Bonk: Accessible Programming for Accessible Audio
Games

Shaun K. Kane, Varsha Koushik, and Annika Muehlbradt
Department of Computer Science
University of Colorado Boulder
Boulder, CO 80309 USA
{shaun.kane, varsha.koushik, annika.muehlbradt} @colorado.edu

ABSTRACT

Introductory computer programming presents a number of
challenges for blind and visually impaired screen reader us-
ers. In addition to the challenges of navigating complex code
documents using a screen reader, novice programmers who
are blind are often unable to experience fun coding projects
such as programming games or animations. To address these
accessibility barriers, we developed Bonk, an accessible pro-
gramming environment that enables the creation of interac-
tive audio games using a subset of the JavaScript program-
ming language. Bonk enables novice programmers to create,
share, play, and remix accessible audio games. In this paper,
we introduce the Bonk programming toolkit and describe its
use in a week-long programming workshop with blind and
visually impaired high school students. Students in the work-
shop were able to create and share original audio games us-
ing Bonk, and expressed enthusiasm about furthering their
programming knowledge.

Author Keywords
Audio games; accessibility; blindness; K12; computer sci-
ence education.

ACM Classification Keywords
CCS — Human-centered computing — Accessibility —
Accessibility technologies.

INTRODUCTION

Learning to code is now considered a fundamental step in
developing one’s ability to think and solve problems, as well
as opening up opportunities for learning, creative expression,
and employment. As US President Barack Obama com-
mented during 2014°s Hour of Code [22],

No one’s born a computer scientist, but with a little hard
work, and some math and science, just about anyone can
become one.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

IDC '18, June 19-22, 2018, Trondheim, Norway © 2018 Copyright is held
by the owner/author(s). Publication rights licensed to ACM. ACM ISBN
978-1-4503-5152-2/18/06...$15.00
https://doi.org/10.1145/3202185.3202754

Figure 1. Blind and visually impaired students design and
program accessible video games in a programming workshop.
Image (c) 2017 National Federation of the Blind.

As ever, there is value in identifying who may not be counted
within this definition of “just about anyone,” and to under-
stand what barriers that those individuals may face.

As we consider how to move from computing for just about
everyone to computing for all, we encounter barriers related
to the accessibility of programming tools for people with dis-
abilities [18]. Learning how to code may have additional
benefits for people with disabilities, who can empower them-
selves to solve some of the accessibility challenges that they
may encounter in the world [17]. However, just as with any
complex tool, programming languages and environments
may create accessibility barriers if they are not designed to
support people of all abilities.

One approach that has been shown to increase engagement
and retention for novice programmers is media computation
[9], which situates the process of learning about program-
ming within the context of creating and sharing media such
as video games [19] or animated 3D movies [14].

Teaching programming through media has been shown to in-
crease engagement with programming tasks, including for
underrepresented groups such as young girls [14]. However,
these representations can present significant accessibility
challenges for novice programmers who cannot access video
media, including blind and visually impaired people.

mailto:Permissions@acm.org
https://doi.org/10.1145/3202185.3202754

When introductory programming activities are inaccessible
to some learners, this not only means that they cannot partic-
ipate in those activities, but may also reinforce the idea that
the entire field of computer programming is inaccessible.
Thus, there exists a need to create programming experiences
that can be both created and enjoyed by people of all abilities.
Ideally, these experiences would not be designed as a “patch”
on an existing inaccessible system, nor as an isolated com-
munity that is only of interest to people with disabilities, but
would instead support and engage people of all abilities [35].

To explore the potential of accessible programming tools
with accessible output, we developed Bonk, a programming
toolkit that enables novice programmers to explore computer
science through developing and sharing interactive audio
games. Bonk provides a simplified, scaffolded interface for
creating complex audio interactions, abstracting away chal-
lenges of playing sounds and rendering speech output. Bonk
programs can be rendered in various forms: as text, as audio
rendered in a screen reader, or through an embedded “self-
voicing” text-to-speech system. By supporting robust forms
of output, Bonk embodies the approach of accessible pro-
gramming tools for accessible media.

In the following sections, we introduce the Bonk program-
ming toolkit and present example games and reflections from
an evaluation of Bonk with ten blind high school students.
The contributions of this paper are:

1) Design rationale and implementation of Bonk, a “built-ac-
cessible” programming toolkit;

2) Observations about this approach from a week-long pro-
gramming workshop with blind high school students;

3) Proof-of-concept accessible games, developed by blind
students, that demonstrates the types of games that can
(and cannot) be made with Bonk;

4) As a secondary contribution: a case study analysis of
group coding between blind programmers, enabled by
Bonk’s support for code sharing and remixing.

RELATED WORK

Learning Environments for Programming

Research about how to effectively teach computer science
has developed for nearly 50 years [8]. The canon of computer
science education research addresses many pedagogical
methods, programming languages, and development tools.
Our present work, however, is motivated by several key
threads of CS education research.

As previously mentioned, the present work is motivated by a
media computation approach [9]. This approach has been
shown to increase engagement from novice programmers. In
this work, we not only explore how to support computational
creation of accessible media, but explore the implications of
using accessible and inaccessible media in introductory pro-
gramming exercises.

Our research is also motivated by the design of construction-
ist programming environments such as Scratch [21]. While

much attention has been paid to Scratch’s use of visual
blocks to construct programs, Bonk draws on Scratch’s ap-
proach to creating and sharing artifacts. As with Scratch,
Bonk aims to be tinkerable, meaningful, and social [26].

Finally, our work is motivated by narrative-based program-
ming tools such as Storytelling Alice [14] and Looking Glass
[10]. Engaging in storytelling creates opportunities to ex-
plore topics such as object-oriented design, functions, and
loops [13]. Furthermore, programming a story does not in-
herently require any specific medium: thus, stories can be
universally designed and presented in multiple formats to en-
gage people with a range of abilities.

Accessible Programming Tools

Researchers have explored a variety of approaches to im-
proving the accessibility of programming tools, including
programming languages that are optimized for accessibility,
tools to address specific programming challenges, and soft-
ware libraries for producing accessible content.

Much current research around programming for blind and
visually impaired users focuses on the Quorum programming
language [31], which has been designed in collaboration
with, and extensively tested by, blind and visually impaired
people. Quorum offers support for programming audio-
based programs, although the focus is on creating more ad-
vanced programs than we explore here. APL [29] is a pro-
gramming language designed by blind programmers, which
offers code structures that would be intuitive for blind pro-
grammers. Torino [32] is a tangible programming toolkit that
enables children to create programs by assembling physical
blocks. Other researchers have explored how to create acces-
sible versions of block-based programs, typically by adding
non-visual information through audio [15,24]. Bonk comple-
ments these approaches: while our current prototype was
built using JavaScript, our approach can be adapted to any
language.

A second thread of research has focused on identifying chal-
lenges experienced by current blind programmers, and de-
veloping tools to address these challenges. Albusays and
Ludi surveyed 69 blind programmers and found many com-
mon problems, including inaccessible IDEs, diagrams with
no non-visual alternative, and difficulties navigating code
and debugging output [1]. Sodbeans [30] and StructJumper
[2] are tools that provide audio feedback to increase under-
standing while navigating program code. As our focus is on
creating compelling output from users’ code, our work com-
plements this prior research.

Some prior research has explored activities that can be made
accessible to blind programmers through applications such
as robotics [20], chatbots [4], and data science [12]. Bonk
explores the use of audio games as a medium for learning
programming, and adds the additional feature of collabora-
tively writing and sharing code.

Audio Games

Speech, nonspeech audio, and spatial audio have been used
as alternatives to visual information in video games [36]. Au-
dio Battleship [28] and Finger Dance [23] are games that
were designed by researchers to explore how to create acces-
sible audio games, but were not targeted at a mainstream au-
dience. Blindsight! and Papa Sangre? were audio-only mo-
bile games that were popular among blind gamers. More re-
cently, some audio games (e.g., Earplay®) have targeted a
mainstream audience, focusing on contexts such as gaming
while mobile and interacting with voice agents such as Am-
azon Alexa. These games tend to support more narrative
gameplay types such as interactive stories [27]. Bonk works
similarly to these prior games, but enables audio games to be
created by blind novice programmers.

Accessibility and Collaborative Work

In recent years, some researchers have moved away from fo-
cusing on accessibility issues that occur between a user and
computing device, and instead have focused on how technol-
ogy can help people with different abilities work together.
Prior research has shown that collaborative tasks may be hin-
dered by a lack of visual feedback, or due to overhead from
using a screen reader [5,6,34]. While these studies have typ-
ically focused on interactions between blind and sighted in-
dividuals, our current research complements this work by il-
lustrating the opportunities and challenges of collaborative
programming between multiple blind coders.

TOWARDS ACCESSIBLE MEDIA COMPUTATION

Our primary goal in this work is to explore programming
tools for creating engaging, accessible, shareable media. In
developing Bonk, we were guided by the following goals,
drawn from prior research on accessible programming envi-
ronments and the prior experiences of our research team:

Easy deployment. Setting up software environments can be
difficult for novices, and may be especially difficult when
using assistive technology [6]. Thus, the programming tool
should be available on a variety of computing devices with-
out requiring software to be installed.

Universal playback. Individuals may use a variety of assis-
tive technologies, including screen readers, magnifiers, or
Braille displays [11]. Thus, program output should be playa-
ble on different devices (PCs, mobile devices, assistive tech-
nology) and in multiple media (text-to-speech, Braille).

Expressive output. Integrating creative expression into pro-
gramming tasks can improve engagement [9,26]. In fact,
prior research with blind novice programmers found that the
programmers altered their text-to-speech device settings to
produce interesting sounds [12]. Thus, the programming lan-
guage should enable users to express creative control over
the program output.

! blindsidegame.com
2 papasangre.com
3 earplay.com

Easy sharing and remixing. Novice programmers may bene-
fit from examining and building upon the code of others [26].
Furthermore, these programmers may be motivated by the
ability to show off their work to friends [9]. Thus, program-
mers should be able to easily share their code and view code
created by others.

Learn programming concepts in context. Introductory pro-
gramming environments should emphasize computational
thinking concepts such as sequences, loops, conditions, and
events [7]. These concepts should be tied to the novice’s
goals so that mastering these concepts will help the learner
achieve her goals.

DESIGN OF BONK
We developed Bonk, a programming toolkit that supports ac-
cessible programming of accessible media. The main com-
ponents of Bonk are its audio game programming frame-
work, web-based development environment, and HTML5-
based game engine.

Audio Game Programming Framework

Bonk offers a scaffolded framework, based on JavaScript,
that is optimized for creating interactive audio games. This
framework abstracts away the complexities of text-to-speech
audio, sound playback, and processing user input.

What Can You Make with Bonk?

We originally developed this tool with the intent of support-
ing interactive audio stories, similar to classic text adventure
games, Choose Your Own Adventure books, and modern
text-based game systems such as Inform* and Twine>. Devel-
opers can create an audio story, including speech and envi-
ronmental sounds, and provide multiple paths that a player
can follow. Bonk programs can react to specific keypresses,
or specific strings typed by a player. Bonk also provides sup-
port for timed events, allowing developers to create simple
action games.

As shown in our formative user study, this relatively simple
set of tools allows for the creation of various types of games
and content, including audio stories, interactive fiction, trivia
games, and action games.

Program Structure

Bonk code is written in JavaScript, with an extensive set of
convenience functions that reduce the overhead of creating
programs. We chose to build Bonk on top of JavaScript so
that the resulting programs could be run on any device with
a modern web browser. Bonk uses the HTMLS Web Speech
API for text-to-speech output, and the Web Audio API for
sound effects. Figure 2 shows an example program.

Bonk programs are scaffolded to avoid the complexity of
handling web page events. Each Bonk program has a func-
tion, called run. Code inside this function will run one time

4 inform7.com
3 twinery.org

once the web page, speech engine, and sound files have
loaded. This approach is similar to that used by Processing
[25] and Arduino [16]. To reduce the ambiguity of identify-
ing function names when using a screen reader, all built-in
functions are written in lowercase, and multi-word functions
are separated by underscores (e.g., add_text_box).

function run(game) {

game.speak("You walk down a narrow stairwell.");

var sound = new Sound("stairs");

sound.play();

game.speak("There is a big crowd here. On your left is the concession stand.
The line is very long. On the right is the way to the restroom. It is completely
packed.");

var crowd = new Sound("crowd");

crowd.play();

game.speak("You probably don't have time for either of these, so you better
get to your seat! Another stairway ahead of you goes to the seating area.");

game.speak("Press w to walk up the stairs, and s to go back.");

}

function on_key_press(key) {
if (key == 'w') {
game.go_to_room("Either_one_seats");
} else if (key == 's') {
game.go_to_room("Either_one_first_choice v.2");
}
}

Figure 2. Example program created by a blind programmer.
This example features text-to-speech, sound effects, key input,
and a branching story structure.

Text-to-Speech

The key component of Bonk’s interactive audio games is its
text-to-speech component. This component is designed to
simplify control of the text-to-speech engine, and to provide
the developer with extensive control over speech output.

Creating an audio-based user interface can be challenging,
especially for novice programmers. On many platforms, in-
cluding the web, speech and audio output must be controlled
using multithreaded programming. Incorrectly programming
the speech threads could either cause the program to freeze
up, or would cause all audio to play at once.

Bonk abstracts away the need to manage audio playback
threads by queueing all audio commands, and managing their
playback in a background thread. As an example of this chal-
lenge, the program in Figure 2 alternates between reading out
text-to-speech messages and playing sound effects. Using the
standard HTMLS5, this code would either freeze the browser
until all audio had played (if run synchronously), or would
play all sounds at once (if run asynchronously). To solve this
problem, Bonk’s speak and play functions add each action
to a queue. At runtime, Bonk manages the background thread
to play the audio output with proper timing, allowing the de-
veloper to create audio output as easily as text output.

Bonk’s text-to-speech engine is designed to provide devel-
opers with control over voice parameters, including the spe-
cific voice, pitch, playback speed, and volume. In a prior pro-
gramming workshop for blind students, the students enter-
tained themselves by setting their text-to-speech settings to
extreme values, such as a very fast and high-pitched voice,

¢ freesound.org

or a very slow and deep voice [12]. Bonk provides simple
functions for changing text-to-speech parameters. Bonk also
provides the ability to create multiple character profiles, each
with a distinct voice, enabling developers to easily create au-
dio stories with multiple characters.

Sound Effects

The other major component of Bonk’s audio game is support
for sound effects. As with text-to-speech, Bonk automati-
cally manages the playback of multiple sounds in sequence.
Furthermore, Bonk provides an integrated sound effect
search feature, enabling developers to add sound effects to
their program by simply typing the name of the desired ef-
fect. Bonk’s sound effect library automatically finds an ap-
propriate sound effect and plays it back.

When the user enters the name of a sound effect, Bonk auto-
matically searches the Freesound® open source sound library
for sounds matching the search terms that are close to 5 sec-
onds in length; by default, Bonk plays the best matched
sound. The purpose of this feature is to enable novice devel-
opers to sketch out an audio game as easily as they might
sketch out a character for a video game. During our work-
shop, students added a variety of sound effects to their
games, including bite, boing, bonk, cheer, club party, com-
puter, crowd, dance music, dance party, elevator, fanfare,
jazz, laughter, loop, monster, music, rain, running, siri,
stairs, storm, warzone, and water.

Handling User Input

As mentioned previously, handling web page events can be
extremely challenging for novice developers. Once again,
Bonk provides simplified access to user input handling.
Bonk supports two types of input events: key presses and text
input. As in Processing and Arduino, Bonk developers can
add event handling to their code simply by adding a specially
named function to their code. To respond to single key-
presses, the developer adds the function on_key_press to
their code. To handle string input, such as text command, the
developer initializes a textbox by adding a call to
add_text_box in their main function, and adding the
on_text_box to their code. This structure allows program-
mers to easily add input handling despite the web’s compli-
cated event model. Bonk also offers start_timer and
on_time_out functions for timed input.

Branching Structure

Managing a game’s state can quickly become complicated.
Bonk supports more complex games by allowing developers
to link different code snippets together. For example, to cre-
ate a maze game in which the player can move north, south,
west, or east, the developer can create a separate “room” for
each direction, and link them together using the go_to_room
command. This feature allows the developer to separate a
game into smaller, manageable chunks, and enables multiple
coders to work on a single game in parallel.

Collaborative Coding Environment

Bonk programs are written, shared, and run via a web appli-
cation, written in Node.js and using a MySQL database. This
design was chosen to support our goals of easy deployment
and easy sharing/remixing. Bonk is similar to Scratch [26] in
that, at any time, a user can view the code of a running pro-
gram, create a copy of that code, and remix the code. All code
is entered via an HTML form (Figure 3).

i} g 9 1 & O o 0 »

+

Making copy of game: Letter Say V2

Code Text:

var amy = new Character("female”);
function run{game)
amy.speak("Press a Random Key"});

}

function on_key press(key) {
if(key == 'a'){amy.speak("a")}
else if(key == 'b'){amy.speak("b"
else if(key == 'c'){amy.speak("c"
else if(key == 'd’){amy.speak("d"
else if(key == 'e’){amy.speak("e"
else if(key == 'f'){amy.speak("f")}
)
h
i
3

else if(key == 'g'){amy.speak("g"
h'){amy.speak("h"

else if(key =
else if(key == 'i'){amy.speak("i"
else if(key == 'j'){amy.speak("j"

Your name:

Name your game (optional):

Test Your Game

Return 1o start page

Figure 3. Bonk coding environment. Bonk programs are
hosted on a central web repository where they can easily be
shared and remixed.

When creating a new game, the developer enters the code
into a code window, adds their name, and adds the name of
their game. If the developer does not specify a name for their
game, Bonk automatically assigns a name from a list of com-
mon words, as in URL shortening services like shout-
key.com. These automatically assigned names are easy to re-
member and easy to verbally share.

The Bonk web site contains a number of additional features:
a list of recently created games, documentation for each
function, a set of example games and source code, and a dis-
cussion forum.

Game Playback

Games created in Bonk are written in HTML and JavaScript,
and can be played in any modern desktop or mobile browser.
Games are shared with short, memorable URLSs.

By default, Bonk presents the game content both as text-to-
speech and on-screen text (Figure 4). Bonk games are self-
voicing, using the HTML5 Web Speech API to support a va-
riety of voice settings. It is possible to disable self-voicing
mode: in this case, Bonk does not create its own speech out-
put, but allows the user to render text using their own screen
reader. While this mode reduces the expressive capabilities
of Bonk’s text-to-speech, some users may prefer to use their
own customized voice settings.

EXPLORATORY CODING WORKSHOP
To understand the strengths and limitations of Bonk’s ap-
proach, we tested the initial version of Bonk as part of a

week-long coding workshop with 10 blind and visually im-
paired high school students.

Setting

The coding workshop took place as part of a larger STEM-
learning camp hosted by a national organization serving
blind and visually impaired high school students. Students
chose one subject track, which met for half of each day for
five days. Students participated in mini activities in the after-
noons, and all of the students attending the camp met up on
the last day to show off their work.

Audio Game

Welcome to the haunted mansion. You are in the foyer.
You are required in the library. Do be careful finding your way
Press n to go north, s to go south, e to go east, and w to go west.

Return to start page

Figure 4. Bonk games are played in the web browser. Bonk’s
player provides various accessibility features, including high-
contrast text and customizable text-to-speech output.

Participants

The computer science workshop track featured 10 students,
ranging in age from 14 to 18. These students used a variety
of assistive technologies to access their computing devices.
A few students had some prior programming experience, but
most of the students had never programmed before, and some
had limited experience using computers and screen readers.

Gender Assistive Tech. Programming?

S1 F screen reader, Braille v
S2 M screen reader v
S3 M screen reader

S4 M screen reader

S5 M magnifier

S6 M screen reader v
S7 M screen reader

S8 M screen reader v
S9 M magnifier

S10 M magnifier

TA1 M screen reader

TA2 M screen reader v
TA3 F screen reader v

Table 1. Students and teaching assistants who participating in
the coding workshop, their preferred assistive technology, and
their prior programming experience.

The workshop was managed by three members of the re-
search team. Additional support was provided by three teach-
ing assistants, who were blind and low vision adults, alt-
hough only two of the teaching assistants had any prior ex-
perience with computer programming.

Event Schedule

The workshop took place over 5 days, from approximately
8AM until noon. Each meeting included a variety of activi-
ties, including group discussions, solo and group program-
ming. Because students came in with a wide range of expe-
rience with computers, the researchers provided written tu-
torials and exercises that students could follow inde-
pendently, with other students, or with help from a TA or
researcher. Each participant was provided with their own
Windows laptop with the JAWS Screen Reader. Table 2
shows the daily schedule:

Day Activities

Introduction to computer science concepts, acting out
1 algorithms (as in CS Unplugged [3]), getting set up with
assistive technology, basics of writing code.

Programming tutorials: expressions, variables, func-

2 tions, objects, text-to-speech, sound effects.

3 Finish prqgramming tutorials. Brainstorm game ideas.
Form project groups.

4 Programming and testing games.

5 Final game testing. Group discussion and feedback.

Project expo.

Table 2. Workshop schedule.

On Days 1, 2 and 4, the class discussed computing careers
via Skype with blind computing professionals.

STUDENT EXPERIENCES WITH BONK
Here we report on the use of our accessible programming
tools over the course of the week-long workshop.

Student Games

Students developed a variety of games over the course of the
week. Although each student progressed at a different pace,
each student uploaded at least one working program over the
course of the week. During the third day, students formed
into four project groups, and worked with their group for the
rest of the week.

The four games are summarized in Table 3. Students de-
signed the following games:

CS Mad Lib. Students developed a humorous game based on
Mad Libs, in which the player is asked to name a set of words
that fit certain criteria (e.g., adjective, place name), which
were then inserted into a story.

WebNote. WebNote is a music-themed game, which origi-
nally began as two separate games, an interactive piano key-
board and a music trivia, name-that-tune game. The two stu-
dents developed their games independently on the first day,
and worked together on the second day to combine them via
a unified game menu.

Either One. Students in this group developed a Choose Your
Own Adventure-style game. This game was the most com-
plex, with 13 different scenes. The group divided the work
between multiple students, and assembled the complete
game on the final day.

Labyrinth. One student chose to create a game on his own.
This game was a maze-style game that required the player to
navigate the maze and answer riddles.

Game Features

The students’ games used several of Bonk’s advanced fea-
tures. All games included some text-to-speech output and in-
teractivity. Three out of the four games used sound effects,
custom voices, and branching paths.

In two cases, student groups decided to add features to their
games that were not directly supported by the Bonk program-
ming framework. The group that made CS Mad Lib wanted
to add several text boxes to a single page, which was not
originally supported by Bonk. By working with the teaching
staff, the students were able to add this feature to their game.
The group that made WebNote wished to add audio playback
of specific music notes to their game. One student from that
group, who had some prior programming experience, re-
searched several ways to add musical note playback, and
worked with the instructors to add this feature to the game.

Working in Groups

At the start of the workshop, students mostly completed tasks
alone or with the help of one of the instructors. Over the
course of the workshop, with some encouragement from the
instructors, students began working together to write code,
debug each other’s code, and test games. Because there were
more students than instructors, students sometimes sought

Team Lines of Num. Speech Keyboard Text Sound Custom Branching Other
Size code scenes output navigation input effects voices paths features
CS Mad Lib 4 63 2 v v v v Form input
WebNote 2 78 3 v v Music
Either One 3 102 13 v v v v v
Labyrinth 1 92 9 v 4 v v 4

Table 3. Student teams created four games for the end-of-workshop project demonstration. These projects included several of
Bonk’s language features, including various forms of user input, customized user output, and branching story paths.

help from their peers rather than waiting for an instructor to
become available.

On the third day, the instructors led the students through a
brainstorming activity in which each student came up with
several game ideas. Based on these ideas, students formed
loose groups around broad topics: music games, interactive
stories, and a Mad Libs-style game. After further discussion,
the students formed their final project groups, and worked
with their group for the remaining two days.

Collaboration took several forms within the project groups.
In the CS Mad Lib group, students rotated roles over the
course of their work. One student, who had been assigned a
programming task by the de facto project leader, finished his
coding early. He then took on the role of debugger, helping
the other students in his group with their code. The group that
created Either One assigned each member a specific role:
lead programmer, lead tester, lead designer, and lead debug-
ger (shared between the three students). Their game ends
with a credits scene. The group that created WebNote mostly
worked independently, occasionally sharing programming
tips, until they combined their two games into a larger game
on the final day of the workshop.

Creativity and Play
In addition to their coordinated group work, students occa-
sionally participated in informal social interaction and play.
The CS Mad Lib Group “performed” their game to the class-
room, showing off the humor of their game. One student
from the Either One group started a side project of his own,
creating several audio stories featuring characters that he de-
veloped, each with different voices and personalities (Figure
5). One of the teaching assistants created a series of small
puzzle games and shared them with the students; these games
were intentionally designed to be frustrating, confusing, or
impossible to “win.”

var forever = new Character("female, 1,9");

forever.speak("hello guys, i am forever")

var isabellelu = new Character("female, 1.9");

isabellelu.speak("forever i was just there, i saw you and we should go to a

performance of classical music")

var jenny = new Character("female, 1.4");

jenny.speak("yeah lets go and bring hyeong jeong she really wants to go i used to

play classical music its very fun")

var renali = new Character("female, 1.3");

renali.speak("” yeah i play in our schools orchestra with vy 1i and gqyuhn")

var brent = new Character("male, 1.4")

brent.speak(" oh my god its rena stone come here its rena 1i she sent me a text

shes so awesome as you know i really like rena")

var stone = new Character("male, 1.5")

stone.speak(” yes i know you used to really like her do you still?")

Figure 5. Sample code from a student’s side project, which
uses multiple voices to create a sophisticated audio story.

Usability and Accessibility Issues

While all students were able to create some code, and were
able to contribute to their final group projects, students occa-
sionally encountered usability or accessibility issues using
this initial version of Bonk. These problems are briefly sum-
marized here.

Problems with assistive technology. Students in the work-
shop used several assistive technology devices, including

screen readers, screen magnifiers, Braille displays, or a com-
bination of several devices, and use of these devices some-
times caused errors. A software bug in the HTML code editor
occasionally caused some error messages to be hidden, mak-
ing it difficult to debug problems. This problem was fixed in
the code, but caused some frustration early on. The screen
reader software also sometimes captured the game player’s
keyboard input such that the game code did not detect the
input. This issue could be overcome by entering a “pass-
through” command to the screen reader; however, some stu-
dents did not know about this pass-through feature, and in-
stead turned their screen reader off to play the game, which
sometimes caused problems if the student did not know how
to reactivate the screen reader.

Another issue arose for students who brought their own as-
sistive technologies, as some devices could not connect to
the workshop network or to the laptops provided by the
workshop organizers. One student brought her own refresh-
able Braille display, which she preferred to use when reading
source code, but could not connect the device to the network.
As a result, she chose to copy the relevant files from the lap-
top to the Braille device via a USB drive, and to copy them
back when she was finished.

Barriers to collaboration. In some cases, students had diffi-
culty working together due to problems integrating their as-
sistive technologies. Several students had very little experi-
ence in using the JAWS screen reader, and required exten-
sive help from the teaching assistants. However, in some
cases, the teaching assistants were not familiar with the stu-
dent’s screen reader configuration, and therefore had diffi-
culty supporting the student. In a few cases, students were
able to help each other when the teaching assistant was un-
familiar with a specific issue.

In another case, a teaching assistant experienced difficulty in
helping a student because she could not follow along with
the student’s screen reader output. Eventually the teaching
assistant was able to acquire a headphone splitter, and was
then able to follow along more easily.

Difficulties sharing and versioning documents. The Bonk
programming environment was intentionally designed to
avoid problems related to file management. Instead of man-
aging a file system, each Bonk game was assigned a unique
URL, and files cannot be deleted. Students sometimes had
difficulty editing a document, and instead made copies of
their documents, which resulted in duplicate documents with
confusing names such as game, game vi, etc. Likewise,
sometimes students had difficulty remembering and sharing
the names of their games, especially multi-word names,
where students might confuse names that are delimited by
spaces, dashes, underscores, or camel case.

Syntax errors. As is to be expected, the novice programmers
who participated in the workshop sometimes struggled with
syntax errors in their code. These errors included common
errors such as mismatching brackets and typing variable

names inconsistently. In some cases, these issues were
clearly exacerbated by the student’s vision impairment: some
of the students who used screen magnification sometimes
had difficulty reading the symbols, and had difficulty seeing
structural problems with their code because they had zoomed
in their screen, and thus could not see the top-level program
structure. Bonk’s editor did not provide syntax highlighting
or line numbering, which may have caused some additional
problems.

Limitations of the Framework

One issue that affected several students toward the end of the
workshop was when students wished to perform some tasks
that were not directly supported by the framework. In some
cases, we were able to extend the framework during the
workshop to increase functionality. For example, the
WebNote group requested the ability to play a sound file
based on a URL (rather than a search term); we were able to
add this function to the sound effect library between work-
shop meetings.

However, some limitations of the framework were more dif-
ficult to overcome. Because Bonk provides extensive scaf-
folding in some areas, performing some tasks that seemed
like they should be simple were instead surprisingly difficult.
One example of this phenomenon was related to form input.
Bonk provides the capability to generate text input boxes
from JavaScript code. This feature enabled students to create
form-based games without having to learn how to create
HTML forms and connect them to JavaScript. This feature
was designed to support only one text box per page, as we
assumed that this would be used to support text commands.
However, the CS Mad Lib group wished to add multiple
forms to their page, which was not supported by the Bonk
framework. We were able to add some limited functionality
for supporting multiple text inputs, but because this was not
part of our expected interaction model, the feature was not
well integrated into the rest of the framework, nor was it de-
scribed in the programming language documentation.

Other limitations of the current framework included the ina-
bility to set permanent game states, such as whether the
player had picked up an object, which would require storing
state between rooms (and HTML pages), and the ability to
add background music, which would require modifying
Bonk’s audio queue feature. Supporting both a “low floor”
and “high ceiling” [26] for accessible audio game program-
ming presents an exciting challenge for future research.

Student Feedback

On the final day of the workshop, we facilitated a group dis-
cussion about the students’ experience during the workshop,
and their suggestions for improvements to both the structure
of the workshop and to the Bonk framework.

We asked students what they liked most about the workshop.
Several students mentioned that they were pleased with the
quality of the game that they were able to create in such a

short time. Other students mentioned that they enjoyed learn-
ing the basics of a “real” programming language like JavaS-
cript. One student said, “It was our first game in JavaScript
and it actually had some substance.” One student praised the
ability to create multiple voices and characters. Students said
that they enjoyed working in groups, and appreciated the op-
portunity to design and develop their own games.

When asked what was difficult or frustrating about the work-
shop, students mentioned troubleshooting errors, connecting
the system to a Braille display, and reading some of the on-
screen text. Several of the students who came in with pro-
gramming experience noted that they wished to go beyond
the capabilities of the current framework.

Finally, we asked students what they would like to do if they
had more time. One student mentioned that he would like to
create more stories using the skills he had already developed.
One student, who had some vision, said that he would like to
develop graphical user interfaces, animations, or 3D
graphics. Students also commented that they would be inter-
ested in creating web sites and forms, programming robots,
working with databases, and learning more about computing
fundamentals such as how data is represented in computer
memory. Overall, the students expressed that they had en-
joyed the workshop, and several students expressed enthusi-
asm about furthering their computer science education.

DISCUSSION

In this research, we developed a new programming toolkit
that enables blind and visually impaired novice programmers
to create accessible audio games. So, was our approach suc-
cessful?

In the specific context of our week-long coding workshop,
we would argue that the answer is yes. Students entered the
workshop with a range of computer literacy and program-
ming experience. In one week, all of the students were able
to create their own audio games. While the experience was
heavily scaffolded, most students still said that they felt they
had gained “real” programming experience. Students fully
engaged in the creative aspects of programming audio
games, including integrating creative writing and humor into
their games, and creating mini-games as a form of social
play.

One challenge that was uncovered by this study is that we
must ensure that Bonk provides both a “low floor” and a
“high ceiling” [26]. A key component of Bonk’s design is
that it abstracts away some particular challenges of creating
audio games, including managing speech and audio output,
handling user input, and supporting sharing and remixing of
games. In the future, we may explore how the various com-
ponents of this system can be made modular, and can be
combined and remixed with other programming tools. For
example, a future descendant of Bonk could allow a student
who is learning programming to create an audio story using
Bonk’s speech and sound libraries, embed this story into a

Quorum program, and share the result with friends via an
online code portfolio.

FUTURE WORK

This work represents an initial step toward creating accessi-
ble programming tools for accessible media. Our initial de-
ployment of Bonk has revealed numerous opportunities for
improving the current programming toolkit, including
providing features for more advanced programmers, support-
ing transfer from scaffolded introductory programming tools
to more traditional programming tools, and extending
Bonk’s ability to create interactive stories and games.

Another topic that we are eager to explore is how tools like
Bonk can be used to support collaborative work among peo-
ple with vision impairments. Students in our programming
workshop used Bonk as a tool to support creative expression
and social interaction; this suggests that there is exciting po-
tential in using shared production of accessible media to sup-
port social engagement.

Finally, we are excited by Bonk’s potential as a platform for
exploring and promoting “born-accessible” content [33]. Our
approach with Bonk has not been to repair existing media
computation platforms by bolting on accessibility, nor is it to
develop a programming community that exists by and for
blind programmers. Instead, this work is built around inter-
active games and stories that are not restricted to any partic-
ular representation. While this version of Bonk focuses pri-
marily on supporting rich audio output, there is no reason
that a future version could not render the same underlying
source files as an animation, automatically generating visu-
als to match the story, or in any other format. We are excited
to explore this platform not only as an accessible program-
ming environment, but rather as a tool that is built from the
ground up to create accessible media. For people who may
currently be excluded from inaccessible media, Bonk could
potentially empower them to bring more accessible media
into the world, while for those people who are not used to
encountering accessibility barriers in their own lives, this
kind of tool may provide new insight on how we can all work
toward a more accessible and equitable future.

CONCLUSION

We introduced Bonk, an accessible programming environ-
ment for creating accessible media. Bonk provides low bar-
riers to entry for creating accessible audio games, and can
enable aspiring programmers to develop their skills by creat-
ing, sharing, and remixing games that are built from the
ground up to be accessible. A formative evaluation of Bonk
with 10 blind and visually impaired high school students
showed that this approach can enable students with a range
of technical ability to create and share games, and that this
accessible and collaborative programming environment can
support shared creative work and play for people with a
range of abilities.

SELECTION AND PARTICIPATION OF CHILDREN

This activity took place as part of a larger workshop con-
ducted by a national organization serving blind and visually
impaired children. The organizers of the event recruited the
students; students then chose between a number of available
workshops, including our computer science workshop. All
children who participated in the workshop, and their parents,
completed a consent form and photo release as part of their
participation in the week-long event. This consent process
was managed by the national organization; all of our activi-
ties took place within their broader framework and through
collaboration with the event organizers.

ACKNOWLEDGMENTS

We thank our workshop participants and teaching assistants
for their help in organizing the workshop. This work was
supported by AccessComputing, and by the National Science
Foundation under grants 11S-1619384 and 11S-1652907. Any
opinions, findings, conclusions or recommendations ex-
pressed in this work are those of the authors and do not nec-
essarily reflect those of the National Science Foundation.

REFERENCES

1. Khaled Albusays and Stephanie Ludi. 2016. Eliciting
Programming Challenges Faced by Developers with
Visual Impairments: Exploratory Study. In Proceedings
of the 9th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE ’16),
82-85. https://doi.org/10.1145/2897586.2897616

2. Catherine M. Baker, Lauren R. Milne, and Richard E.
Ladner. 2015. StructJumper: A Tool to Help Blind Pro-
grammers Navigate and Understand the Structure of
Code. In Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems (CHI
’15), 3043-3052.
https://doi.org/10.1145/2702123.2702589

3. Tim Bell, Jason Alexander, Isaac Freeman, and Mick
Grimley. 2009. Computer science unplugged: School
students doing real computing without computers. The
New Zealand Journal of Applied Computing and Infor-
mation Technology 13, 1: 20-29.

4. Jeffrey P. Bigham, Maxwell B. Aller, Jeremy T. Bru-
dvik, Jessica O. Leung, Lindsay A. Yazzolino, and Rich-
ard E. Ladner. 2008. Inspiring Blind High School Stu-
dents to Pursue Computer Science with Instant Messag-
ing Chatbots. In Proceedings of the 39th SIGCSE Tech-
nical Symposium on Computer Science Education
(SIGCSE ’08), 449-453.
https://doi.org/10.1145/1352135.1352287

5. Stacy M. Branham and Shaun K. Kane. 2015. Collabo-
rative Accessibility: How Blind and Sighted Compan-
ions Co-Create Accessible Home Spaces. In Proceed-
ings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15), 2373-2382.
https://doi.org/10.1145/2702123.2702511

6. Stacy M. Branham and Shaun K. Kane. 2015. The Invis-
ible Work of Accessibility: How Blind Employees Man-
age Accessibility in Mixed-Ability Workplaces. In Pro-

ceedings of the 17th International ACM SIGACCESS
Conference on Computers & Accessibility (ASSETS
’15), 163-171.
https://doi.org/10.1145/2700648.2809864

7. Karen Brennan and Mitchel Resnick. 2012. New frame-

works for studying and assessing the development of
computational thinking. In (AERA 2012), 1-25. Re-
trieved September 18, 2017 from

http://scratched.gse.harvard.edu/ct/files/ AERA2012.pdf

8. Maureen Doyle. 2015. SIGCSE Symposium History.
SIGCSE Bull. 47, 4: 7-8.
https://doi.org/10.1145/2856332.2856338

9. Andrea Forte and Mark Guzdial. 2004. Computers for
communication, not calculation: Media as a motivation

and context for learning. In System Sciences, 2004. Pro-

ceedings of the 37th Annual Hawaii International Con-
ference on, 10—pp. Retrieved September 19, 2017 from
http://ieeexplore.ieee.org/abstract/document/1265259/

10.Kyle J. Harms, Jordana H. Kerr, Michelle Ichinco, Mark

Santolucito, Alexis Chuck, Terian Koscik, Mary Chou,
and Caitlin L. Kelleher. 2012. Designing a Community

to Support Long-term Interest in Programming for Mid-
dle School Children. In Proceedings of the 11th Interna-

tional Conference on Interaction Design and Children
(IDC ’12), 304-307.
https://doi.org/10.1145/2307096.2307152

11.Julie A. Jacko, V. Kathlene Leonard, and Ingrid U.
Scott. 2009. Perceptual impairments: New advance-
ments promoting technological access. Human-Com-

puter Interaction: Designing for diverse users and do-
mains: 93-110.

12.Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking
@Stemxcomet: Teaching Programming to Blind Stu-
dents via 3D Printing, Crisis Management, and Twitter.
In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education (SIGCSE ’14), 247—
252. https://doi.org/10.1145/2538862.2538975

13.Caitlin Kelleher and Randy Pausch. 2007. Using story-

telling to motivate programming. Communications of the

ACM 50, 7: 58—-64.

14.Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007.

Storytelling alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
1455-1464. Retrieved September 18, 2017 from
http://dl.acm.org/citation.cfm?id=1240844

15.Varsha Koushik and Clayton Lewis. 2016. An Accessi-

ble Blocks Language: Work in Progress. In Proceedings
of the 18th International ACM SIGACCESS Conference

on Computers and Accessibility (ASSETS ’16), 317—
318. https://doi.org/10.1145/2982142.2982150

16.David Kushner. 2011. The making of arduino. /EEE
Spectrum 26. Retrieved September 18, 2017 from
http://utmechatronics.ir/wp-content/uploads/The-Mak-
ing-of-Arduino-IEEE-Spectrum.pdf

17.Richard E. Ladner. 2015. Design for User Empower-
ment. interactions 22, 2: 24-29.
https://doi.org/10.1145/2723869

18.Richard E. Ladner and Andreas Stefik. 2017. Ac-
cessCSforall: Making Computer Science Accessible to
K-12 Students in the United States. SIGACCESS Access.
Comput., 118: 3-8.
https://doi.org/10.1145/3124144.3124145

19.Scott Leutenegger and Jeffrey Edgington. 2007. A
Games First Approach to Teaching Introductory Pro-
gramming. In Proceedings of the 38th SIGCSE Tech-
nical Symposium on Computer Science Education
(SIGCSE °07), 115-118.
https://doi.org/10.1145/1227310.1227352

20.Stephanie Ludi and Tom Reichlmayr. 2011. The use of
robotics to promote computing to pre-college students
with visual impairments. ACM Transactions on Compu-
ting Education (TOCE) 11, 3: 20.

21.John Maloney, Mitchel Resnick, Natalie Rusk, Brian
Silverman, and Evelyn Eastmond. 2010. The scratch
programming language and environment. ACM Transac-
tions on Computing Education (TOCE) 10, 4: 16.

22 .Ezra Mechaber. 2014. President Obama Is the First Pres-
ident to Write a Line of Code. whitehouse.gov. Re-
trieved September 19, 2017 from
https://obamawhitehouse.ar-
chives.gov/blog/2014/12/10/president-obama-first-presi-
dent-write-line-code

23.Daniel Miller, Aaron Parecki, and Sarah A. Douglas.
2007. Finger Dance: A Sound Game for Blind People. In
Proceedings of the 9th International ACM SIGACCESS
Conference on Computers and Accessibility (Assets
’07), 253-254.
https://doi.org/10.1145/1296843.1296898

24 Lauren R. Milne. 2017. Blocks4All: making block pro-
gramming languages accessible for blind children. ACM
SIGACCESS Accessibility and Computing, 117: 26-29.

25.Casey Reas and Ben Fry. 2006. Processing: program-
ming for the media arts. A1 & SOCIETY 20, 4: 526-538.

26.Mitchel Resnick, John Maloney, Andrés Monroy-Her-
nandez, Natalie Rusk, Evelyn Eastmond, Karen Bren-
nan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: program-
ming for all. Communications of the ACM 52, 11: 60—
67. https://doi.org/10.1145/1592761.1592779

27.Timothy E. Roden, lan Parberry, and David Ducrest.
2007. Toward mobile entertainment: A paradigm for
narrative-based audio only games. Science of Computer
Programming 67, 1: 76-90.

28.Jaime Sanchez. 2005. AudioBattleShip: blind learners
cognition through sound. International Journal on Disa-
bility and Human Development 4, 4: 303-310.

29.Jaime Sanchez and Fernando Aguayo. 2005. Blind
Learners Programming Through Audio. In CHI "05 Ex-
tended Abstracts on Human Factors in Computing Sys-
tems (CHI EA °05), 1769-1772.
https://doi.org/10.1145/1056808.1057018

30.Andreas M. Stefik, Christopher Hundhausen, and Der-
rick Smith. 2011. On the Design of an Educational Infra-
structure for the Blind and Visually Impaired in Com-
puter Science. In Proceedings of the 42Nd ACM Tech-
nical Symposium on Computer Science Education
(SIGCSE ’11), 571-576.
https://doi.org/10.1145/1953163.1953323

31.Andreas Stefik and Susanna Siebert. 2013. An Empirical
Investigation into Programming Language Syntax.
Trans. Comput. Educ. 13, 4: 19:1-19:40.
https://doi.org/10.1145/2534973

32.Anja Thieme, Cecily Morrison, Nicolas Villar, Martin
Grayson, and Sian Lindley. 2017. Enabling Collabora-
tion in Learning Computer Programing Inclusive of
Children with Vision Impairments. In Proceedings of
the 2017 Conference on Designing Interactive Systems
(DIS °17), 739-752.
https://doi.org/10.1145/3064663.3064689

33.Brian Wentz, Paul T. Jaeger, and Jonathan Lazar. 2011.
Retrofitting accessibility: The legal inequality of after-
the-fact online access for persons with disabilities in the
United States. First Monday 16, 11. Retrieved Septem-
ber 19, 2017 from http://journals.uic.edu/ojs/in-
dex.php/fm/article/view/3666

34.Fredrik Winberg and John Bowers. 2004. Assembling
the Senses: Towards the Design of Cooperative Inter-
faces for Visually Impaired Users. In Proceedings of the
2004 ACM Conference on Computer Supported Cooper-
ative Work (CSCW °04), 332-341.
https://doi.org/10.1145/1031607.1031662

35.Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Ga-
jos, Susumu Harada, and Jon Froehlich. 2011. Ability-
Based Design: Concept, Principles and Examples. ACM
Trans. Access. Comput. 3, 3: 9:1-9:27.
https://doi.org/10.1145/1952383.1952384

36.Bei Yuan, Eelke Folmer, and Frederick C. Harris. 2011.
Game accessibility: a survey. Universal Access in the In-
Jformation Society 10, 1: 81-100.

	Bonk: Accessible Programming for Accessible Audio Games
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Learning Environments for Programming
	Accessible Programming Tools
	Audio Games
	Accessibility and Collaborative Work

	TOWARDS accessible media computation
	design of bonk
	Audio Game Programming Framework
	What Can You Make with Bonk?
	Program Structure
	Text-to-Speech
	Sound Effects
	Handling User Input
	Branching Structure

	Collaborative Coding Environment
	Game Playback

	EXPLORATORY CODING WORKSHOP
	Setting
	Participants
	Event Schedule

	STUDENT EXPERIENCES WITH BONK
	Student Games
	Game Features

	Working in Groups
	Creativity and Play
	Usability and Accessibility Issues
	Limitations of the Framework
	Student Feedback

	DISCUSSION
	FUTURE WORK
	CONCLUSION
	Selection and Participation of Children
	Acknowledgments
	REFERENCES

