focused on limiting the number of paths to

track while still finding all finite roots of polynomials by taking

advantage of monomial structures [6–8]. More recently, Hauen-

stein et al. [9] developed a method that automatically simplifies

equation structure.

It is often the case with kinematic polynomial systems of

high degree that the very large majority of homotopy paths track

to roots at infinity, which have no engineering relevance. To pre-

clude this computational burden, we proposed the Finite Root

Generation (FRG) method in [10]. FRG constructs homotopy

startpoints in a manner such that all paths track to finite roots. As

a trade-off, this opens up the possibility that a nonsingular root

might be tracked more than once. Due to this, the calculation of
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the number of paths required to solve a certain problem becomes

probabilistic.

This work presents new results on FRG. In particular, the

effect of scaling FRG for problems of different quantities of fi-

nite roots is characterized. This characterization suggests linear

scaling for large quantities of roots, which is the case for the syn-

thesis systems of interest. By focusing FRG on the collection of

cognate sets rather than independent roots, a six-fold reduction

of the four-bar path synthesis problem is achieved. As expected,

the number of FRG iterations required to solve these equations

decreased by roughly six as well, finding all roots in 16,546 FRG

iterations on average over ten executions. If diminishing returns

are avoided near the end of the algorithm, this technique finds

94.77% of roots on average in 4312 iterations. The results of

FRG are applied to the kinematic synthesis of spined pinch grip-

per.

FINITE ROOT GENERATION

FRG was first introduced in [10]. The method uses polyno-

mial homotopy continuation to find the roots of kinematic syn-

thesis systems. FRG differs from the usual homotopy approach

in that instead of constructing all the roots of a single start sys-

tem, FRG constructs multiple start systems each with one root.

The advantage being that these roots are constructed so that they

track to finite roots of the target system, avoiding the burden of

tracking a large number of roots at infinity. Although computa-

tions to infinity are easily handled by homogenizing equations

to track paths in a projective space, these roots often comprise

the far majority of computation. For the four-bar path synthe-

sis problem, 97% of multihomogenenous homotopy paths are

shown to track to infinity. Large numbers of infinite roots are

usually due to a degeneration in the monomial structure from

start system to target system, which is often the only option in

multihomogeneous homotopy.

FRG homotopy paths are constructed by first generating a

random mechanism of the desired topology to be synthesized. In

kinematic synthesis, each root of a polynomial system represents

a mechanism, and the system itself encodes a set of motion re-

quirements. The randomly generated mechanism is a startpoint,

and to construct a start system the motion of this mechanism is

analyzed and encoded into a set of polynomials. This produces

a single startpoint of a single start system with the important

trait that its monomial structure matches that of the target sys-

tem. Thus homotopy paths do not experience a degeneration and

infinite paths are avoided. This is the major advantage of FRG.

Since the startpoint/start system construction process is ran-

dom, this opens up the possibility that multiple FRG iterations

might track to the same endpoint. The kinematic systems of in-

terest have thousands of roots (or perhaps more) so that begin-

ning FRG iterations have a low likelihood of repeating an end-

point. FRG applies to square systems with a finite number of

finite roots, so that as more unique roots are found the likelihood

of finding another unique root decreases.

This leads to a situation of diminishing returns which is well

modelled by the coupon collector problem from probability the-

ory [11, p. 369]. That is, each FRG iteration can be termed a

trial in which we pull a single sample randomly from a pool of

unique roots with replacement. Assuming equal probability of

happening upon any one root, to find n unique roots from a pool

of N, the expected number of trials Tn is

Tn =
n

∑
k=1

N

N − (k−1)
. (1)

with a variance of

Var(Tn) =
n

∑
k=1

N(k−1)

(N − (k−1))2
. (2)

Scaling

By rearranging the summation of Eqn. (1), it can be written

as the difference of harmonic numbers,

Tn = N

(

(

N

∑
k=1

1

k

)

−

(

N−n

∑
k=1

1

k

)

)

,

Tn

N
= HN −HN−n. (3)

It is useful to obtain bounds on Eqn. (3). In [12], Young shows

the inequality,

1

2(N +1)
< HN − lnN − γ <

1

2N
(4)

where γ is the Euler-Mascheroni constant. Applying Eqn. (4) to

(3) obtains

ln

(

N

N −n

)

−
n

2(N +1)(N −n+1)

<
Tn

N
< ln

(

N

N −n

)

−
n

2N(N −n)
. (5)

At this point it is useful to introduce the normalization substitu-

tions

t̂ =
Tn

N
, n̂ =

n

N
, (6)
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[10]. The synthesis system includes eight polynomials in the

unknowns {A,B,C,D, Ā, B̄,C̄, D̄} which are the isotropic coordi-

nates [15] of four-bar pivots. Our usage of the overbar notation

refers to complex conjugation in the case when isotropic coor-

dinates define a two dimensional point. But for much of the so-

lution process this is not the case, therefore barred and unbarred

variables are treated as independent.

The motion requirement is for the four-bar to trace through

task points (Pj, P̄j), j = 0, . . . ,8. The synthesis equations can be

written compactly by first defining intermediate variables

a = P0 −C, b j = A−Pj, f =C−A,

c = P0 −D, d j = B−Pj, g = D−B,

a =
{

a(gḡ− cc̄), c( f f̄ −aā), a, c
}T

, c = {ac̄, āc}T
,

b j =
{

b j, −d j, −b jd jd̄ j, b jb̄ jd j

}T
, d j =

{

b jd̄ j, −b̄ jd j

}T

(14)

where overbar variables are defined symmetrically to those with-

out. The synthesis equations are then

a
T

b̄ jb
T
j ā− c

T
d̄ jd

T
j c̄ = 0, j = 1, . . . ,8, (15)

These equations have been shown to have 8652 roots [16]. Link-

age cognate theory explains how for every four-bar that traces a

certain coupler curve, there are two other four-bar linkages that

trace that same curve [17]. Following this, for every solution to

Eqn. (15), there can be generated two other solutions such that

the set of three are

s1 =
{

A,B,C,D, Ā, B̄,C̄, D̄
}

,

s2 =
{

A,B′
,C′

,D′
, Ā, B̄′

,C̄′
, D̄′
}

,

s3 =
{

B′
,B,C′′

,D′′
, B̄′

, B̄,C̄′′
, D̄′′
}

, (16)

where

B′ =
(A−C)(D−P0)− (B−D)(C−P0)

D−C
+P0,

C′ = A−C+P0, D′ =

(

A−C

D−C

)

(D−P0)+P0,

C′′ =

(

B−D

C−D

)

(C−P0)+P0, D′′ = B−D+P0. (17)

with overbar variables defined symmetrically again. Further-

more, another symmetry in Eqn. (15) requires that solutions exist

in pairs,

s =
{

A,B,C,D, Ā, B̄,C̄, D̄
}

ssym =
{

B,A,D,C, B̄, Ā, D̄,C̄
}

(18)

TABLE 1. Quantity of roots found for each FRG run and how those

roots organize into cognate sets.

Qty. of in/complete

cognate sets of size

Roots

found

Cognate

sets found

Run 6 5 4 3 2 1 Qty.
Last

on trial
Qty.

Last

on trial

1 1441 1 0 0 0 0 8651 87549 1442 12026

2 1440 1 1 0 0 0 8649 97537 1442 12206

3 1438 2 1 1 0 0 8645 83169 1442 9485

4 1436 3 0 2 1 0 8639 97900 1442 14057

5 1438 1 3 0 0 0 8645 95088 1442 11780

6 1438 3 1 0 0 0 8647 67728 1442 13291

7 1435 3 2 2 0 0 8639 96957 1442 14389

8 1434 5 2 1 0 0 8640 93242 1442 52937

9 1436 4 2 0 0 0 8644 92540 1442 14662

10 1436 4 1 1 0 0 8643 88945 1442 10625

Together Eqns. (16)–(18) stipulate that every solution to (15) is a

member of a set of six from which the whole set can be generated

from any single member. The root set of Eqn. (15) consists of

1442 symmetric cognate sets.

The FRG algorithm was executed for five versions of Eqn.

(15) two times each for a total of ten FRG runs. Each run per-

formed 100,000 iterations. Each version of (15) was defined by a

set of randomly generated target parameters Pj, P̄j, j = 0, . . . ,8,

printed in the Appendix.

FRG startpoints were generated in the same manner as de-

scribed in [10]. Homotopy paths were tracked using the BERTINI

[18] path tracking software. If a homotopy path experienced a

failure, usually from reaching a minimum step size, these trials

were not included in the proceeding analysis. Path tracking fail-

ures occurred in 5.1% of paths.

RESULTS

Of the ten FRG runs conducted in this study, none found all

8652 roots independently. However, all runs found at least one

member of each of the 1442 cognate sets that comprise the full

solution set. Since all roots of a cognate set are readily generated

from a single member, the problem is effectively transformed to

collecting 1442 coupons. These results are shown in Table 1.

Using this cognate collecting strategy, FRG found 100% of roots

in 16,546 trials on average. From Eqns. (1) and (2), FRG was

expected to complete this calculation in 11,322 trials with a stan-

dard deviation of 1846 trials. The fastest FRG run beat this ex-

pectation by 1837 trials while the slowest run underperformed by
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Appendix: Target Parameters

TABLE 3. Parameters used to define the target systems in this study.

Target Parameters 1 Target Parameters 2 Target Parameters 3

P0 0.776874−0.642684i 0.445812−0.860398i −0.379870+0.803287i

P1 0.549479+0.418241i −0.151041+0.521027i 0.921351+0.483121i

P2 −0.261986−0.403618i −0.897116+0.185952i −0.831159+0.059860i

P3 0.767234−0.378801i 0.511317−0.028132i 0.477860+0.626925i

P4 −0.068090+0.919907i −0.639865−0.306563i −0.334216−0.224893i

P5 0.055654+0.675009i −0.998164+0.275757i −0.172764−0.461834i

P6 −0.134960−0.424099i 0.307952−0.580697i −0.567299+0.718201i

P7 −0.239858+0.041043i −0.204723−0.681984i 0.798680+0.008829i

P8 0.635501−0.474101i −0.545189−0.224840i −0.818067−0.509198i

P̄0 0.873111+0.292468i −0.706916−0.481828i 0.114622+0.381387i

P̄1 0.689034−0.944901i −0.253584+0.187983i −0.557820+0.159911i

P̄2 0.854109−0.482044i 0.259632−0.036125i 0.522259+0.748322i

P̄3 −0.268805−0.865098i −0.222836+0.103006i −0.989851−0.175180i

P̄4 −0.263339−0.451987i 0.992221+0.249885i −0.815471−0.222604i

P̄5 −0.221326+0.775947i −0.726627−0.731216i −0.577187−0.246342i

P̄6 0.165736+0.319065i 0.937814+0.561564i −0.810094−0.623226i

P̄7 0.248468+0.077381i 0.713889+0.886674i −0.932418+0.479788i

P̄8 0.342355−0.501518i 0.995395−0.173441i −0.053098−0.389105i

Target Parameters 4 Target Parameters 5

P0 0.766574−0.303366i −0.603732−0.726926i

P1 −0.169761−0.094169i −0.474312−0.227178i

P2 0.803894+0.702355i −0.593796+0.947155i

P3 0.190963−0.211693i −0.580044−0.085847i

P4 −0.756797−0.761911i 0.477049−0.048159i

P5 0.252935−0.738818i 0.604987−0.205613i

P6 −0.004816−0.564282i 0.472113−0.646370i

P7 0.090282−0.769713i 0.817195−0.159517i

P8 −0.919597+0.539628i −0.468734−0.774642i

P̄0 0.043183+0.183683i 0.495074+0.091227i

P̄1 0.419272+0.516355i −0.089742−0.642176i

P̄2 0.572342+0.485196i −0.098454−0.458862i

P̄3 0.570356−0.741328i −0.305446+0.932913i

P̄4 0.485626+0.709176i −0.047797−0.320071i

P̄5 0.320779−0.848190i 0.337652+0.973372i

P̄6 0.951927+0.164502i −0.589576−0.380130i

P̄7 −0.175106+0.237662i −0.364004+0.843730i

P̄8 0.308168−0.769707i 0.867954+0.810325i

8 Copyright c© 2017 by ASME


