
Bonk: Accessible Programming for Accessible Audio 
Games 

Shaun K. Kane, Varsha Koushik, and Annika Muehlbradt 

Department of Computer Science 

University of Colorado Boulder 

Boulder, CO 80309 USA 

{shaun.kane, varsha.koushik, annika.muehlbradt}@colorado.edu 
 

ABSTRACT 

Introductory computer programming presents a number of 

challenges for blind and visually impaired screen reader us-

ers. In addition to the challenges of navigating complex code 

documents using a screen reader, novice programmers who 

are blind are often unable to experience fun coding projects 

such as programming games or animations. To address these 

accessibility barriers, we developed Bonk, an accessible pro-

gramming environment that enables the creation of interac-

tive audio games using a subset of the JavaScript program-

ming language. Bonk enables novice programmers to create, 

share, play, and remix accessible audio games. In this paper, 

we introduce the Bonk programming toolkit and describe its 

use in a week-long programming workshop with blind and 

visually impaired high school students. Students in the work-

shop were able to create and share original audio games us-

ing Bonk, and expressed enthusiasm about furthering their 

programming knowledge.  

Author Keywords 

Audio games; accessibility; blindness; K12; computer sci-

ence education. 

ACM Classification Keywords 

CCS → Human-centered computing → Accessibility → 

Accessibility technologies. 

INTRODUCTION 

Learning to code is now considered a fundamental step in 

developing one’s ability to think and solve problems, as well 

as opening up opportunities for learning, creative expression, 

and employment. As US President Barack Obama com-

mented during 2014’s Hour of Code [22], 

No one’s born a computer scientist, but with a little hard 

work, and some math and science, just about anyone can 

become one. 

As ever, there is value in identifying who may not be counted 

within this definition of “just about anyone,” and to under-

stand what barriers that those individuals may face.  

As we consider how to move from computing for just about 

everyone to computing for all, we encounter barriers related 

to the accessibility of programming tools for people with dis-

abilities [18]. Learning how to code may have additional 

benefits for people with disabilities, who can empower them-

selves to solve some of the accessibility challenges that they 

may encounter in the world [17]. However, just as with any 

complex tool, programming languages and environments 

may create accessibility barriers if they are not designed to 

support people of all abilities. 

One approach that has been shown to increase engagement 

and retention for novice programmers is media computation 

[9], which situates the process of learning about program-

ming within the context of creating and sharing media such 

as video games [19] or animated 3D movies [14].  

Teaching programming through media has been shown to in-

crease engagement with programming tasks, including for 

underrepresented groups such as young girls [14]. However, 

these representations can present significant accessibility 

challenges for novice programmers who cannot access video 

media, including blind and visually impaired people.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that copies 

bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than the author(s) must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org.  

 

IDC '18, June 19–22, 2018, Trondheim, Norway © 2018 Copyright is held 
by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 

978-1-4503-5152-2/18/06…$15.00 
https://doi.org/10.1145/3202185.3202754 

 

Figure 1. Blind and visually impaired students design and 

program accessible video games in a programming workshop. 

Image (c) 2017 National Federation of the Blind.  

mailto:Permissions@acm.org
https://doi.org/10.1145/3202185.3202754


When introductory programming activities are inaccessible 

to some learners, this not only means that they cannot partic-

ipate in those activities, but may also reinforce the idea that 

the entire field of computer programming is inaccessible. 

Thus, there exists a need to create programming experiences 

that can be both created and enjoyed by people of all abilities. 

Ideally, these experiences would not be designed as a “patch” 

on an existing inaccessible system, nor as an isolated com-

munity that is only of interest to people with disabilities, but 

would instead support and engage people of all abilities [35]. 

To explore the potential of accessible programming tools 

with accessible output, we developed Bonk, a programming 

toolkit that enables novice programmers to explore computer 

science through developing and sharing interactive audio 

games. Bonk provides a simplified, scaffolded interface for 

creating complex audio interactions, abstracting away chal-

lenges of playing sounds and rendering speech output. Bonk 

programs can be rendered in various forms: as text, as audio 

rendered in a screen reader, or through an embedded “self-

voicing” text-to-speech system. By supporting robust forms 

of output, Bonk embodies the approach of accessible pro-

gramming tools for accessible media.  

In the following sections, we introduce the Bonk program-

ming toolkit and present example games and reflections from 

an evaluation of Bonk with ten blind high school students. 

The contributions of this paper are: 

1) Design rationale and implementation of Bonk, a “built-ac-

cessible” programming toolkit; 

2) Observations about this approach from a week-long pro-

gramming workshop with blind high school students; 

3) Proof-of-concept accessible games, developed by blind 

students, that demonstrates the types of games that can 

(and cannot) be made with Bonk; 

4) As a secondary contribution: a case study analysis of 

group coding between blind programmers, enabled by 

Bonk’s support for code sharing and remixing. 

RELATED WORK 

Learning Environments for Programming 

Research about how to effectively teach computer science 

has developed for nearly 50 years [8]. The canon of computer 

science education research addresses many pedagogical 

methods, programming languages, and development tools. 

Our present work, however, is motivated by several key 

threads of CS education research. 

As previously mentioned, the present work is motivated by a 

media computation approach [9]. This approach has been 

shown to increase engagement from novice programmers. In 

this work, we not only explore how to support computational 

creation of accessible media, but explore the implications of 

using accessible and inaccessible media in introductory pro-

gramming exercises. 

Our research is also motivated by the design of construction-

ist programming environments such as Scratch [21]. While 

much attention has been paid to Scratch’s use of visual 

blocks to construct programs, Bonk draws on Scratch’s ap-

proach to creating and sharing artifacts. As with Scratch, 

Bonk aims to be tinkerable, meaningful, and social [26]. 

Finally, our work is motivated by narrative-based program-

ming tools such as Storytelling Alice [14] and Looking Glass 

[10]. Engaging in storytelling creates opportunities to ex-

plore topics such as object-oriented design, functions, and 

loops [13]. Furthermore, programming a story does not in-

herently require any specific medium: thus, stories can be 

universally designed and presented in multiple formats to en-

gage people with a range of abilities. 

Accessible Programming Tools 

Researchers have explored a variety of approaches to im-

proving the accessibility of programming tools, including 

programming languages that are optimized for accessibility, 

tools to address specific programming challenges, and soft-

ware libraries for producing accessible content. 

Much current research around programming for blind and 

visually impaired users focuses on the Quorum programming 

language [31], which has been designed in collaboration 

with, and extensively tested by, blind and visually impaired 

people. Quorum offers support for programming audio-

based programs, although the focus is on creating more ad-

vanced programs than we explore here. APL [29] is a pro-

gramming language designed by blind programmers, which 

offers code structures that would be intuitive for blind pro-

grammers. Torino [32] is a tangible programming toolkit that 

enables children to create programs by assembling physical 

blocks. Other researchers have explored how to create acces-

sible versions of block-based programs, typically by adding 

non-visual information through audio [15,24]. Bonk comple-

ments these approaches: while our current prototype was 

built using JavaScript, our approach can be adapted to any 

language. 

A second thread of research has focused on identifying chal-

lenges experienced by current blind programmers, and de-

veloping tools to address these challenges. Albusays and 

Ludi surveyed 69 blind programmers and found many com-

mon problems, including inaccessible IDEs, diagrams with 

no non-visual alternative, and difficulties navigating code 

and debugging output [1]. Sodbeans [30] and StructJumper 

[2] are tools that provide audio feedback to increase under-

standing while navigating program code. As our focus is on 

creating compelling output from users’ code, our work com-

plements this prior research. 

Some prior research has explored activities that can be made 

accessible to blind programmers through applications such 

as robotics [20], chatbots [4], and data science [12]. Bonk 

explores the use of audio games as a medium for learning 

programming, and adds the additional feature of collabora-

tively writing and sharing code. 



Audio Games 

Speech, nonspeech audio, and spatial audio have been used 

as alternatives to visual information in video games [36]. Au-

dio Battleship [28] and Finger Dance [23] are games that 

were designed by researchers to explore how to create acces-

sible audio games, but were not targeted at a mainstream au-

dience. Blindsight1 and Papa Sangre2 were audio-only mo-

bile games that were popular among blind gamers. More re-

cently, some audio games (e.g., Earplay3) have targeted a 

mainstream audience, focusing on contexts such as gaming 

while mobile and interacting with voice agents such as Am-

azon Alexa. These games tend to support more narrative 

gameplay types such as interactive stories [27]. Bonk works 

similarly to these prior games, but enables audio games to be 

created by blind novice programmers. 

Accessibility and Collaborative Work 

In recent years, some researchers have moved away from fo-

cusing on accessibility issues that occur between a user and 

computing device, and instead have focused on how technol-

ogy can help people with different abilities work together. 

Prior research has shown that collaborative tasks may be hin-

dered by a lack of visual feedback, or due to overhead from 

using a screen reader [5,6,34]. While these studies have typ-

ically focused on interactions between blind and sighted in-

dividuals, our current research complements this work by il-

lustrating the opportunities and challenges of collaborative 

programming between multiple blind coders. 

TOWARDS ACCESSIBLE MEDIA COMPUTATION 

Our primary goal in this work is to explore programming 

tools for creating engaging, accessible, shareable media. In 

developing Bonk, we were guided by the following goals, 

drawn from prior research on accessible programming envi-

ronments and the prior experiences of our research team: 

Easy deployment. Setting up software environments can be 

difficult for novices, and may be especially difficult when 

using assistive technology [6]. Thus, the programming tool 

should be available on a variety of computing devices with-

out requiring software to be installed. 

Universal playback. Individuals may use a variety of assis-

tive technologies, including screen readers, magnifiers, or 

Braille displays [11]. Thus, program output should be playa-

ble on different devices (PCs, mobile devices, assistive tech-

nology) and in multiple media (text-to-speech, Braille). 

Expressive output. Integrating creative expression into pro-

gramming tasks can improve engagement [9,26]. In fact, 

prior research with blind novice programmers found that the 

programmers altered their text-to-speech device settings to 

produce interesting sounds [12]. Thus, the programming lan-

guage should enable users to express creative control over 

the program output. 

                                                           
1 blindsidegame.com 
2 papasangre.com 
3 earplay.com 

Easy sharing and remixing. Novice programmers may bene-

fit from examining and building upon the code of others [26]. 

Furthermore, these programmers may be motivated by the 

ability to show off their work to friends [9]. Thus, program-

mers should be able to easily share their code and view code 

created by others. 

Learn programming concepts in context. Introductory pro-

gramming environments should emphasize computational 

thinking concepts such as sequences, loops, conditions, and 

events [7]. These concepts should be tied to the novice’s 

goals so that mastering these concepts will help the learner 

achieve her goals. 

DESIGN OF BONK 

We developed Bonk, a programming toolkit that supports ac-

cessible programming of accessible media. The main com-

ponents of Bonk are its audio game programming frame-

work, web-based development environment, and HTML5-

based game engine. 

Audio Game Programming Framework 

Bonk offers a scaffolded framework, based on JavaScript, 

that is optimized for creating interactive audio games. This 

framework abstracts away the complexities of text-to-speech 

audio, sound playback, and processing user input. 

What Can You Make with Bonk? 

We originally developed this tool with the intent of support-

ing interactive audio stories, similar to classic text adventure 

games, Choose Your Own Adventure books, and modern 

text-based game systems such as Inform4 and Twine5. Devel-

opers can create an audio story, including speech and envi-

ronmental sounds, and provide multiple paths that a player 

can follow. Bonk programs can react to specific keypresses, 

or specific strings typed by a player. Bonk also provides sup-

port for timed events, allowing developers to create simple 

action games.  

As shown in our formative user study, this relatively simple 

set of tools allows for the creation of various types of games 

and content, including audio stories, interactive fiction, trivia 

games, and action games. 

Program Structure 

Bonk code is written in JavaScript, with an extensive set of 

convenience functions that reduce the overhead of creating 

programs. We chose to build Bonk on top of JavaScript so 

that the resulting programs could be run on any device with 

a modern web browser. Bonk uses the HTML5 Web Speech 

API for text-to-speech output, and the Web Audio API for 

sound effects. Figure 2 shows an example program.  

Bonk programs are scaffolded to avoid the complexity of 

handling web page events. Each Bonk program has a func-

tion, called run. Code inside this function will run one time 

4 inform7.com 
5 twinery.org 



once the web page, speech engine, and sound files have 

loaded. This approach is similar to that used by Processing 

[25] and Arduino [16]. To reduce the ambiguity of identify-

ing function names when using a screen reader, all built-in 

functions are written in lowercase, and multi-word functions 

are separated by underscores (e.g., add_text_box). 

 

Figure 2. Example program created by a blind programmer. 

This example features text-to-speech, sound effects, key input, 

and a branching story structure. 

Text-to-Speech 

The key component of Bonk’s interactive audio games is its 

text-to-speech component. This component is designed to 

simplify control of the text-to-speech engine, and to provide 

the developer with extensive control over speech output. 

Creating an audio-based user interface can be challenging, 

especially for novice programmers. On many platforms, in-

cluding the web, speech and audio output must be controlled 

using multithreaded programming. Incorrectly programming 

the speech threads could either cause the program to freeze 

up, or would cause all audio to play at once.  

Bonk abstracts away the need to manage audio playback 

threads by queueing all audio commands, and managing their 

playback in a background thread. As an example of this chal-

lenge, the program in Figure 2 alternates between reading out 

text-to-speech messages and playing sound effects. Using the 

standard HTML5, this code would either freeze the browser 

until all audio had played (if run synchronously), or would 

play all sounds at once (if run asynchronously). To solve this 

problem, Bonk’s speak and play functions add each action 

to a queue. At runtime, Bonk manages the background thread 

to play the audio output with proper timing, allowing the de-

veloper to create audio output as easily as text output. 

Bonk’s text-to-speech engine is designed to provide devel-

opers with control over voice parameters, including the spe-

cific voice, pitch, playback speed, and volume. In a prior pro-

gramming workshop for blind students, the students enter-

tained themselves by setting their text-to-speech settings to 

extreme values, such as a very fast and high-pitched voice, 

                                                           
6 freesound.org 

or a very slow and deep voice [12]. Bonk provides simple 

functions for changing text-to-speech parameters. Bonk also 

provides the ability to create multiple character profiles, each 

with a distinct voice, enabling developers to easily create au-

dio stories with multiple characters. 

Sound Effects 

The other major component of Bonk’s audio game is support 

for sound effects. As with text-to-speech, Bonk automati-

cally manages the playback of multiple sounds in sequence. 

Furthermore, Bonk provides an integrated sound effect 

search feature, enabling developers to add sound effects to 

their program by simply typing the name of the desired ef-

fect. Bonk’s sound effect library automatically finds an ap-

propriate sound effect and plays it back.  

When the user enters the name of a sound effect, Bonk auto-

matically searches the Freesound6 open source sound library 

for sounds matching the search terms that are close to 5 sec-

onds in length; by default, Bonk plays the best matched 

sound. The purpose of this feature is to enable novice devel-

opers to sketch out an audio game as easily as they might 

sketch out a character for a video game. During our work-

shop, students added a variety of sound effects to their 

games, including bite, boing, bonk, cheer, club party, com-

puter, crowd, dance music, dance party, elevator, fanfare, 

jazz, laughter, loop, monster, music, rain, running, siri, 

stairs, storm, warzone, and water. 

Handling User Input 

As mentioned previously, handling web page events can be 

extremely challenging for novice developers. Once again, 

Bonk provides simplified access to user input handling. 

Bonk supports two types of input events: key presses and text 

input. As in Processing and Arduino, Bonk developers can 

add event handling to their code simply by adding a specially 

named function to their code. To respond to single key-

presses, the developer adds the function on_key_press to 

their code. To handle string input, such as text command, the 

developer initializes a textbox by adding a call to 

add_text_box in their main function, and adding the 

on_text_box to their code. This structure allows program-

mers to easily add input handling despite the web’s compli-

cated event model. Bonk also offers start_timer and 

on_time_out functions for timed input. 

Branching Structure 

Managing a game’s state can quickly become complicated. 

Bonk supports more complex games by allowing developers 

to link different code snippets together. For example, to cre-

ate a maze game in which the player can move north, south, 

west, or east, the developer can create a separate “room” for 

each direction, and link them together using the go_to_room 

command. This feature allows the developer to separate a 

game into smaller, manageable chunks, and enables multiple 

coders to work on a single game in parallel. 



Collaborative Coding Environment 

Bonk programs are written, shared, and run via a web appli-

cation, written in Node.js and using a MySQL database. This 

design was chosen to support our goals of easy deployment 

and easy sharing/remixing. Bonk is similar to Scratch [26] in 

that, at any time, a user can view the code of a running pro-

gram, create a copy of that code, and remix the code. All code 

is entered via an HTML form (Figure 3).  

 

Figure 3. Bonk coding environment. Bonk programs are 

hosted on a central web repository where they can easily be 

shared and remixed. 

When creating a new game, the developer enters the code 

into a code window, adds their name, and adds the name of 

their game. If the developer does not specify a name for their 

game, Bonk automatically assigns a name from a list of com-

mon words, as in URL shortening services like shout-

key.com. These automatically assigned names are easy to re-

member and easy to verbally share. 

The Bonk web site contains a number of additional features: 

a list of recently created games, documentation for each 

function, a set of example games and source code, and a dis-

cussion forum. 

Game Playback 

Games created in Bonk are written in HTML and JavaScript, 

and can be played in any modern desktop or mobile browser. 

Games are shared with short, memorable URLs. 

By default, Bonk presents the game content both as text-to-

speech and on-screen text (Figure 4). Bonk games are self-

voicing, using the HTML5 Web Speech API to support a va-

riety of voice settings. It is possible to disable self-voicing 

mode: in this case, Bonk does not create its own speech out-

put, but allows the user to render text using their own screen 

reader. While this mode reduces the expressive capabilities 

of Bonk’s text-to-speech, some users may prefer to use their 

own customized voice settings. 

EXPLORATORY CODING WORKSHOP 

To understand the strengths and limitations of Bonk’s ap-

proach, we tested the initial version of Bonk as part of a 

week-long coding workshop with 10 blind and visually im-

paired high school students. 

Setting 

The coding workshop took place as part of a larger STEM-

learning camp hosted by a national organization serving 

blind and visually impaired high school students. Students 

chose one subject track, which met for half of each day for 

five days. Students participated in mini activities in the after-

noons, and all of the students attending the camp met up on 

the last day to show off their work. 

 

Figure 4. Bonk games are played in the web browser. Bonk’s 

player provides various accessibility features, including high-

contrast text and customizable text-to-speech output. 

Participants 

The computer science workshop track featured 10 students, 

ranging in age from 14 to 18. These students used a variety 

of assistive technologies to access their computing devices. 

A few students had some prior programming experience, but 

most of the students had never programmed before, and some 

had limited experience using computers and screen readers.  

# Gender Assistive Tech. Programming? 

S1 F screen reader, Braille ✓ 

S2 M screen reader ✓ 

S3 M screen reader  

S4 M screen reader  

S5 M magnifier  

S6 M screen reader ✓ 

S7 M screen reader  

S8 M screen reader ✓ 

S9 M magnifier  

S10 M magnifier  

TA1 M screen reader  

TA2 M screen reader ✓ 

TA3 F screen reader ✓ 

Table 1. Students and teaching assistants who participating in 

the coding workshop, their preferred assistive technology, and 

their prior programming experience. 

 



The workshop was managed by three members of the re-

search team. Additional support was provided by three teach-

ing assistants, who were blind and low vision adults, alt-

hough only two of the teaching assistants had any prior ex-

perience with computer programming. 

Event Schedule 

The workshop took place over 5 days, from approximately 

8AM until noon. Each meeting included a variety of activi-

ties, including group discussions, solo and group program-

ming. Because students came in with a wide range of expe-

rience with computers, the researchers provided written tu-

torials and exercises that students could follow inde-

pendently, with other students, or with help from a TA or 

researcher. Each participant was provided with their own 

Windows laptop with the JAWS Screen Reader. Table 2 

shows the daily schedule: 

Day Activities 

1 
Introduction to computer science concepts, acting out 
algorithms (as in CS Unplugged [3]), getting set up with 
assistive technology, basics of writing code. 

2 
Programming tutorials: expressions, variables, func-
tions, objects, text-to-speech, sound effects. 

3 
Finish programming tutorials. Brainstorm game ideas. 
Form project groups. 

4 Programming and testing games. 

5 
Final game testing. Group discussion and feedback.  
Project expo. 

Table 2. Workshop schedule. 

On Days 1, 2 and 4, the class discussed computing careers 

via Skype with blind computing professionals. 

STUDENT EXPERIENCES WITH BONK 

Here we report on the use of our accessible programming 

tools over the course of the week-long workshop. 

Student Games 

Students developed a variety of games over the course of the 

week. Although each student progressed at a different pace, 

each student uploaded at least one working program over the 

course of the week. During the third day, students formed 

into four project groups, and worked with their group for the 

rest of the week.  

The four games are summarized in Table 3. Students de-

signed the following games: 

CS Mad Lib. Students developed a humorous game based on 

Mad Libs, in which the player is asked to name a set of words 

that fit certain criteria (e.g., adjective, place name), which 

were then inserted into a story. 

WebNote. WebNote is a music-themed game, which origi-

nally began as two separate games, an interactive piano key-

board and a music trivia, name-that-tune game. The two stu-

dents developed their games independently on the first day, 

and worked together on the second day to combine them via 

a unified game menu.  

Either One. Students in this group developed a Choose Your 

Own Adventure-style game. This game was the most com-

plex, with 13 different scenes. The group divided the work 

between multiple students, and assembled the complete 

game on the final day. 

Labyrinth. One student chose to create a game on his own. 

This game was a maze-style game that required the player to 

navigate the maze and answer riddles. 

Game Features 

The students’ games used several of Bonk’s advanced fea-

tures. All games included some text-to-speech output and in-

teractivity. Three out of the four games used sound effects, 

custom voices, and branching paths. 

In two cases, student groups decided to add features to their 

games that were not directly supported by the Bonk program-

ming framework. The group that made CS Mad Lib wanted 

to add several text boxes to a single page, which was not 

originally supported by Bonk. By working with the teaching 

staff, the students were able to add this feature to their game. 

The group that made WebNote wished to add audio playback 

of specific music notes to their game. One student from that 

group, who had some prior programming experience, re-

searched several ways to add musical note playback, and 

worked with the instructors to add this feature to the game. 

Working in Groups 

At the start of the workshop, students mostly completed tasks 

alone or with the help of one of the instructors. Over the 

course of the workshop, with some encouragement from the 

instructors, students began working together to write code, 

debug each other’s code, and test games. Because there were 

more students than instructors, students sometimes sought 

 Team 
Size 

Lines of 
code 

Num. 
scenes 

Speech 
output 

Keyboard 
navigation 

Text 
input 

Sound 
effects 

Custom 
voices 

Branching 
paths 

Other  
features 

CS Mad Lib 4 63 2 ✓  ✓ ✓ ✓  Form input 

WebNote 2 78 3 ✓ ✓    ✓ Music 

Either One 3 102 13 ✓ ✓ ✓ ✓ ✓ ✓  

Labyrinth 1 92 9 ✓ ✓ ✓ ✓ ✓ ✓  

Table 3. Student teams created four games for the end-of-workshop project demonstration. These projects included several of 

Bonk’s language features, including various forms of user input, customized user output, and branching story paths. 



help from their peers rather than waiting for an instructor to 

become available. 

On the third day, the instructors led the students through a 

brainstorming activity in which each student came up with 

several game ideas. Based on these ideas, students formed 

loose groups around broad topics: music games, interactive 

stories, and a Mad Libs-style game. After further discussion, 

the students formed their final project groups, and worked 

with their group for the remaining two days. 

Collaboration took several forms within the project groups. 

In the CS Mad Lib group, students rotated roles over the 

course of their work. One student, who had been assigned a 

programming task by the de facto project leader, finished his 

coding early. He then took on the role of debugger, helping 

the other students in his group with their code. The group that 

created Either One assigned each member a specific role: 

lead programmer, lead tester, lead designer, and lead debug-

ger (shared between the three students). Their game ends 

with a credits scene. The group that created WebNote mostly 

worked independently, occasionally sharing programming 

tips, until they combined their two games into a larger game 

on the final day of the workshop. 

Creativity and Play 

In addition to their coordinated group work, students occa-

sionally participated in informal social interaction and play. 

The CS Mad Lib Group “performed” their game to the class-

room, showing off the humor of their game. One student 

from the Either One group started a side project of his own, 

creating several audio stories featuring characters that he de-

veloped, each with different voices and personalities (Figure 

5). One of the teaching assistants created a series of small 

puzzle games and shared them with the students; these games 

were intentionally designed to be frustrating, confusing, or 

impossible to “win.” 

 

Figure 5. Sample code from a student’s side project, which 

uses multiple voices to create a sophisticated audio story. 

Usability and Accessibility Issues 

While all students were able to create some code, and were 

able to contribute to their final group projects, students occa-

sionally encountered usability or accessibility issues using 

this initial version of Bonk. These problems are briefly sum-

marized here. 

Problems with assistive technology. Students in the work-

shop used several assistive technology devices, including 

screen readers, screen magnifiers, Braille displays, or a com-

bination of several devices, and use of these devices some-

times caused errors. A software bug in the HTML code editor 

occasionally caused some error messages to be hidden, mak-

ing it difficult to debug problems. This problem was fixed in 

the code, but caused some frustration early on. The screen 

reader software also sometimes captured the game player’s 

keyboard input such that the game code did not detect the 

input. This issue could be overcome by entering a “pass-

through” command to the screen reader; however, some stu-

dents did not know about this pass-through feature, and in-

stead turned their screen reader off to play the game, which 

sometimes caused problems if the student did not know how 

to reactivate the screen reader. 

Another issue arose for students who brought their own as-

sistive technologies, as some devices could not connect to 

the workshop network or to the laptops provided by the 

workshop organizers. One student brought her own refresh-

able Braille display, which she preferred to use when reading 

source code, but could not connect the device to the network. 

As a result, she chose to copy the relevant files from the lap-

top to the Braille device via a USB drive, and to copy them 

back when she was finished. 

Barriers to collaboration. In some cases, students had diffi-

culty working together due to problems integrating their as-

sistive technologies. Several students had very little experi-

ence in using the JAWS screen reader, and required exten-

sive help from the teaching assistants. However, in some 

cases, the teaching assistants were not familiar with the stu-

dent’s screen reader configuration, and therefore had diffi-

culty supporting the student. In a few cases, students were 

able to help each other when the teaching assistant was un-

familiar with a specific issue. 

In another case, a teaching assistant experienced difficulty in 

helping a student because she could not follow along with 

the student’s screen reader output. Eventually the teaching 

assistant was able to acquire a headphone splitter, and was 

then able to follow along more easily. 

Difficulties sharing and versioning documents. The Bonk 

programming environment was intentionally designed to 

avoid problems related to file management. Instead of man-

aging a file system, each Bonk game was assigned a unique 

URL, and files cannot be deleted. Students sometimes had 

difficulty editing a document, and instead made copies of 

their documents, which resulted in duplicate documents with 

confusing names such as game, game v1, etc. Likewise, 

sometimes students had difficulty remembering and sharing 

the names of their games, especially multi-word names, 

where students might confuse names that are delimited by 

spaces, dashes, underscores, or camel case. 

Syntax errors. As is to be expected, the novice programmers 

who participated in the workshop sometimes struggled with 

syntax errors in their code. These errors included common 

errors such as mismatching brackets and typing variable 



names inconsistently. In some cases, these issues were 

clearly exacerbated by the student’s vision impairment: some 

of the students who used screen magnification sometimes 

had difficulty reading the symbols, and had difficulty seeing 

structural problems with their code because they had zoomed 

in their screen, and thus could not see the top-level program 

structure. Bonk’s editor did not provide syntax highlighting 

or line numbering, which may have caused some additional 

problems. 

Limitations of the Framework 

One issue that affected several students toward the end of the 

workshop was when students wished to perform some tasks 

that were not directly supported by the framework. In some 

cases, we were able to extend the framework during the 

workshop to increase functionality. For example, the 

WebNote group requested the ability to play a sound file 

based on a URL (rather than a search term); we were able to 

add this function to the sound effect library between work-

shop meetings. 

However, some limitations of the framework were more dif-

ficult to overcome. Because Bonk provides extensive scaf-

folding in some areas, performing some tasks that seemed 

like they should be simple were instead surprisingly difficult. 

One example of this phenomenon was related to form input. 

Bonk provides the capability to generate text input boxes 

from JavaScript code. This feature enabled students to create 

form-based games without having to learn how to create 

HTML forms and connect them to JavaScript. This feature 

was designed to support only one text box per page, as we 

assumed that this would be used to support text commands. 

However, the CS Mad Lib group wished to add multiple 

forms to their page, which was not supported by the Bonk 

framework. We were able to add some limited functionality 

for supporting multiple text inputs, but because this was not 

part of our expected interaction model, the feature was not 

well integrated into the rest of the framework, nor was it de-

scribed in the programming language documentation. 

Other limitations of the current framework included the ina-

bility to set permanent game states, such as whether the 

player had picked up an object, which would require storing 

state between rooms (and HTML pages), and the ability to 

add background music, which would require modifying 

Bonk’s audio queue feature. Supporting both a “low floor” 

and “high ceiling” [26] for accessible audio game program-

ming presents an exciting challenge for future research. 

Student Feedback 

On the final day of the workshop, we facilitated a group dis-

cussion about the students’ experience during the workshop, 

and their suggestions for improvements to both the structure 

of the workshop and to the Bonk framework. 

We asked students what they liked most about the workshop. 

Several students mentioned that they were pleased with the 

quality of the game that they were able to create in such a 

short time. Other students mentioned that they enjoyed learn-

ing the basics of a “real” programming language like JavaS-

cript. One student said, “It was our first game in JavaScript 

and it actually had some substance.” One student praised the 

ability to create multiple voices and characters. Students said 

that they enjoyed working in groups, and appreciated the op-

portunity to design and develop their own games. 

When asked what was difficult or frustrating about the work-

shop, students mentioned troubleshooting errors, connecting 

the system to a Braille display, and reading some of the on-

screen text. Several of the students who came in with pro-

gramming experience noted that they wished to go beyond 

the capabilities of the current framework. 

Finally, we asked students what they would like to do if they 

had more time. One student mentioned that he would like to 

create more stories using the skills he had already developed. 

One student, who had some vision, said that he would like to 

develop graphical user interfaces, animations, or 3D 

graphics. Students also commented that they would be inter-

ested in creating web sites and forms, programming robots, 

working with databases, and learning more about computing 

fundamentals such as how data is represented in computer 

memory. Overall, the students expressed that they had en-

joyed the workshop, and several students expressed enthusi-

asm about furthering their computer science education. 

DISCUSSION 

In this research, we developed a new programming toolkit 

that enables blind and visually impaired novice programmers 

to create accessible audio games. So, was our approach suc-

cessful?  

In the specific context of our week-long coding workshop, 

we would argue that the answer is yes. Students entered the 

workshop with a range of computer literacy and program-

ming experience. In one week, all of the students were able 

to create their own audio games. While the experience was 

heavily scaffolded, most students still said that they felt they 

had gained “real” programming experience. Students fully 

engaged in the creative aspects of programming audio 

games, including integrating creative writing and humor into 

their games, and creating mini-games as a form of social 

play. 

One challenge that was uncovered by this study is that we 

must ensure that Bonk provides both a “low floor” and a 

“high ceiling” [26]. A key component of Bonk’s design is 

that it abstracts away some particular challenges of creating 

audio games, including managing speech and audio output, 

handling user input, and supporting sharing and remixing of 

games. In the future, we may explore how the various com-

ponents of this system can be made modular, and can be 

combined and remixed with other programming tools. For 

example, a future descendant of Bonk could allow a student 

who is learning programming to create an audio story using 

Bonk’s speech and sound libraries, embed this story into a 



Quorum program, and share the result with friends via an 

online code portfolio.  

FUTURE WORK 

This work represents an initial step toward creating accessi-

ble programming tools for accessible media. Our initial de-

ployment of Bonk has revealed numerous opportunities for 

improving the current programming toolkit, including 

providing features for more advanced programmers, support-

ing transfer from scaffolded introductory programming tools 

to more traditional programming tools, and extending 

Bonk’s ability to create interactive stories and games. 

Another topic that we are eager to explore is how tools like 

Bonk can be used to support collaborative work among peo-

ple with vision impairments. Students in our programming 

workshop used Bonk as a tool to support creative expression 

and social interaction; this suggests that there is exciting po-

tential in using shared production of accessible media to sup-

port social engagement. 

Finally, we are excited by Bonk’s potential as a platform for 

exploring and promoting “born-accessible” content [33]. Our 

approach with Bonk has not been to repair existing media 

computation platforms by bolting on accessibility, nor is it to 

develop a programming community that exists by and for 

blind programmers. Instead, this work is built around inter-

active games and stories that are not restricted to any partic-

ular representation. While this version of Bonk focuses pri-

marily on supporting rich audio output, there is no reason 

that a future version could not render the same underlying 

source files as an animation, automatically generating visu-

als to match the story, or in any other format. We are excited 

to explore this platform not only as an accessible program-

ming environment, but rather as a tool that is built from the 

ground up to create accessible media. For people who may 

currently be excluded from inaccessible media, Bonk could 

potentially empower them to bring more accessible media 

into the world, while for those people who are not used to 

encountering accessibility barriers in their own lives, this 

kind of tool may provide new insight on how we can all work 

toward a more accessible and equitable future. 

CONCLUSION 

We introduced Bonk, an accessible programming environ-

ment for creating accessible media. Bonk provides low bar-

riers to entry for creating accessible audio games, and can 

enable aspiring programmers to develop their skills by creat-

ing, sharing, and remixing games that are built from the 

ground up to be accessible. A formative evaluation of Bonk 

with 10 blind and visually impaired high school students 

showed that this approach can enable students with a range 

of technical ability to create and share games, and that this 

accessible and collaborative programming environment can 

support shared creative work and play for people with a 

range of abilities. 

SELECTION AND PARTICIPATION OF CHILDREN 

This activity took place as part of a larger workshop con-

ducted by a national organization serving blind and visually 

impaired children. The organizers of the event recruited the 

students; students then chose between a number of available 

workshops, including our computer science workshop. All 

children who participated in the workshop, and their parents, 

completed a consent form and photo release as part of their 

participation in the week-long event. This consent process 

was managed by the national organization; all of our activi-

ties took place within their broader framework and through 

collaboration with the event organizers. 

ACKNOWLEDGMENTS 

We thank our workshop participants and teaching assistants 

for their help in organizing the workshop. This work was 

supported by AccessComputing, and by the National Science 

Foundation under grants IIS-1619384 and IIS-1652907. Any 

opinions, findings, conclusions or recommendations ex-

pressed in this work are those of the authors and do not nec-

essarily reflect those of the National Science Foundation. 

REFERENCES 

1. Khaled Albusays and Stephanie Ludi. 2016. Eliciting 

Programming Challenges Faced by Developers with 

Visual Impairments: Exploratory Study. In Proceedings 

of the 9th International Workshop on Cooperative and 

Human Aspects of Software Engineering (CHASE ’16), 

82–85. https://doi.org/10.1145/2897586.2897616 

2. Catherine M. Baker, Lauren R. Milne, and Richard E. 

Ladner. 2015. StructJumper: A Tool to Help Blind Pro-

grammers Navigate and Understand the Structure of 

Code. In Proceedings of the 33rd Annual ACM Confer-

ence on Human Factors in Computing Systems (CHI 

’15), 3043–3052. 

https://doi.org/10.1145/2702123.2702589 

3. Tim Bell, Jason Alexander, Isaac Freeman, and Mick 

Grimley. 2009. Computer science unplugged: School 

students doing real computing without computers. The 

New Zealand Journal of Applied Computing and Infor-

mation Technology 13, 1: 20–29. 

4. Jeffrey P. Bigham, Maxwell B. Aller, Jeremy T. Bru-

dvik, Jessica O. Leung, Lindsay A. Yazzolino, and Rich-

ard E. Ladner. 2008. Inspiring Blind High School Stu-

dents to Pursue Computer Science with Instant Messag-

ing Chatbots. In Proceedings of the 39th SIGCSE Tech-

nical Symposium on Computer Science Education 

(SIGCSE ’08), 449–453. 

https://doi.org/10.1145/1352135.1352287 

5. Stacy M. Branham and Shaun K. Kane. 2015. Collabo-

rative Accessibility: How Blind and Sighted Compan-

ions Co-Create Accessible Home Spaces. In Proceed-

ings of the 33rd Annual ACM Conference on Human 

Factors in Computing Systems (CHI ’15), 2373–2382. 

https://doi.org/10.1145/2702123.2702511 



6. Stacy M. Branham and Shaun K. Kane. 2015. The Invis-

ible Work of Accessibility: How Blind Employees Man-

age Accessibility in Mixed-Ability Workplaces. In Pro-

ceedings of the 17th International ACM SIGACCESS 

Conference on Computers & Accessibility (ASSETS 

’15), 163–171. 

https://doi.org/10.1145/2700648.2809864 

7. Karen Brennan and Mitchel Resnick. 2012. New frame-

works for studying and assessing the development of 

computational thinking. In (AERA 2012), 1–25. Re-

trieved September 18, 2017 from 

http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf 

8. Maureen Doyle. 2015. SIGCSE Symposium History. 

SIGCSE Bull. 47, 4: 7–8. 

https://doi.org/10.1145/2856332.2856338 

9. Andrea Forte and Mark Guzdial. 2004. Computers for 

communication, not calculation: Media as a motivation 

and context for learning. In System Sciences, 2004. Pro-

ceedings of the 37th Annual Hawaii International Con-

ference on, 10–pp. Retrieved September 19, 2017 from 

http://ieeexplore.ieee.org/abstract/document/1265259/ 

10. Kyle J. Harms, Jordana H. Kerr, Michelle Ichinco, Mark 

Santolucito, Alexis Chuck, Terian Koscik, Mary Chou, 

and Caitlin L. Kelleher. 2012. Designing a Community 

to Support Long-term Interest in Programming for Mid-

dle School Children. In Proceedings of the 11th Interna-

tional Conference on Interaction Design and Children 

(IDC ’12), 304–307. 

https://doi.org/10.1145/2307096.2307152 

11. Julie A. Jacko, V. Kathlene Leonard, and Ingrid U. 

Scott. 2009. Perceptual impairments: New advance-

ments promoting technological access. Human-Com-

puter Interaction: Designing for diverse users and do-

mains: 93–110. 

12. Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking 

@Stemxcomet: Teaching Programming to Blind Stu-

dents via 3D Printing, Crisis Management, and Twitter. 

In Proceedings of the 45th ACM Technical Symposium 

on Computer Science Education (SIGCSE ’14), 247–

252. https://doi.org/10.1145/2538862.2538975 

13. Caitlin Kelleher and Randy Pausch. 2007. Using story-

telling to motivate programming. Communications of the 

ACM 50, 7: 58–64. 

14. Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. 

Storytelling alice motivates middle school girls to learn 

computer programming. In Proceedings of the SIGCHI 

conference on Human factors in computing systems, 

1455–1464. Retrieved September 18, 2017 from 

http://dl.acm.org/citation.cfm?id=1240844 

15. Varsha Koushik and Clayton Lewis. 2016. An Accessi-

ble Blocks Language: Work in Progress. In Proceedings 

of the 18th International ACM SIGACCESS Conference 

on Computers and Accessibility (ASSETS ’16), 317–

318. https://doi.org/10.1145/2982142.2982150 

16. David Kushner. 2011. The making of arduino. IEEE 

Spectrum 26. Retrieved September 18, 2017 from 

http://utmechatronics.ir/wp-content/uploads/The-Mak-

ing-of-Arduino-IEEE-Spectrum.pdf 

17. Richard E. Ladner. 2015. Design for User Empower-

ment. interactions 22, 2: 24–29. 

https://doi.org/10.1145/2723869 

18. Richard E. Ladner and Andreas Stefik. 2017. Ac-

cessCSforall: Making Computer Science Accessible to 

K-12 Students in the United States. SIGACCESS Access. 

Comput., 118: 3–8. 

https://doi.org/10.1145/3124144.3124145 

19. Scott Leutenegger and Jeffrey Edgington. 2007. A 

Games First Approach to Teaching Introductory Pro-

gramming. In Proceedings of the 38th SIGCSE Tech-

nical Symposium on Computer Science Education 

(SIGCSE ’07), 115–118. 

https://doi.org/10.1145/1227310.1227352 

20. Stephanie Ludi and Tom Reichlmayr. 2011. The use of 

robotics to promote computing to pre-college students 

with visual impairments. ACM Transactions on Compu-

ting Education (TOCE) 11, 3: 20. 

21. John Maloney, Mitchel Resnick, Natalie Rusk, Brian 

Silverman, and Evelyn Eastmond. 2010. The scratch 

programming language and environment. ACM Transac-

tions on Computing Education (TOCE) 10, 4: 16. 

22. Ezra Mechaber. 2014. President Obama Is the First Pres-

ident to Write a Line of Code. whitehouse.gov. Re-

trieved September 19, 2017 from 

https://obamawhitehouse.ar-

chives.gov/blog/2014/12/10/president-obama-first-presi-

dent-write-line-code 

23. Daniel Miller, Aaron Parecki, and Sarah A. Douglas. 

2007. Finger Dance: A Sound Game for Blind People. In 

Proceedings of the 9th International ACM SIGACCESS 

Conference on Computers and Accessibility (Assets 

’07), 253–254. 

https://doi.org/10.1145/1296843.1296898 

24. Lauren R. Milne. 2017. Blocks4All: making block pro-

gramming languages accessible for blind children. ACM 

SIGACCESS Accessibility and Computing, 117: 26–29. 

25. Casey Reas and Ben Fry. 2006. Processing: program-

ming for the media arts. AI & SOCIETY 20, 4: 526–538. 

26. Mitchel Resnick, John Maloney, Andrés Monroy-Her-

nández, Natalie Rusk, Evelyn Eastmond, Karen Bren-

nan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian 

Silverman, and Yasmin Kafai. 2009. Scratch: program-

ming for all. Communications of the ACM 52, 11: 60–

67. https://doi.org/10.1145/1592761.1592779 

27. Timothy E. Roden, Ian Parberry, and David Ducrest. 

2007. Toward mobile entertainment: A paradigm for 

narrative-based audio only games. Science of Computer 

Programming 67, 1: 76–90. 



28. Jaime Sánchez. 2005. AudioBattleShip: blind learners 

cognition through sound. International Journal on Disa-

bility and Human Development 4, 4: 303–310. 

29. Jaime Sánchez and Fernando Aguayo. 2005. Blind 

Learners Programming Through Audio. In CHI ’05 Ex-

tended Abstracts on Human Factors in Computing Sys-

tems (CHI EA ’05), 1769–1772. 

https://doi.org/10.1145/1056808.1057018 

30. Andreas M. Stefik, Christopher Hundhausen, and Der-

rick Smith. 2011. On the Design of an Educational Infra-

structure for the Blind and Visually Impaired in Com-

puter Science. In Proceedings of the 42Nd ACM Tech-

nical Symposium on Computer Science Education 

(SIGCSE ’11), 571–576. 

https://doi.org/10.1145/1953163.1953323 

31. Andreas Stefik and Susanna Siebert. 2013. An Empirical 

Investigation into Programming Language Syntax. 

Trans. Comput. Educ. 13, 4: 19:1–19:40. 

https://doi.org/10.1145/2534973 

32. Anja Thieme, Cecily Morrison, Nicolas Villar, Martin 

Grayson, and Siân Lindley. 2017. Enabling Collabora-

tion in Learning Computer Programing Inclusive of 

Children with Vision Impairments. In Proceedings of 

the 2017 Conference on Designing Interactive Systems 

(DIS ’17), 739–752. 

https://doi.org/10.1145/3064663.3064689 

33. Brian Wentz, Paul T. Jaeger, and Jonathan Lazar. 2011. 

Retrofitting accessibility: The legal inequality of after-

the-fact online access for persons with disabilities in the 

United States. First Monday 16, 11. Retrieved Septem-

ber 19, 2017 from http://journals.uic.edu/ojs/in-

dex.php/fm/article/view/3666 

34. Fredrik Winberg and John Bowers. 2004. Assembling 

the Senses: Towards the Design of Cooperative Inter-

faces for Visually Impaired Users. In Proceedings of the 

2004 ACM Conference on Computer Supported Cooper-

ative Work (CSCW ’04), 332–341. 

https://doi.org/10.1145/1031607.1031662 

35. Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Ga-

jos, Susumu Harada, and Jon Froehlich. 2011. Ability-

Based Design: Concept, Principles and Examples. ACM 

Trans. Access. Comput. 3, 3: 9:1–9:27. 

https://doi.org/10.1145/1952383.1952384 

36. Bei Yuan, Eelke Folmer, and Frederick C. Harris. 2011. 

Game accessibility: a survey. Universal Access in the In-

formation Society 10, 1: 81–100. 

 


	Bonk: Accessible Programming for Accessible Audio Games
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Learning Environments for Programming
	Accessible Programming Tools
	Audio Games
	Accessibility and Collaborative Work

	TOWARDS accessible media computation
	design of bonk
	Audio Game Programming Framework
	What Can You Make with Bonk?
	Program Structure
	Text-to-Speech
	Sound Effects
	Handling User Input
	Branching Structure

	Collaborative Coding Environment
	Game Playback

	EXPLORATORY CODING WORKSHOP
	Setting
	Participants
	Event Schedule

	STUDENT EXPERIENCES WITH BONK
	Student Games
	Game Features

	Working in Groups
	Creativity and Play
	Usability and Accessibility Issues
	Limitations of the Framework
	Student Feedback

	DISCUSSION
	FUTURE WORK
	CONCLUSION
	Selection and Participation of Children
	Acknowledgments
	REFERENCES

