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ABSTRACT

This study presents new results on a method to solve large
kinematic synthesis systems termed Finite Root Generation. The
method reduces the number of startpoints used in homotopy con-
tinuation to find all the roots of a kinematic synthesis system. For
a single execution, many start systems are generated with cor-
responding startpoints using a random process such that start-
points only track to finite roots. Current methods are burdened
by computations of roots to infinity. New results include a char-
acterization of scaling for different problem sizes, a technique for
scaling down problems using cognate symmetries, and an appli-
cation for the design of a spined pinch gripper mechanism. We
show that the expected number of iterations to perform increases
approximately linearly with the quantity of finite roots for a given
synthesis problem. An implementation that effectively scales the
four-bar path synthesis problem by six using its cognate struc-
ture found 100% of roots in an average of 16,546 iterations over
ten executions. This marks a roughly six-fold improvement over
the basic implementation of the algorithm.

INTRODUCTION

The kinematic synthesis of (fairly simple) linkages often
leads to polynomial systems that cannot be completely solved
by today’s methods. A common approach to avoid this problem
is to reformulate equations in order to find some best linkage so-
lution. Instead, direct solution of these equations can unveil a
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diversity of designs otherwise not found. These solutions can be
used to construct an atlas useful for exploring the space of design
possibilities [1].

The state of the art technique for solving large polynomial
systems is homotopy continuation. In this technique, a start sys-
tem is continuously deformed to a target system. The roots of the
start system (called startpoints) are already known or easily ob-
tained, and are tracked across the homotopy to roots of the target
system (endpoints). The use of continuation in kinematic syn-
thesis was first performed by Roth and Freudenstein in 1963 [2].
During the next two decades, mathematicians matured this tech-
nique to construct homotopies with the same number of start-
points as the total degree [3], tracking in complex space to avoid
path variable turning points [4], and tracking in projective space
to compute roots at infinity and shorten paths [5]. From that
point, improvements focused on limiting the number of paths to
track while still finding all finite roots of polynomials by taking
advantage of monomial structures [6—8]. More recently, Hauen-
stein et al. [9] developed a method that automatically simplifies
equation structure.

It is often the case with kinematic polynomial systems of
high degree that the very large majority of homotopy paths track
to roots at infinity, which have no engineering relevance. To pre-
clude this computational burden, we proposed the Finite Root
Generation (FRG) method in [10]. FRG constructs homotopy
startpoints in a manner such that all paths track to finite roots. As
a trade-off, this opens up the possibility that a nonsingular root
might be tracked more than once. Due to this, the calculation of
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the number of paths required to solve a certain problem becomes
probabilistic.

This work presents new results on FRG. In particular, the
effect of scaling FRG for problems of different quantities of fi-
nite roots is characterized. This characterization suggests linear
scaling for large quantities of roots, which is the case for the syn-
thesis systems of interest. By focusing FRG on the collection of
cognate sets rather than independent roots, a six-fold reduction
of the four-bar path synthesis problem is achieved. As expected,
the number of FRG iterations required to solve these equations
decreased by roughly six as well, finding all roots in 16,546 FRG
iterations on average over ten executions. If diminishing returns
are avoided near the end of the algorithm, this technique finds
94.77% of roots on average in 4312 iterations. The results of
FRG are applied to the kinematic synthesis of spined pinch grip-
per.

FINITE ROOT GENERATION

FRG was first introduced in [10]. The method uses polyno-
mial homotopy continuation to find the roots of kinematic syn-
thesis systems. FRG differs from the usual homotopy approach
in that instead of constructing all the roots of a single start sys-
tem, FRG constructs multiple start systems each with one root.
The advantage being that these roots are constructed so that they
track to finite roots of the target system, avoiding the burden of
tracking a large number of roots at infinity. Although computa-
tions to infinity are easily handled by homogenizing equations
to track paths in a projective space, these roots often comprise
the far majority of computation. For the four-bar path synthe-
sis problem, 97% of multihomogenenous homotopy paths are
shown to track to infinity. Large numbers of infinite roots are
usually due to a degeneration in the monomial structure from
start system to target system, which is often the only option in
multihomogeneous homotopy.

FRG homotopy paths are constructed by first generating a
random mechanism of the desired topology to be synthesized. In
kinematic synthesis, each root of a polynomial system represents
a mechanism, and the system itself encodes a set of motion re-
quirements. The randomly generated mechanism is a startpoint,
and to construct a start system the motion of this mechanism is
analyzed and encoded into a set of polynomials. This produces
a single startpoint of a single start system with the important
trait that its monomial structure matches that of the target sys-
tem. Thus homotopy paths do not experience a degeneration and
infinite paths are avoided. This is the major advantage of FRG.

Since the startpoint/start system construction process is ran-
dom, this opens up the possibility that multiple FRG iterations
might track to the same endpoint. The kinematic systems of in-
terest have thousands of roots (or perhaps more) so that begin-
ning FRG iterations have a low likelihood of repeating an end-
point. FRG applies to square systems with a finite number of

finite roots, so that as more unique roots are found the likelihood
of finding another unique root decreases.

This leads to a situation of diminishing returns which is well
modelled by the coupon collector problem from probability the-
ory [11, p. 369]. That is, each FRG iteration can be termed a
trial in which we pull a single sample randomly from a pool of
unique roots with replacement. Assuming equal probability of
happening upon any one root, to find n unique roots from a pool
of N, the expected number of trials 7}, is
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It is useful to obtain bounds on Eqn. (3). In [12], Young shows
the inequality,
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where 7 is the Euler-Mascheroni constant. Applying Eqn. (4) to
(3) obtains
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At this point it is useful to introduce the normalization substitu-
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where 7 is the expected number of trials as a percentage of the
total root count and 7 is the percentage of the total number of
roots. Eqn. (5) then takes the form
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The right hand side of (7) is equivalent to an approximation of
(3) derived from Euler’s asymptotic expansion of Hy, see [13].
The expansion of (3) is
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where By, denotes the 2k Bernoulli number. This formulation
suffers from the inability to evaluate the case of 7i = 1. To resolve
this, note that harmonic numbers are related to the digamma
function ¥(-) [14, Eqn. (1.12)], allowing (3) to be expressed
as

F=W(N+1)—¥(N(1—na)+1). )

Furthermore the digamma function is defined for non-integer ar-
guments. Eqn. (9) relates how many times # more trials than the
total number of roots N are expected in order to find 71 percentage
of roots. Fig. 1 illustrates that when 7 is held fixed, 7 tends to-
ward a finite value as N tends toward infinity. By taking the limit
of Eqn. (7) as N — oo, the asymptotes of Fig. 1 are computed as

f—ln< 1A>. (10)
1—n

In fact, since we are only concerned with cases of large N, Eqn.
(10) serves as an appropriate approximation of 7. This approx-
imation is advantageous because it is independent of N so that
it can be applied to estimations where the total root count is un-
known. Furthermore, Eqn. (10) describes an approximate linear
relationship between the total root count and the expected num-
ber of trials. To see this, substitute back in f = % For example,
the target system studied in this paper reveals a solution struc-
ture that effectively reduces the number of roots to collect by
six-fold. As a result, the expected number of trials to perform is
approximately six-fold less. Linear scaling should be a desirable

attribute for future applications.
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FIGURE 1. To obtain 7 percent of N roots, it is expected that 7 times
N trials be performed. As N increases, the trial multiplier 7 asymptoti-
cally approaches the lines defined in Eqn. (10).

Estimation

The quantities available for estimating the total root count N
during an FRG computation are the n number of roots collected
in-process and the 7;, number of trials performed to collect those
roots. Dividing the former by the latter defines the success ratio
a,

(1)

|

o0=———= (12)

The inverse of Eqn. (12) is

I~

n=oW <—$e )+1. (13)

where W () is the principle branch of the Lambert function. Eqn.
(13) provides an estimation of the percentage of roots obtained
from the current success ratio.

METHODS

In the proceeding sections, we characterize FRG by ap-
plying it several times to the four-bar path synthesis problem.
Formulation of the kinematics of this system can be found in
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[10]. The synthesis system includes eight polynomials in the
unknowns {A,B,C,D,A,B,C,D} which are the isotropic coordi-
nates [15] of four-bar pivots. Our usage of the overbar notation
refers to complex conjugation in the case when isotropic coor-
dinates define a two dimensional point. But for much of the so-
lution process this is not the case, therefore barred and unbarred
variables are treated as independent.

The motion requirement is for the four-bar to trace through
task points (P;,P;), j =0,...,8. The synthesis equations can be
written compactly by first defining intermediate variables

a:P()—C, bj:A—Pj,
C:P()—D, dj:B—Pj,
a={a(gg—cd), c(ff—aa), a, c}', ¢={az, ac}",

b = {bj, —d;, —b;d;d;, bibjd;}", d;={b;d;, —Bjdj(}lT4)

f:C_Aa
g:D_Bv

where overbar variables are defined symmetrically to those with-
out. The synthesis equations are then

a'bjbia—c'd;dlc=0, j=1,....8, (15)
These equations have been shown to have 8652 roots [16]. Link-
age cognate theory explains how for every four-bar that traces a
certain coupler curve, there are two other four-bar linkages that
trace that same curve [17]. Following this, for every solution to

Eqn. (15), there can be generated two other solutions such that
the set of three are

s1 = {A,B,C,D,A,B,C,D},
S2 = {A,B/,C/,D/,A_,B/,C/,D/},

$3 = {B/7B7C//aD//aB/aB7CNaDN}a (16)
where
A—C)(D—Py)—(B—D)(C—F)
-\ P
D_C + P,
A-C
C=A-C+P, D=——=)(D-PR)+P~
+ £, (D—C>( 0) + Fo,

o — (8P (C—Py)+P D'=B—D+P. (17
_ﬁ —0)+0, =B-D+FhR. 1A7)

with overbar variables defined symmetrically again. Further-

more, another symmetry in Eqn. (15) requires that solutions exist
in pairs,

(18)

TABLE 1. Quantity of roots found for each FRG run and how those
roots organize into cognate sets.

Qty. of in/complete Roots
cognate sets of size found

Cognate
sets found

Qt Last Qt Last

Run 6 5 4 3 2 . . .
on trial on trial

—_

1 1441 1 0 O O O 8651 87549 1442 12026
2 1440 1 1 0 0 O 8649 97537 1442 12206
3 1438 2 1 1 0 O 8645 83169 1442 9485

4 1436 3 0 2 1 0 8639 97900 1442 14057
5 1433 1 3 0 0 O 8645 95088 1442 11780
6 1438 3 1 0 0 O 8647 67728 1442 13291
7 1435 3 2 2 0 0 8639 96957 1442 14389
8 1434 5 2 1 0 0 8640 93242 1442 52937
9 1436 4 2 0 0 O 8644 92540 1442 14662
10 1436 4 1 1 0 O 8643 88945 1442 10625

Together Eqns. (16)—(18) stipulate that every solution to (15) is a
member of a set of six from which the whole set can be generated
from any single member. The root set of Eqn. (15) consists of
1442 symmetric cognate sets.

The FRG algorithm was executed for five versions of Eqn.
(15) two times each for a total of ten FRG runs. Each run per-
formed 100,000 iterations. Each version of (15) was defined by a
set of randomly generated target parameters P;, P;, j =0,...,8,
printed in the Appendix.

FRG startpoints were generated in the same manner as de-
scribed in [10]. Homotopy paths were tracked using the BERTINT
[18] path tracking software. If a homotopy path experienced a
failure, usually from reaching a minimum step size, these trials
were not included in the proceeding analysis. Path tracking fail-
ures occurred in 5.1% of paths.

RESULTS

Of the ten FRG runs conducted in this study, none found all
8652 roots independently. However, all runs found at least one
member of each of the 1442 cognate sets that comprise the full
solution set. Since all roots of a cognate set are readily generated
from a single member, the problem is effectively transformed to
collecting 1442 coupons. These results are shown in Table 1.
Using this cognate collecting strategy, FRG found 100% of roots
in 16,546 trials on average. From Eqns. (1) and (2), FRG was
expected to complete this calculation in 11,322 trials with a stan-
dard deviation of 1846 trials. The fastest FRG run beat this ex-
pectation by 1837 trials while the slowest run underperformed by
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TABLE 2. The expected, actual, and estimated percentage 7 of roots found for collecting 8652 independent roots or 1442 cognate sets. Results are
displayed across all FRG runs at the points when 95% and 100% of roots were expected to be obtained. As well, estimates of the total quantity of roots

N are displayed.
Tracking 8562 roots Tracking 1442 cognate sets
At trial 25922 At trial 83430 At trial 4312 At trial 11322
Expected /i = 95% Expected /i = 100% Expected /i = 95% Expected /i = 100%
Run Act.ii Est./i Est. N Act. i Est.ii  Est. N Act. i Est.ii  Est. N Act.i Est.ii  Est. N
1 94.50 95.10 8598 99.95 99.99 8649 9431 95.10 1430 99.86  99.96 1441
2 94.64 95.07 8613 99.95 99.99 8649 9535 9490 1449 99.86  99.96 1441
3 95.10 9498 8663 99.92 99.99 8646 9542 9489 1450 100.00 99.96 1443
4 9558 94.89 8715 99.83 99.99 8638 9494 9498 1441 99.93 9996 1442
5 95.12 9498 8665 99.91 99.99 8645 95.08 94.95 1444 99.93 99.96 1442
6 9532 9494 8686 99.94 99.99 8648 94.11 95.13 1426 99.93  99.96 1442
7 94.64 95.07 8613 99.83 99.99 8638 94.45  95.07 1433 99.93 9996 1442
8 9489 95.02 8640 99.84 99.99 8639 94.66  95.03 1436 99.79 9996 1440
9 94.42  95.11 8589 99.90 99.99 8644 94.87 94.99 1440 99.93 9996 1442
10 9472 9505 8621 99.88 99.99 8643 94.52  95.06 1434 100.00 99.96 1443
Median magn. = 3.19 = 1000
S o Runs 1-10
40t é — Average
. 0 Tisaaen
.. 30 =
g - Median freq. = 23 é —
E 201 3‘:
S
1ol % -500
8
‘ i =E="é' . 5_1000
1 10 100 1000 Roots obtained, n
Magnitude
FIGURE 3. The difference between the actual and expected number

FIGURE 2. The frequency and magnitude of roots found in this study.
Roots are compiled from five target systems over 200,000 FRG itera-
tions each.

41,615 trials. This disparity in trials results from the high vari-
ance associated with finding the final few FRG roots. In actuality,
all ten trials performed similarly as shown in Table 2.

Besides a roughly six-fold reduction in the number of itera-
tions to perform, the cognate collecting implementation of FRG
increased the likelihood of happening upon the final few roots.
When collecting roots independently, there were between 1 and

of trials to obtain n roots. The shaded zone marks +1 standard deviation.

13 roots that FRG was unable to find. Of the five target systems
defined by parameters in the Appendix, there were 1, 6, 3, 6,
and 6 roots, respectively, that were not found after 200,000 iter-
ations. These roots are plotted in Fig. 2 with the rest of roots
against their magnitude and frequency of occurrence for all five
target systems. This plot indicates a difficulty with finding roots
of large magnitude.

As described in [10], FRG experiences acute diminishing
returns collecting the final roots of a system, so it may not al-
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ways make sense to invest this extra computational effort. For
example, it is expected that 95% of roots are collected at 25,922
trials when roots are collected independently. Table 2 shows this
is a very reasonable expectation. If cognate collecting is imple-
mented, the expectation goes down to 4312 trials, roughly half
the size of the original root set. On average, the difference be-
tween the actual and expected percentage of roots obtained was
0.37% at i = 95% of roots. As 7 increases, this tends error to
decrease as shown for the 7i = 100% cases in Table 2.

Table 2 also displays the in-process estimates of 77 computed
using the success ratio with Eqn. (13), which in turn estimates
the total size N of the root set. Estimates improved as FRG ad-
vanced for both independently collected roots and the cognate
collecting implementations.

The number of trials 7}, to obtain the n'! root are compared to
the expected number of trials in Fig. 3 by their difference plotted
alongside +1 standard deviation as computed from Eqn. (2). The
average of the ten runs indicates that FRG tends to require more
trials than expected. The calculation of the expected number of
trials (1) and variance (2) are based on the assumption that all
roots are equally probable to appear at any trial. Conducting
Pearson’s chi-squared test on root frequencies indicates that this
was not the case at a high significance level. Nonetheless, the
estimations of Table 2 based on this assumption provide good
accuracy.

EXAMPLE

In order to demonstrate the usefulness of FRG for kinematic
design, we apply the results of this study to the design of a spined
pinch gripper. The motion task is to guide two spine tips to
move inwards as a gripper mechanism moves down toward the
ground. In a frame fixed to the gripper, this corresponds to mir-
rored curves that move upwards then inwards. We choose to de-
sign one half of the gripper to guide a spine tip through the points

Py = 0.000000 4 1.00000i, Py =0.129939 + 0.9480251,
P, =0.251380+0.891794i, P;=0.359164+0.816847i,
Py =0.445855+0.701280i, Ps=0.498510+0.552674i,
Ps =0.528574+0.364258i, Py =0.538599+0.187021i,
Py =0.536284 4 0.000000i. (19)

These points were substituted into Eqn. (15) which was then
solved with a parameter homotopy. The complete root set found
from FRG run 1 served as the startpoints from which the parame-
ter homotopy was constructed. The parameter homotopy tracked
to 270 linkage solutions i.e. solutions in which (A,A), (B,B),
(C,C), and (D, D) are complex conjugate pairs. These solutions
were organized into 45 symmetric cognate sets of 6. Because
of the symmetry described in (18), these solutions correspond to
135 linkage design candidates.

A=-0.29031337+0.24111498i
B=0.07350509+0.59266213i
(C=0.06132863+0.78905057i
D=-0.10612300+0.46601081i

A4=-0.30295337-0.06407268i
B=0.07350509+0.59266213i M
(C=-0.02577964+0.86982961i o5
D=0.17962809+1.12665132i

A=-0.30295337-0.06407268i
- B=—0.29031337+0.24111498i

C=-0.27717373+0.06609771i
5. D=-0.35164200+0.45206441i

FIGURE 4. A set of cognate linkages that trace through the task
points, albeit with pivots in unacceptable locations.

A=-3.04315138+4.52139915i
B=-0.56093918+3.17024103i
C=0.81549310+2.00885328i
D=1.09926878+1.66941932i

FIGURE 5. A linkage design candidate appropriate for a spined pinch
gripper.

An example of cognate linkage solutions is given in Fig. 4.
The three four-bars depicted trace identical coupler curves. If
all three coupler points were pinned together the overconstrained
mechanism would still move with mobility one. Most linkage
solutions from this example had pivots in locations similar to
Fig. 4, which is not useful for the gripper design at hand.

However, by virtue of obtaining a large solution base, a few
solutions had pivots at more appropriate locations, including the
design shown in Fig. 5. An embodiment of this design and its
motion from a global frame are shown in Fig. 6. This embodi-
ment uses living hinges to connect two rocker links to the cou-

Copyright © 2017 by ASME



(@ (b)

(©) (d)

FIGURE 6. An embodiment of the design from Fig. 5 and its mo-
tion from a global frame. As the body of the gripper moves toward the
ground, the spine tips at first move upward towards the body, then curl
inwards to create a pinching motion

pler link which holds the spine tips in position. As the body of
the gripper moves toward the ground, the spine tips at first move
upward towards the body, then curl inwards.

CONCLUSION

The new results contained in this study include a characteri-
zation of how FRG scales with problem size, a demonstration of
problem reduction informed by linkage cognate structures, and
the application of FRG results to the design of a spined pinch
gripper. Linear scaling with respect to problem size was con-
cluded by analyzing the probabilistic model of root collection as
the total root set size tended toward infinity. This uncovered an
approximate linear scaling law which is valid for the large prob-
lems we are interested in. Following this result, we demonstrated
an implementation of FRG that effectively scaled down the four-
bar path synthesis problem by six using the cognate structure
of the synthesis solutions. FRG was executed ten times on this
problem to characterize its basic implementation versus an im-
plementation which focuses on the collection of cognate sets.
Besides substantially decreasing the required number of FRG it-
erations, the latter showed an increased ability to collect the final
roots and estimate the final size of the root set. The results of this
study were applied to the kinematic synthesis of a spined pinch
gripper mechanism. In future work, we hope to apply FRG to
more complex problems.
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Appendix: Target Parameters

TABLE 3. Parameters used to define the target systems in this study.

Target Parameters 1

Target Parameters 2

Target Parameters 3

Py 0.776874—0.642684i 0.445812—-0.860398i —0.379870+-0.803287i
Py 0.549479+0.418241i —0.151041+-0.521027i 0.921351+0.483121i
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P;  0.767234—0.378801i 0.511317-0.028132i 0.477860+0.626925i
Py —0.06809040.919907i —0.639865—0.306563i —0.334216—0.224893i
Ps  0.0556544-0.675009i —0.998164+0.275757i —0.172764—0.461834i
Ps —0.134960—0.424099i 0.307952—0.580697i —0.567299+-0.718201i
P; —0.239858+4-0.041043i  —0.204723—0.681984i 0.798680+0.008829i
Py 0.635501-0.474101i —0.545189—0.224840i —0.818067—0.509198i
Py 0.873111+0.292468i —0.706916—0.481828i 0.114622+0.381387i
Py 0.689034—0.944901i —0.253584+0.187983i —0.55782040.159911i
P, 0.854109—0.482044i 0.259632-0.036125i 0.522259+0.748322i
P; —0.268805—0.865098;  —0.222836+0.103006i —0.989851—0.175180i
Py —0.263339—0.451987i 0.992221+0.249885i  —0.815471—-0.222604i
Ps —0.221326+0.775947i  —0.726627—0.731216i —0.577187—0.246342i
Py 0.165736+0.319065i 0.937814+0.561564i  —0.810094—0.623226i
P; 0.248468+0.077381i 0.713889+0.886674i —0.932418+-0.479788i
By 0.342355-0.501518i 0.995395—0.173441i  —0.053098—-0.389105i
Target Parameters 4 Target Parameters 5
Py 0.766574—0.303366i —0.603732—0.726926i
Py —0.169761—-0.094169; —0.474312—0.227178i
P, 0.803894+4-0.702355i —0.593796+0.947155i
Py 0.190963—0.211693i —0.580044—0.085847i
Py —0.756797—-0.761911i 0.477049—0.048159i
Ps  0.252935-0.738818i 0.604987—0.205613i
Ps —0.004816—0.564282i 0.472113-0.646370i
P;  0.090282—-0.769713i 0.817195—0.159517i
Py —0.91959740.539628i —0.468734—0.774642i
Py 0.043183+0.183683i 0.495074+0.091227i
P 0.419272+0.516355i —0.089742—0.642176i
P, 0.57234240.485196i —0.098454—0.458862i
Py 0.570356—0.741328i  —0.305446+0.932913;
Py 0.485626-+0.709176i  —0.047797—0.320071i
Ps 0.320779-0.848190i 0.337652+0.973372i
Ps 0.951927+0.164502i —0.589576—0.380130i
P; —0.175106+0.237662i  —0.364004+0.843730i
By 0.308168—0.769707i 0.867954+0.810325i
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