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Abstract

We give a master formula for the spin-2 spectrum of a class of three-dimensional
Chern-Simons theories at large N, with flavour group containing SU(3), that
arise as infrared fixed points of the D2-brane worldvolume field theory and have
AdS, duals in massive type ITA supergravity. We use this formula to compute
the spin-2 spectrum of the individual theories, discuss its supermultiplet struc-
ture and, for an N/ = 2 theory in this class, the spectrum of protected operators
with spin 2. We also show that the trace of the Kaluza-Klein graviton mass
matrix on the dual AdS, solutions enjoys certain universality properties. These
are shown to relate the class of AdS4 massive ITA solutions under consideration
to a similar class of AdSy solutions of D = 11 supergravity with the same sym-
metries. Finally, for the N'= 2 AdS, solution in this class, we study the entire
spectrum at lowest Kaluza-Klein level and relate it to an analogue solution in

D = 11 supergravity.
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1 Introduction

The existence of Chern-Simons terms in addition to the usual Yang-Mills action in three
dimensions renders the possible dynamics of gauge fields interacting with matter partic-
ularly rich in that number of dimensions. In this case, the Yang-Mills gauge coupling is
irrelevant in the renormalisation group sense, and the Chern-Simons coupling is required by
gauge invariance to be a quantised integer. For these reasons, the low energy dynamics of
the Chern-Simons-Yang-Mills-matter system is dominated, precisely, by the Chern-Simons
contributions. The fact that the Chern-Simons coupling is quantised and, therefore, unable
to run with the energy scale, implies that Chern-Simons-matter theories may also enjoy
conformal symmetry. Supersymmetry, and the tighter control on the dynamics that it
encompasses, can be further added to the picture. Indeed, explicit Lagrangians involving
SU(N) gauge fields with Chern-Simons terms at level (that is, inverse coupling) & and
interacting matter can be constructed that are manifestly superconformal [1]. It is thus
natural to enquire whether these field theories at strong 't Hooft coupling A\ = N/k and
large N enjoy supergravity descriptions.



Some field theories of this type, like the Aharony-Bergman-Jafferis-Maldacena (ABJM)
model [2] on the M2-brane or the ' = 2 infrared fixed point [3] of a certain mass deforma-
tion of the former, are indeed known to have supergravity duals. In those two cases, these
correspond to the AdSy solutions of D = 11 supergravity constructed by Freund-Rubin [4]
and by Corrado, Pilch and Warner (CPW) [5], respectively. These and all other dual pairs
of this type known until recently involved quiver field theories, rather than the simpler
type of theories of [1] with a single gauge group. In fact, most of these simple super-
Chern-Simons-matter theories [1] do not have weakly-coupled AdS, supergravity duals.
The reason is that their spectrum typically contains light operators with unbounded spin
[6], rather than only operators of at most spin 2. Furthermore, the spectrum of these the-
ories tends to exhibit exponential growth at large A\ [6], rather than the polynomial-type
behaviour that a dual Kaluza-Klein (KK) description would predict.

While the results of [6] rule out the existence of large-radius supergravity duals for most
of the simple superconformal field theories in the class of [1], they still leave a handful of
cases with very specific matter content and interactions open to a holographic supergravity
interpretation. Recently, this supergravity description has indeed been found [7]. These
particular superconformal Chern-Simons theories can be engineered as infrared phases
[7, 8] of the field theory defined on a stack of N D2-branes in flat space, three-dimensional
N =8 SU(N) super-Yang-Mills, in the presence of a non-vanishing Romans mass, F, (0)- The
latter is holographically identified with the Chern-Simons level, Fm) = k, similarly to [9].
Accordingly, infrared field theories of this type with N supersymmetries and flavour group
G contained in the SO(7) R-symmetry of the ultraviolet N' = 8 super-Yang-Mills, are dual
to N—supersymmetric AdS, x S% solutions of massive type IIA supergravity [10], equipped
with a metric and background fluxes on the internal six-sphere S® that are locally invariant
under G C SO(T). Precise dual pairs with /' =2,SU(3) x U(1) [7] and N = 3,S0(4) [11]
symmetry have been identified. Massive ITA A/ = 1 solutions in the same class, which still
await a precise field theory interpretation, have also been constructed with Go [12, 13] and
SU(3) [13] symmetry’. Further aspects of these new AdS4/CFT3 dualities have now been
developed in [18, 19, 20, 21, 22, 23, 24, 25, 26].

In this paper, we set out to study holographically an important aspect of these su-
perconformal Chern-Simons-matter theories at large N: their spectrum of single-trace
operators. For any of these theories with supersymmetry A" and flavour group G C SO(7),
the spectrum is organised in representations of G and supermultiplets of the N—extended
three-dimensional superconformal group, OSp(4|A\), with states of up to spin 2. Partial
results are already available. The protected spectrum of the N' = 3,SO(4) field theory
has been investigated directly from the field theory [6]. Also for this N' = 3 theory, the
large- N spectrum of operators, not necessarily protected, with spin 2 has been determined
from the supergravity [27]. The holographic determination of the single-trace operators of
these field theories involves the calculation of the entire KK spectrum of massive type ITA
supergravity on the corresponding AdSy x S% solutions. This appears to be prohibitively
difficult, given the relatively small isometry groups G and the presence of background

'Previously known numerical solutions in the same or a similar class include [14, 15]. A different class
of N'=1 AdS. solutions of massive type ITA has been found recently in [16, 17].



supergravity fluxes. For simplicity, in this paper we will rather focus in the particular sub-
sector of the spectra containing operators of spin 2, for the N' = 2 field theory of [7] and the
(still unknown) A/ = 1 field theories of [12, 13]. This entails the calculation of the spectrum
of KK gravitons about the massive type ITA AdS; x S% solutions of [7, 12, 13]. Previous
calculations of massive KK graviton spectra in related contexts include [28, 29, 30, 31, 32].

While the determination of the entire KK towers of fields of all spin s < 2 on AdSy is a
very difficult problem, we nevertheless do have access to a full sector of the KK spectrum:
the slice containing all s < 2 modes that lie at the bottom, n = 0, of the KK towers of
massive IIA supergravity on any of the relevant AdS, x S% solutions. The reason is that
this class of D2-brane AdS,/CFT3 dualities [7] is very special in that it belongs to the dis-
tinguished class of holographic dualities that enjoy a (partial) large—N effective description
in terms of maximally supersymmetric gauged supergravity. Well-known examples with
this remarkable property include the M2-brane AdS,;/CFT3 examples of [2, 3] and the
D3-brane AdS5;/CFTy cases of [33, 34], whose partial effective description is respectively
provided by D = 4 N = 8 (electrically) gauged SO(8) supergravity [35] and D =5 N =8
SO(6)-gauged supergravity [36]. In the case at hand, the relevant D = 4 N' = 8 supergrav-
ity has a dyonically gauged (in the sense of [37, 38, 39]) ISO(7) = CSO(7,0,1) = SO(7) xR”
gauge group.

This gauged supergravity has been explicitly constructed [40] and shown to arise upon
consistent KK truncation of massive type ITA supergravity on S% [7, 41]. Its (AdS) vacua
[42, 43, 40] (see table 1 of the latter reference for a summary of the known ones) uplift on
S6 to the AdS, x SY solutions [7, 11, 12, 13] of massive type ITA supergravity discussed
above. As in the M2 [2, 3] and D3-brane cases [33, 34], the N = 8 supergravity captures
and reconstructs the full, non-linear dynamics of the modes that arise upon linearisation
of massive IIA supergravity around those AdSy x S% solutions at the n = 0 bottom of the
KK towers. For the maximally supersymmetric cases on the M2 [2] and D3 [33] branes, the
N = 8 supergravity modes are dual to the maximally supersymmetric stress-energy tensor
supermultiplet. For M2 and D3 brane cases with less supersymmetry [3, 34], the NV = 8
modes split into the relevant stress-energy supermultiplet and other matter multiplets. The
present D2-brane examples are like the latter cases, because all vacua of dyonic ISO(7)
supergravity spontaneously break N' = 8 supersymmetry (and SO(7) symmetry).

The vacua of D = 4 N/ = 8 gauged supergravities enjoy a curious universality prop-
erty: vacua of different gauged supergravities that preserve the same symmetry group
G (regarded as a subgroup of their respective gauge groups) tend to exhibit the same
mass spectrum within their corresponding supergravities?, see [37, 42, 45]. This is the
case even if the common residual symmetry G is embedded differently in their respective
gauge groups and ultimately in E (7). For example, electrically-gauged SO(8) supergravity
[35] and dyonic ISO(7) supergravity [40] both have an N/ = 2 AdS critical point with
SU(3) x U(1) residual symmetry [49, 7, 40] with the same mass spectrum [50, 40] within

2This appears to be the case at least for gauged supergravities with a higher-dimensional origin. The
three different SO(4)-invariant vacua [44] of electric SO(8) supergravity [35] have different mass spectra,
but their actual symmetry is also different: they preserve distinct discrete symmetries in addition to each
SO(4). The non-supersymmetric SU(3)—invariant point [45] of dyonic SO(8) supergravity [37] does evade
this rule, but the latter theory does not admit a higher-dimensional origin [46, 47, 48].



their respective N' = 8 theories. For A’ = 8 supergravities that descend from higher di-
mensions, this type of vacua thus display a universal mass spectrum at lowest KK level.
In other words, the n = 0 KK mass spectrum in these cases is insensitive to the precise
higher-dimensional origin and compactification manifold. Two questions therefore arise.

The first question is whether the universality of the n = 0 KK mass spectrum is lost
at higher, n > 0 KK levels. Intuition dictates that this should be the case —a full KK
spectroscopy analysis should be able to tell these compactifications apart. We address this
question for the CPW AdSy solution [5] of D = 11 supergravity and the massive type ITA
AdSy solution of [7]. These correspond respectively to the ST [51] and S [7, 41] uplifts of
the N/ =2 SU(3) x U(1)-invariant critical points of electric SO(8) [49] and dyonic ISO(7)
[7, 40] N' = 8 supergravity. The dual SU(3)-flavoured N/ = 2 field theories have been
discussed in [3] and [7]. Fortunately, we do not need to perform a full KK analysis for
both solutions [5, 7] as the spin-2 subsector suffices to draw conclusions. The respective
towers of massive KK gravitons, computed for the CPW solution in [29] and in this paper
for the solution of [7], do differ already at first KK level. The spectrum of dual spin-2
operators thus differs too.

Somewhat surprisingly, however, universality still persists in a milder capacity. We
introduce the infinite-dimensional graviton mass matrix for these solutions and diagonalise
it at fixed KK level n, for all n = 1,2,... While the individual eigenvalues are indeed
different, leading to different graviton spectra for both solutions [5] and [7], we find that
the graviton mass matrix traces match KK level by KK level. See equation (4.17) for a
more precise statement. Thus, while the strong, eigenvalue by eigenvalue, universality of
the n = 0 KK mass spectra of these solutions is lost at higher KK levels n > 0, a softer
form of universality still persists at the level of the mass matrix traces, at least in the
spin-2 sector. Our analysis also reveals a related universality property. For all AdS, x S6
solutions of massive ITA known to uplift from critical points of dyonic ISO(7) supergravity,
the trace of the graviton mass matrix at fixed KK level n is given by a universal polynomial
in n, times an overall constant that depends on the individual solution.

The second question is whether the spectrum of dual operators differs already at lowest
KK level, even if the supergravity masses are identical at that level. This is conceivable
because different conformal dimensions may be related to the same supergravity mass. We
tackle this question by focusing on the complete 0 < s < 2 spectrum of the A/ = 2 vacua
[49, 7] within the electric SO(8) and the dyonic ISO(7) supergravities. The OSp(4]2) x
SU(3) supermultiplet structure of the spectrum in the former case was elucidated in [50]
and revisited more recently in [28, 29]. Here, we perform the analogue analysis for the
N = 2 point of dyonic ISO(7) supergravity. We find an identical supermultiplet structure,
with a subtle difference. The R-charges and conformal dimensions are the same in both
cases, except for two SU(3) sextet hypermultiplets which exhibit different assignments.
This difference can be put down to different U(1) R-symmetries being preserved. In fact,
two possible choices [50], named scenarios I and II in [28, 29], were noted to be in principle
possible for this U(1). The spectrum of the N' = 2 point [49] of SO(8) supergravity realises
scenario I [50, 28, 29]. We find that the spectrum of the N/ = 2 point of dyonic ISO(7)
supergravity realises scenario II.



2 Massive gravitons with at least SU(3) symmetry

2.1 Background geometry

We are interested in (Einstein frame) type IIA geometries of the form
ds3y = AW [(gw(az) + hyw(z,y)) datda” + dgg(y)} , (2.1)

where (x,y) collectively denote the external and internal coordinates, respectively. The
metrics g, g, v = 0,...,3, and dgg correspond to the background geometry and h,, to
a perturbation over the background. For the external background geometry we take four-
dimensional, unit radius anti-de Sitter space, g, da#dz” = ds*(AdSs). The warp factor
e?4 and internal geometry dgg will be specified shortly. We write the perturbation in the
factorised form

hyo(,y) = B (2) Y (y) (2.2)

where Y (y) is a function on the internal six-dimensional space and hm} is transverse,

?“hm] = 0, with respect to the Levi-Civita connection corresponding to g, , and traceless,
gt h,[fﬁ] = 0. The perturbation is taken to satisfy the Fierz-Pauli equation,

Orll = (M2L2 - 2) nlt] (2.3)

for a graviton of mass M? propagating on the background AdS, space. Here, L is the
radius of AdS; introduced by the warping e?4 in (2.1) (see (2.10)), and will be defined in
(2.9). Under these assumptions, the linearised ten-dimensional Einstein equations devolve
into the following second-order differential equation for Y (y) [30]:

o—8A

V3

where g™, m,n =1,...,6, and g respectively are the inverse metric components and the

O (e“\/; gm"an) Y = MY, (2.4)

determinant of the internal line element ds2 in (2.1).
For the internal background geometry we take the following family of six-dimensional
metrics [13]

dg% = L7272 | e 29tv X 1da? + sin® a(Afldsg(CIP’Q) + X_lAgl(d@ZJ + 0)2)] . (2.5)
Here, a and v are angles with ranges
0<a<ln, 0<y <6m, (2.6)

ds*(CP?) is the Fubini-Study metric on the complex projective plane, normalised so that
the Ricci tensor equals six times the metric, and o is a one-form potential for the Kéhler
form J on CP?, normalised as do = 2J. The metrics (2.5) depend on five parameters, ¢,
Y, ¢, ¢, ¢ through the combinations®

X =1+e%y2, Y51+%62¢(<2—|—52),

3We define the combination of parameters Y following [40, 13]. Here and in the formulae below, this
should not be confused with the eigenfunction Y defined in (2.2), (2.4).



Ay =e?Ysina+ e? %X cos? o, Ao = efsin®a+ e?? ¥ cos?a . (2.7)

These parameters take values on the six-dimensional manifold*

SU(L,1)  SU(2,1)
U1) “SU@) xu@)"

(2.8)

The constant g in (2.5) is non-vanishing, and L is defined as L? = —6 V!, where V is the
following function on (2.8),

V = %gz [e4¢_390(1 + 629")(2)3 —12 62¢_‘P(1 + eQ‘PXQ) — 24 ¢¥
_'_% e4¢+<p(<—2 + 52)2(1 + 362<pX2> + 3e4¢)+<p(<2 4 52)X2(1 i e?goXZ)

_3€2¢+¢(<2 1 52) (1 _ 362@)(2)} _ %gmxe‘l‘z’*?"P (3(C2 4 52) i 2X2)
+ % m2 edo+3e
(2.9)
It depends on g and on a further constant m, which is also non-vanishing. Finally, the
warp factor in (2.1) is

e = s XVANPAYP L2 (2.10)

For all values of the parameters and with the periodicities (2.6), the local line element
(2.5) extends globally into a smooth geometry on S6 [13].

The internal geometry (2.5) corresponds to the uplift [13] of the dynamical SU(3)-
invariant sector of D = 4 N' = 8 dyonically-gauged ISO(7) supergravity [40], as follows
from the general consistent truncation of massive type IIA supergravity on the six-sphere
[7,41]. In general, the parameters valued in (2.8) correspond to the four-dimensional scalar
fields that preserve the SU(3) subgroup of the ISO(7) gauge group of the supergravity, g
and m respectively are the electric and magnetic gauge couplings, and the function V' is the
SU(3)-invariant scalar potential [40]. At the critical points of the scalar potential (2.9),
recorded in table 3 of [40], the D = 4 scalars become fixed to the corresponding constant
vacuum expectation values (vevs), and the geometry (2.1), (2.5) with h,, = 0 becomes
the warped product of AdS; and a topological S%. These geometries are supported by
ITA fluxes [13], whose expressions will not be needed in what follows. These solutions
of massive type IIA supergravity are dual to large-N Chern-Simons field theories with a
single gauge group and flavour group containing SU(3) [7]. Note that the L that we are
using here is different than the L’s defined for each AdS, x S% solution on a case-by-case
basis in [7, 13].

We want to compute the spectrum of KK gravitons h,, above these AdS; geometries
of massive type ITA supergravity. This corresponds to the spectrum of spin-2 operators of
the dual Chern-Simons theories. By keeping the geometry (2.5) explicitly dependent on
the D = 4 scalar vevs, we will be able to compute a master graviton mass formula that
will depend on those vevs and on the quantum numbers of the generic symmetry group,
SU(3). Finding the KK graviton masses for the individual AdSy4 solutions [7, 13] will then
simply entail particularising the master formula to the relevant scalar vevs.

4 The sixth parameter in (2.8), called a in [13], does not enter the line element (2.5).



For future reference, let us conclude this section with a discussion of the symmetry
properties of the family of metrics (2.5), following [13]. For generic values of the param-
eters, the metric (2.5) displays an SU(3) x U(1) isometry. The SU(3) factor corresponds
to the isometries of the ds?(CP?) part of the geometry, while the U(1) is generated by the
Killing vector dy. Note that the metric preserves this U(1) in spite of depending on the
charged scalars (, C~ , since it only depends on them through the U(1)-invariant combina-
tion ¢+ ¢2. The ITA fluxes [13] do generically break this U(1). Symmetry enhancements
occur by restricting the parameters to certain submanifolds of (2.8). On the surface

—c—i—0. (2.11)
the metric (2.5) reduces to
dsi = L72g2 [ e 20t do? + A;l sin? o d5%(S%)| , (2.12)

where d32(S®) is the round Einstein metric on the unit S5 The metric (2.12) indeed
displays an enhanced SO(6) isometry group which rotates the S°. Finally, for

p=¢, (=2x, a=(=0, (2.13)
the geometry (2.5) becomes
ds2 = L72g72 e ?(1+ ezwxz)fldSQ(Sﬁ) , (2.14)

where ds?(S°) is the round Einstein metric on the unit S%. The isometry of this configu-
ration is therefore SO(7). The ITA fluxes, however, generically break this to Go C SO(7),
unless y = 0 is further imposed.

2.2 Boundary value problem
On the geometry (2.5), the partial differential equation (PDE) (2.4) becomes

Al XAQ_Al

e (Xe%’_‘p (92 +5cotada) + —5—Ogs + ag,)ny) = —M%Y(y), (2.15)

sin? o
as shown in appendix A. Here [gs is the scalar Laplacian on the unit radius five-sphere.
As we will next argue, this PDE turns out to be separable.

The appearance of the Laplacian gs in the PDE (2.15) suggests that the eigenfunc-
tion Y (y) should be expandable in terms of the S° spherical harmonics Yy(ji‘). These
are polynomials of the R® coordinates i, i = 1,...,6, that define S° via the constraint
87 = 1, and span the symmetric-traceless representation [0,£,0] of SU(4) ~ SO(6).
The presence of the operator Bi, however, generically reduces the symmetry of the problem
down to SU(3) x U(1) C SO(6). Accordingly, the eigenfunctions should come in represen-
tations of this smaller symmetry group. Thus, we still expect the eigenfunction Y (y) to
be expandable in S% spherical harmonics Y(ji’), but with eigenspaces split according to

l
SU(3)xU(1)
0,0,00 =5 Z[p,f—p]g(g_zp), (2.16)
p=0



where the subscript indicates the U(1) charge, suitably normalised. More concretely, this
is the normalisation with respect to the Killing vector 0 ;= —%Bw.

In order to implement the splitting (2.16) in practice, we introduce complex coordinates
2% and their conjugates z,, a = 1,2,3, as 2! = i +ifi?, etc., and write the [0, £, 0] spherical
harmonics on S® as a polynomial in 2%, Z,,

Yip(2,2) = cal...apbl"'b“? AERRRD 2 R (2.17)

where ¢q, ..., "1"P-p are constants in the [g, p] representation of SU(3), with ¢ = ¢ — p, and
1 P

p=0,1,...,¢, (2.18)

as follows from (2.16). In the basis (2.17), SU(3) x U(1) acts diagonally, in the sense that
Yy, are, of course, eigenfunctions of the S Laplacian,

DS5 n,p(zvz) = _€(£+4) }/K,p(z72) ) (219>
which also have definite U(1) charge,
0 Yep(2,2) = —(£ = 2p)* Yip(2,2) - (2.20)
This discussion leads us to consider the following factorised form for the eigenfunction
in (2.15):
Y(o,2,2) = fa) Yo(2, 2) , (2.21)
where f(a) is a function of the angle «, and we have suppressed the ¢, p labels on the

left-hand-side. Inserting (2.21) into (2.15) and making use of the eigenfunction conditions
(2.19), (2.20), equation (2.15) becomes an ordinary differential equation (ODE) on a:

2 X822 81) fa) = —g 20 f(a).

sin“ «
(2.22)
We have thus reduced our eigenvalue problem to solving the ODE (2.22) with specific

Xe20-¢ (f’/(a)+5 cot o f’(a)) — (£(€+4) siﬁga +(0—2p)

boundary conditions: those ensuring regularity of the eigenfunction.
Next, we move on to solve the ODE (2.22). In order to do this, we change variables as

u=costa,  fla)=(1-u)2 Hu). (2.23)
This change brings (2.22) into standard hypergometric form,
(1 —wuH"(u)+ (c— (1+a+b)u) H (u) — ab H(u) = 0, (2.24)

where the constants a, b, ¢ are given in terms of the integers ¢ and p and the (2.8)—valued
scalar vevs by

a= 1(2€+5)—%e%9"_¢X_% =, b:i(2€+5)+%e%‘p—¢X_%\FE, c=

=1 (2.25)

1
3 -

Here we have defined

(1]

=M?g 2+ B2 X — (Y —2TPXN(L+4) —e? (X - Y) (0 —2p)? . (2.26)



The two linearly independent solutions to the hypergeometric ODE (2.24) are given by
the hypergeometric functions

oFi(a,b,c;u) and w'9Fi(14a—c,1+b—c2—cu). (2.27)

Finally, we impose boundary conditions to ensure regularity. The relevant range of u
is 0 <wu <1 (by (2.23), the original coordinate « in (2.6) covers this range twice). Both
linearly independent solutions (2.27) are regular® at u = 0 for all values of the parameters.
Regularity at the other end, however, can only be achieved through appropriate restrictions
on the parameters. Regularity of the first solution at u = 1 requires setting a = —j, with
J a non-negative integer. Imposing this condition in (2.25), (2.26), we find a first tower of
generic KK graviton squared masses:

97IME 0y = €E0TEX (25 +0) (25 +0+5) + (9 — XX )00+ 4) +e? (X —Y) (0 —2p)° .

(2.28)
The corresponding eigenfunctions are given by (2.21), (2.23), with H(u) given by the first
choice in (2.27), namely,

Yauyjep (,2,2) = cayoa

J . 4B
X sinéaZ(—l)k <i:) W cos o | (2.29)

an — —
ez szl...zbe_p

where

1 ifk=0
(@k:{x@+1yuu+k—n , ifk>0 (2:30)

is the Pochhammer symbol. Regularity of the second solution in (2.27) at u = 1 requires

14+ a—c¢ = —j, with j again a non-negative integer. Bringing this condition to (2.25),

(2.26), we find a second tower of generic KK graviton squared masses:

97 MG 0y = €0TEX (25 +140) (2 +H046)+ (e¥Y — TP X ) 0(0+4)+e¥ (X —Y) (€—2p)° .
(2.31)

The associated eigenfunctions are given by (2.21), (2.23), with H(u) given by the second

choice in (2.27):

Y@)JEZ,P (Oz, 2, 2) = calmapblmbefp 20 % Zpy vt 'Ebe,p
J . ; 7
O+ ]
x sin’ o Z(—l)’C (‘7> w cos?tlq (2.32)
k=0 k (i)k

2.3 Final form and completeness of the generic solution

A quick inspection of the eigenvalues (2.28) and (2.31) makes it obvious that these two
series in fact correspond to one and only branch of KK graviton masses. Indeed, trading
j for a new integer n defined for convenience as

(2.33)

) 25+ , for the first branch
] 2j+1+¢ , for the second branch ,

5This is unlike in [29, 52, 27], where the second solution is singular at © = 0 and is thus discarded.



(2.28) and (2.31) can be combined into the single KK tower:
gM? =0T Xn(n+5) + (Y — 20 X)L +4) + €7 (X —Y)((—2p)*, (2.34)
where it is important to note that the quantum numbers range as
n=012..., (=01,....,n, p=0,1,....0. (2.35)

Only n ranges freely over the non-negative integers, due to its definition (2.33) in terms
of the non-negative but otherwise unconstrained integer j. The range of p was all along
constrained by ¢ by equation (2.16) (see (2.18)), and the range of ¢ turns out to be limited
by n since, again by (2.33), n > £. At fixed n, the eigenvalue (2.34) occurs with degeneracy

dpp=dimp, —pl=1p+1)({—p+1)({+2). (2.36)

Similarly, the two eigenfunction branches (2.29), (2.32) can be combined into a single
formula. Defining

(2.37)

n—1~ 0 , if n—/is even, as in the first branch ,
hpeg=mn—4£0—2 5 =

1 , ifn—/£is odd, as in the second branch ,

where the square brackets denote integer part, the eigenfunction corresponding to the
squared mass (2.34) can be compactly written as

Yoip (0,2,2) = Cayoay V22 By 7, (2.38)

[*5*] e nt 5
% Singa i (_1>k ([J]) ([T] j_g + 2 + hn’é)k: COS2k+hn’é a.
k=0 k (§ + hn7€)k

For later purposes, it is convenient to present an alternate form for this eigenfunction in
terms of (constrained) coordinates on R”. Let® X I'= !l I =1,...,7, parametrise the
directions transverse to the D2-branes, subject to the S% constraint 67y’ p’ = 1. These
p! can be written in terms of the ji* defined above (2.16) and the angle « as

Xi=y=sinaf',i=1,...,6, X"=u"=cosa. (2.39)

The first six directions can be complexified as Z% = z%sina, a = 1,2, 3, in terms of the z¢
written above (2.17). In terms of these, the eigenfunction (2.38) can be rewritten as

Yn!,p (Z, Z,X7) — Calmapby..bzfp AL AL Zbl - sz_p (2.40)
[u] B » s
1 )
k=0 k (3 + ),

depending implicitly on («, 2%, z,) through (Z%, Z,, X7).
We must still argue that the solution (2.34), (2.38) to the boundary value problem is
complete. We will argue for completeness of the spectrum based on its dependence on the

6 Although redundant, we present both notations X’ and p! as both are often used in the literature.
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relevant quantum numbers, and on symmetry considerations. The key observation is that,
unlike j, the quantum number n enjoys a precise interpretation: it corresponds to the
Kaluza-Klein level. Namely, n turns out to be the Dynkin label of the symmetric traceless
representation [n, 0, 0] of SO(7), the largest symmetry that can be imposed on our problem.
As the KK level, n allows for a systematic arrangement of the spectrum. The easiest way
to see this role of n is by particularising the problem to the SO(7)-invariant subspace
(2.13) of the scalar manifold (2.8). With this restriction, the resulting internal background
metric (2.14) becomes proportional to the SO(7)-invariant metric on the round S%, and
the spectrum is given by the SO(7) spherical harmonics. Indeed, under this assumption,
the eigenvalue (2.34) scales solely with the characteristic n(n + 5) dependence of the S°
spherical harmonic eigenvalues,

g iM? =e?Xn(n+5), (2.41)
and the eigenfunctions (2.38) combine into the S% spherical harmonics,

Yo(pu!) =cppoq, pft - ptn (2.42)
with ¢g,..r, constants in the [n,0,0] representation of SO(7). At fixed KK level n, the
degeneracy of the SO(7)-symmetric spectrum is

Dy = dim[n,0,0] = <n—£6) B (Zirg) = L@n+5)(n+4)(n+3)(n+2)(n+1), (2.43)

where, more generally and for future reference, Dy, y is the dimension of the symmetric
traceless representation [k, 0,...,0] of SO(N),

k+N-1 k+N-—-3
D = - 2.44
o= () -(EY) 240

= g Qk+ N =2)(k+N=3)(k+N—4)- (k+2)(k+1).

The completeness of the SO(7)-symmetric spectrum (2.41), (2.42) is apparent. The
completeness of the generic spectrum with only SU(3) x U(1) C SO(7) symmetry, (2.34),
(2.38), also follows. The generic spectrum comes in the representations of SU(3) x U(1)
that result from branching the symmetric traceless representation [n, 0, 0] of SO(7) for each
n through SO(6) ~ SU(4) and then through (2.16), that is,

n

n £
SU(4) SU(3)xU(1)
[0,0,00 == > [0,6,00 =570 Y 0N L= pl2(pgy) - (2.45)
£=0 £=0 p=0

This follows from the most general expression, (A.11), that the mass operator of this class
of geometries may have. This is also consistent with the quantum number ranges (2.35).
Accordingly, the generic degeneracies (2.36) are related to the degeneracy (2.43) of the
SO(7)-symmetric spectrum as

n £
Dnz=>_> dgp. (2.46)

{=0 p=0
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No other SU(3) x U(1) state arises that cannot be tracked down to descend from a sym-
metric traceless representation of [n, 0, 0] for some n via (2.45). Finally, the eigenfunctions
(2.38) are the S% spherical harmonics (2.42), branched out into SU(3) x U(1) representa-
tions via (2.45) through the split (2.39) and the identifications in terms of 2%, z, written
above (2.17). In particular, the eigenfunctions (2.38) are polynomials in z%, Z,, sin «, cos a.

2.4 Summary

To summarise, the complete spectrum of transverse, traceless gravitons on the background
AdS, geometries (2.1), (2.5) of massive type IIA supergravity is given by the KK tower

hyw(x, 00, 2, Z) ZZZ hgznfp Youp(a,2,2), (2.47)

n=0 ¢=0 p=0

where the complete set of eigenfunctions Y;, ¢, (o, z,2) is defined in (2.38). These cor-
respond to the S® spherical harmonics branched out into SU(3) x U(1) representations
through (2.45), with degeneracies dg, given in (2.36). The corresponding graviton squared
masses are the MTZL ,p Written in (2.34). The generic spectrum depends non-linearly on the
(2.8)—valued vevs of the SU(3) x U(1)-invariant scalars of D =4 A = 8 dyonically-gauged
ISO(7) supergravity, and quadratically on three quantum numbers n, ¢, p with ranges
(2.35). The integer n is the KK level, i.e., it is the Dynkin label of the symmetric traceless
representation of the maximal symmetry group SO(7). The integer ¢ is the Dynkin label
of the symmetric traceless representation of SO(6), and p labels the SU(3) representations.
The U(1) charge is not an independent quantum number, it is fixed by ¢ and p as in (2.45).

On the surface (2.11) of the parameter space (2.8), the symmetry of the problem is
enhanced to SO(6). Accordingly, at each KK level n, the spectrum is organised in SO(6)
representations via the first branching in (2.45). The term in (¢ — 2p)? coming from the
U(1) charge drops out from the eigenvalue (2.34), and only the terms in n(n 4+ 5) and
((£+4) remain. Similarly, the eigenfunctions (2.38) simply combine into g/t .. fn} with
the p! split as in (2.39). If the symmetry is further enhaced to SO(7) by imposing the
restrictions (2.13), then the term in ¢(¢+4) also drops out from the eigenvalue (2.34), and
the only remaining term is that in n(n + 5), see (2.41). The eigenfunctions in the latter
case become the SO(7)-irreducible spherical harmonics (2.42) on the round SS.

3 Graviton mass spectrum of individual solutions

Having worked out the generic problem, we now turn to obtaining the specific KK graviton
spectrum for each of the AdS4 solutions of massive ITA supergravity that uplift from vacua
of D =4 N = 8 dyonically-gauged ISO(7) supergravity with at least SU(3) symmetry.

3.1 KK graviton masses

Recall from [40] that the SU(3)-invariant sector of the A/ = 8 supergravity contains critical
points with residual supersymmetry and bosonic symmetry (N = 2,SU(3) x U(1)), (N =
1,Gg) and (N = 1,SU(3)). In addition, it also contains non-supersymmetric critical points
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with residual symmetry” SO(7),, SO(6),, G2 and SU(3), the latter only known numerically.
These solutions were uplifted [7, 13] using the consistent truncation of [7, 41] to obtain
new AdS, solutions [7, 13] of massive type IIA supergravity and recover previously known
ones [10, 12, 53]. The ten-dimensional solutions are obtained by evaluating the explicit
SU(3)—invariant consistent uplift formulae of [13] at the corresponding vevs of the D = 4
scalars, recorded in table 3 of [40]. Similarly, we can evaluate the master formula (2.34)
on the D = 4 scalar vevs for each solution to obtain its spectrum of gravitons. The result,
including the analytically known non-supersymmetric solutions for completeness, is

N=2,8SU(3)xU@1) : L*M? 2n(n+5)— L0 +4)+ 5(0—2p)*

L
N=1, G : L*M? = Zn(n+5) ,
N =1, SU(3) c LPM,, =2n(n+5) — S0(0+4) — 5 (0—2p)*
N =0, SO(7), t LPM? = Zn(n+5) :
N =0, SO(6), : LPM7,=n(n+5)— 20 +4) ,
N =0, Gy : L*M? = In(n+5) ,

(3.1)
with the quantum numbers ranging as in (2.35). All these graviton spectra are new. Note
that, for solutions with enhanced symmetry, the dependence on some of the quantum num-
bers drops out following the pattern discussed in section 2.4. The conformal dimensions
A of the corresponding dual operators are given by the largest root of the equation

A(A —3) = M?L? (3.2)

where M? denotes each of the eigenvalues in (3.1). Finally, note that at KK level n = 0
all solutions display, as expected, a massless graviton which is a singlet of the residual
symmetry group.

3.2 N =2 spin-two spectrum and dual operators

The solutions that preserve some supersymmetry N and residual bosonic symmetry G
must have their spectrum fall in irreducible representations of OSp(4|N) x G including
states of at most spin 2. Recall that, for OSp(4|1), a massless graviton partners with
a massless gravitino, and a massive graviton of energy A partners with two gravitini of
energies A:l:% and a vector of energy A, see e.g. [54]. At given KK level n, these multiplets
have the A that follows from (3.1) via (3.2), and occur in the [n,0] irrep of G, for the
N =1, Gy solution, and in the [p,f —p|, £ =0,1,...,n, p=0,1,...,¢, irrep of SU(3) for
the N/ = 1,SU(3) solution.

More interesting is the situation for the N' = 2, SU(3) x U(1) solution. Shortening can
occur in this case, leading to three possible types of OSp(4|2) supermultiplets containing

"The first two were denoted SO(7)4, SO(6)+ in [40]. Here we change the notation following appendix
C. For similar reasons, the U(1) factor of the /' = 2 solution could be denoted as U(1),, but we drop the
label v in this case.
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‘ n ‘ [p, ¢ — p]%(lﬂp) ‘ dep ‘ LQJWEL’M Anip L2tr]V[<2n) Dual operator ‘ Short? ‘
0 | [0,0] 1 0 3 0 7.9 s v
1 [0, 0]o 1 4 4 56 T X7

[1,0_2,[0,1]: | 3 z i ’ T 2% s, cec. v
[0, 0o 1 B |1 ( 139 4 3) T (297, — 6(XT)2)

o | LO_2,[0,1): | 3 2 4 168 T,,Z°X", c.c.
[2,0_5,[0,2]s | 6 22 I T 202D, coc. v
1,10 8 ¥ 1(/%+3) T (292, — 1602¢2,)

[0,0Jo 1 16 1(V73+3) T (220 — 2(X7))) X7
1.0 2,001); | 3 | 30 | J(¥43) T,,(2° 2y — 8(X)2) Z°, c.c.

3]02,0_4,00,2: | 6 L2 3 s T,,2°Z°X7, c.c.

[1,1]o 8 12 + (VBT +3) T (2°Zy — £002°7.) X7
3,0]_2,[0,32 | 10 10 5 T 2(02b 29|y, c.c. v
2,1 2,[1,2: | 15 82 ! (@ + 3) T,,(292"Z, — trace)

Table 1: The spectrum of KK gravitons on the A" = 2 SU(3) x U(1)-invariant solution [7] of massive type
ITA up to KK level n = 3. For each state, its SU(3) x U(1) charges (2.45), degeneracy (2.36), mass (3.1)
and dimension computed from (3.2) is given. The trace of the mass matrix (4.6) at level n is also given,
and the schematic form of the dual single-trace spin-2 operators. Checked (unchecked) states belong to

short (long) graviton supermultiplets of OSp(4/2).

states of up to spin-2: a massless graviton multiplet, and short and long massive graviton
multiplets. See [55, 56, 50] for the Osp(4/|2) representation theory and appendix A of [28]
for a convenient summary. At KK level n = 0, the massless, A = 3, graviton partners with
two massless gravitini and a massless vector into a massless graviton multiplet, see table
8 of [28]. At higher KK levels, massive gravitons lie into either short or long multiplets,
depending on whether or not their energy A and U(1) R-charge R saturate the bound
A > |R| 4 3. See tables 9 and 10 of [28] for the field content of these multiplets.

We have tabulated the KK graviton masses for the N = 2, SU(3) x U(1)-invariant
solution up to KK level n = 3 in table 1. The U(1) factor corresponds to the R-symmetry.
From (2.16), we see that the charge R under this U(1) is not an independent quantum
number, it is rather fixed by £ and p as R = %(6 — 2p). From table 1 we see that, for
any state, its dimension A, computed from the mass in (3.1) via (3.2), indeed satisfies the
bound A > |R| + 3. At each KK level n, this bound is saturated whenever ¢ and p take
values either (¢ =n, p=0) or ({ =n, p =n). Thus, massive gravitons that fall in short
multiplets have SU(3) x U(1) charges, masses L?>M? and dimensions A,

[n,O]_%n or [O,n]%n , L*M? = 2n(2n+9), Ap=2n+3, (3.3)
forn = 1,2, ... This series also incorporates naturally the n = 0 massless graviton multiplet
with charge [0,0]p and dimension Ay = 3, and provides a massive counterpart for it at
higher KK levels. For these short multiplets, the conformal dimensions A,, = %n + 3 are
fixed and protected by the R-charge R, = i%n as A, = |R,| + 3. All other massive
gravitons belong to long multiplets. Their classical dimension is unprotected and indeed
renormalised for most of these, as is apparent from the table. Note however the existence
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for n = 1,2,... of a series of long multiplets with (¢{ = n—1, p = 0) or ({ = n — 1,
p =n—1) such that A, = Z(n+5) and R, = +3(n — 1), so A, = |Ry| + 4 and thus
seemingly protected. Analogue series of long graviton multiplets with seemingly protected
dimensions also appear [29] in the spectrum of the CPW solution [5].

Selecting (¢ =n, p=0) and (¢ =n, p=n) in (2.40), the eigenfunctions corresponding
to the gravitons that belong to short multiplets can be seen to be

Yo(Z) = cayooay, 2% - 29, Yo(Z)=c"" Zy - Z, (3.4)

n ?

indeed compatible with the SU(3) representation assignments in (3.3). Also, since the U(1)
R-charge of Y,,(Z) must be R(Y,,(Z)) = —2 according to (3.3), we must have R(Z?) = —2.
Now, the coordinates Z¢ correspond holographically to the lowest components of the chiral
superfields Z¢ of the infrared field theory [7], while the seventh coordinate X7 transverse
to the D2-branes belongs to a vector multiplet which is integrated out at low energies. The
R-charge assignment R(Z%) = —% for the superfield Z¢, inherited from Z¢, is compatible

with the requirement that the cubic superpotential of the dual field theory [7],
W ~ €ape tr 29[ 2%, 2] , (3.5)

has R-charge® 2. This match provides a consistency check of our results. For reasons to
be justified very shortly, it is natural to assume that Z¢ has protected conformal dimension

A(Z*)=-R(2*)=2, a=12.3. (3.6)

We are now in a position to discuss the series n = 0,1,2,... of spin-2 field theory
operators dual to the short graviton multiplets (3.3), (3.4). The massless, n = 0, graviton
supermultiplet is of course dual to the stress-energy superfield

T4 = 0D 2, D) 2% + itrZ, 9ap 2° (3.7)

an SU(3) singlet with R-charge Ry = 0 and protected dimension Ay = 3. For higher n,
the dual superfields can be inferred from the eigenfunctions (3.4) to be of the form

T w7 2oz n=1,2.3,.. (3.8)

together with the complex conjugates. This series of operators has the SU(3) x U(1) charges
given in (3.3). It also has the dimension in (3.3) if Z¢ is assigned the dimension in (3.6).
This justifies that choice. This series of spin-2 operators has been summarised in table 1.
In the table, T,g|s—2 indicates spin-2 component of the stress-energy superfield. Note that,
T, represent instead the stress-energy operator. For completeness, the table also includes
operators in long multiplets, whose form is similarly inferred from the eigenfunction (2.40).
Everywhere X7 appears, this symbol is understood to stand for the relevant function of
the infrared Z¢, Z% into which the N = 8 super-Yang-Mills scalar X7 is integrated out.
We conclude this section with a comparison to the spectrum of short spin-2 superfields
[29, 28] of the N/ = 2 SU(3)-flavoured field theory [3] dual to the D = 11 CPW solution

8R-charge sign conventions are immaterial. In [7], the opposite sign for R(Z®) was chosen.
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[5]. Recall that this is a quiver-type N' = 2 Chern-Simons theory coupled, like [7], to an
SU(3) triplet of chiral superfields Z which in this case have dimensions and R-charges [3]

AZYY=R(Z") =1, a=1,2,3 (3.9)

The theory has a sextic superpotential, which indeed has R-charge 2 with the assignments
(3.9). This M2-brane N = 2 field theory [3] has, like its D2-brane counterpart [7], a series
of short spin-2 superfields with SU(3) x U(1) charges, dimensions A,, and, for completeness,
masses L2M? of the corresponding KK gravitons given by [29, 28],

0,0, or [0,0]_,, L*M2=n(n+3), A,=n+3, (3.10)

forn =0,1,2,... For n = 0, this series contains the energy-momentum superfield, whose
expression is identical to that, (3.7), of the N' = 2 D2-brane theory. However, for n > 1,
the assignments (3.10) of these short operators as well as the short operators themselves
[29, 28],

T e TS (eare292P29)", n=1,2,3,... (3.11)

are completely different to their D2-brane counterparts (3.3), (3.8). Here and throughout
we are ignoring contributions from monopole operators, see [28] for a discussion.

Due to the universality properties discussed in the introduction, the n = 0 KK level
mass spectrum for all supergravity fields of spin s < 2 on the N' = 2 AdS, solutions of
massive IIA [7] and CPW [5] in D = 11 agree. We have just shown that this universality
is lost at higher KK levels: these two solutions have a completely different spectrum of
dual spin-2 operators, as expected.

4 Universality of graviton mass matrix traces

We have just seen at the level of the (short) spin-2 spectra that the universality of the
n = 0 KK mass spectrum on the AdS, solutions of [5] and [7] is resolved at higher KK
levels. We will now see, also at the level of the KK graviton spectra, that a softer form of
universality is nevertheless still maintained. Prior to this, we will show that a related type
of universality, certainly not apparent, is already present in the KK graviton masses (3.1)
for the individual AdS,4 solutions of massive ITA supergravity in the class considered.

4.1 D2-brane cases

For this discussion, we need to introduce the infinite-dimensional KK graviton mass matrix,
M?2. As argued in section 2.3, the completeness of the spectra is guaranteed by the fact
that, at fixed level n, the eigenfunctions (2.38) branch out from the S® spherical harmonics
(2.42) through the splitting (2.39). This means that the full, infinite dimensional KK
graviton mass matrix M? takes on a block diagonal form KK level by KK level,

M2 = diag(M2,, M2, M2, ). (4.1)

Here, M(Qm = 0 corresponds to the massless singlet graviton at the bottom of the KK
tower, and M(Qn) is a squared matrix of size Dy 7 x Dy, 7, with D,, 7 the dimension (2.43)
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of the symmetric traceless representation [n,0,0] of SO(7). On the surface (2.13), where
the symmetry is enhanced to SO(7), each block is proportional to the identity matrix of
dimension D, 7,

g2 (M) reer, I = P Xn(n +5) 670 (4.2)

with eigenvalues (2.41) and eigenfunctions given by the S% spherical harmonics (2.42). In
(4.2), the curly brackets denote traceless symmetrisation as usual. For the generic SU(3)-
symmetric problem, each block M (Zn) will have a more complicated, non-diagonal form; in
any case, its eigenvalues and eigenfunctions are given by (2.34) and (2.38) for p = 0,1,...,¢
and £ =0,1,...,n, with n fixed.

We are now in a position to discuss a curious universality property of the KK graviton
mass matrix (4.1) for the massive IIA, D2-brane solutions at hand: the trace of each block
M(QM turns out to be proportional to a universal polynomial in n, which only differs for
each solution in an overall function of the D = 4 N = 8 supergravity scalar vevs. Let us
first discuss the particular case with symmetry enhanced to SO(7). With the restrictions

(2.13) we immediately obtain, from (4.2),
g 2 tr M2, =e?Xn(n+5)- £(2n+5)(n+4)(n+3)(n+2)(n+1), (4.3)

where we have used (2.43). This result is straightforward because, according to (4.2), each
block M2, is in this case proportional to the identity matrix of dimension (2.43) with
proportionality coefficient (2.41). Now, it turns out that the eigenvalue, n(n + 5), and
degeneracy, D, 7, contributions conspire in such a way that (4.3) can be rewritten as

g P tr M} =42e?X Dy . (4.4)

This can be seen by using (2.44) with k =n —1 and N = 9.

We do not have an argument as to why tr M (Qm should be proportional to the dimension
of the symmetric traceless representation [n — 1,0,0,0] of SO(9). We simply take the
notation D,,_1 ¢ to be shorthand for the polynomial that appears in (4.4), which turns out
to be given by (2.44) with k = n — 1 and N = 9. More surprisingly, similar conspiracies
occur for the general SU(3)-symmetric case at hand, even though M(Qn) is not diagonal
any more. We can compute the trace of the block M (271) at fixed KK level n even if we do
not know its generic expression. The only ingredients we need for this calculation are its
eigenvalues Mi&p, given in (2.34), and their degeneracy dy p, given in (2.36). We compute

n £
g P M2 =g Y Y M2, dey =62 X +€?X +4e¥Y) D19 (4.5)
/=0 p=0

Here, we have again used (2.44) with k =n — 1 and N = 9 in order to write the result in
this compact form. Of course, summing over the appropriate ranges (2.35) for the quantum
numbers ¢ and p at fixed n is crucial to obtain the result (4.5).

When the restrictions (2.13) are imposed, (4.5) reduces to the SO(7)-symmetric result
(4.4). One can also evaluate (4.5) at the specific critical points of D = 4 N' = 8 ISO(7)
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supergravity recorded in table 3 of [40], in order to obtain the trace of the KK graviton
mass matrix blocks M, at fixed KK level n, for each of the corresponding AdS4 solutions
of massive type ITA supergravity. We obtain

N=2,SUB)xUQ1) : L*trM} =Dy 19 |,

N=1,G D LPtar M =%Dy1y
N =1, SU(3) D Pt M2 =% Dn1g
(4.6)
N =0, SO(7), c LPtr M2, =%Dy g9
N =0, SO(6), c Lt M2, =% Dp 1o
N=0, Gy : LPtr M2, =21Dp 19

For all the solutions under consideration, the trace of the graviton mass matrix at fixed
KK level n turns out to be given by a (7th order) universal polynomial in n which only
differs for each solution in an overall constant. This property also holds for the A/ = 3
SO(4) solution of [11], see appendix B.

4.2 N =2 M2-brane case

In order to show the relation between the massive IIA and D = 11 cases, it is useful to
first review the latter. The spectrum of KK gravitons on the CPW AdSy solution [5] of
D = 11 supergravity was computed in [29]. In that reference, this spectrum was given in
terms on non-negative integers j, p, ¢ and an integer n, of either sign as

LPM3, e = 25+ 2j|ne +nf +2j(p+q+3)+ in.(p—q)
+n|(3+p+q) + s(»* + ¢* + 4pg + 15p + 15q) . (4.7)
In section 3.2 we noted the different (short) spin-2 spectra of the NV = 2 field theories on
the M2 [3] and D2 [7] branes. Equations (4.7) and (3.1) make that difference also obvious
at the level of the (both short and long) KK graviton masses. In spite of these differences,
we will show that both spectra are nevertheless related.

For this purpose, it is convenient to re-express (4.7) in terms of p, ¢ and two new
quantum numbers n and r defined as

n=2j+n.|+p+gq, 2r=n+n,—p+gq. (4.8)

In the r.h.s. of the second relation, n must be substituted with the expression given in the
first equation. In terms of these, the spectrum of KK graviton masses (4.7) reads

L*M? = tn(n+6)+3(n—2r)°—in(p—q)+ap(p+6r—3)+gq(g—6r—3)—Zpq . (4.9)
The virtue of this rewrite is that all integers n, r, p, ¢ now correspond to Dynkin labels,

unlike j. In particular, n is the KK level, in the sense that it labels the symmetric
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traceless representation of SO(8) from which the [p, ¢] representations of SU(3) in which
the spectrum is organised descend®. More precisely,

=T

SO(7)— SUM)- SU(3)xU(1)_
[n,0,0,0] *2 [0,0,n] 4 Z [n—7,0,r7] — 7Q]§(p—q)+2r—n ,
r=0

(4.10)
under the chain SO(8) D SO(7)- D SU(4)- D SU(3) x U(1)—. The subscripts — are in
line with the discussion in appendix C. The subscript on [p, g| corresponds to the U(1)_
R-charge R. In terms of the n, charge of equation (4.8) and the SU(3) Dynkin labels, R
is given by [29]

R=n,+i(p—q)=3(p—q)+2r—n. (4.11)

At each KK level n, the eigenvalues (4.9) thus come in the [p, g] representations of SU(3)
given in (4.10), with U(1)_ R-charge (4.11). Their degeneracy is therefore

dpq=dim[p,ql = 3(p+1)(g+ D(p+q+2). (4.12)
The splitting (4.10) allows one to read off the following ranges for the quantum numbers:
n=20,1,2,..., r=0,1,...,n, p=0,1,...,n—1, q=0,1,...,r. (4.13)

Again, only n is free to range over the non-negative integers. The ranges of the other quan-
tum numbers are bounded. In terms of these quantum numbers, the spectrum is naturally
organised KK level by KK level, as in the D2-brane cases. We can thus introduce the
infinite-dimensional KK graviton mass matrix M?2. This is block-diagonal as in (4.1), with
blocks M, fm now of dimension D, g x D, g, where D, g is the dimension of the symmetric
traceless representation of SO(8) given by (2.44) with k = n and N = 8. At fixed KK level
n, the quantum numbers r, p, ¢ sweep out each block M(Qn). The eigenvalues of each M(Qn)
are the Mgm,p’q given in (4.9). For convenience, we tabulate these eigenvalues in table 2,
reproducing the results of [29].

We can now compute the trace of each block M(Zn) as we did in section 4.1 for the
D2-brane case. Using the eigenvalues M? given in (4.9), the degeneracies d, 4 given in

n7r7p7q
(4.12), and summing over the ranges (4.13) at fixed KK level n, we obtain

n n—r r

L* tr Mg, = L° Z Z Z My g g =% Dnoi10 - (4.14)
r=0 p=0 ¢=0

The result is an 8th order polynomial in n which, like for the D2-brane cases discussed in
section 4.1, can be compactly written using the formula (2.44) for the symmetric traceless
representation at Dynkin label kK =n — 1 of SO(N), now with N = 10. Again, we do not
have an explanation as to why the result can be expressed in terms of the dimension of
this representation of SO(10) or any other group, and simply employ the notation D,,—1, 19
to express the result in a compact way. However, this is not a coincidence: this property
is shared by the uplifts of other critical points of SO(8)-gauged supergravity. This will be

In [29], j was referred to as the KK level. We instead dignify n with that name for the reasons explained
in the text.
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‘ n ‘ [, q}%(pquZTfn ‘ dpgq ‘ LQJW%T’WI ‘ Anrpa ‘ LQtI'JW(gn) Dual operator ‘ Short? ‘
0 ] 10,0] 1 0 3 0 7.9 s v
L L[0.0 1 4 4 56 TO 24,2, cc. v

1,0, 0.1 1 | 3 I 1(45 +3) : T 20|y, c.c.
[0,0]2 1 10 5 79 (24)?2|,2s, cc. v
1,0 5,00.1: | 3 E : (@ I 3) T 202 s, cc.
22,002 | 6 u 1(&+3)| = TQ 202Dy, c.c.
1,005,015 | 3 & : (@ + 3) T Z02" s | cc
[0, 0] 1 8 1 (Va1 +3) TO(1 — 46221 2,)| s
1,1]o 8 4 4 T3 (292, — 303 2°Z)|s=s
[0,0]3 1 18 6 TO (24352, c.c. v
1,0 5,[0,15 | 3 L [1(42+3) a5 Z9(21)? o=, cc
2.0 1,002 | 6 2 (42 +3) TO 2020 (2,)] 4z, c.c.
3,001, [0,3]1 10 6 1(V33+3) T 202029 ,, c.c.
3 110,011, 1 14 (V65 +3) | 1008 792~ 50221 21) 2%, c.c.
1,001 | 3 W [1(4%+3) T 29242y, coc.
1,001, | 3 106 ! ( 505 | 3) T 201 — 50221 24) s, c.c.
1,14 8 10 5 T (292, — 167 2°2,) 2 oz, coc.
2,055,002 5 | 6 % : (@ + 3) T 202D 24y, cc
21,12 |15 58 : (% I 3) T 2202, — 6020 212,)|,, c.c.

Table 2: The spectrum of KK gravitons on the CPW A = 2 SU(3) x U(1)—invariant solution [5] of D = 11
supergravity up to KK level n = 3, reproduced from [29]. For each state, its SU(3) x U(1) charges (4.10),
degeneracy (4.12), mass (4.9) and dimension computed from (3.2) is given. The trace of the mass matrix
(4.14) at level n is also given, and the schematic form of the dual single-trace spin-2 operators. Checked

(unchecked) states belong to short (long) graviton supermultiplets of OSp(4|2).

shown elsewhere, but it is readily seen for the N' = 8 SO(8)—-invariant critical point, which
uplifts to the Freund-Rubin vacuum [4] of D = 11 supergravity. In this case, the mass of
the KK graviton at level n is L2M2 = 1n(n + 6) (see [54]) and occurs with degeneracy
D,, g = dim[n, 0,0, 0], so that each block M, in the mass matrix M? equals that eigenvalue
times the identity matrix of dimension D, g. Thus, for the N’ =8 SO(8) critical point,

L* tr M) = in(n+6)- 4 (2n+6)(n+5)(n+4)(n+3)(n+2)(n+1) = 14 D,_1,10 . (4.15)

4.3 Universality of the D2 and M2 graviton mass matrix traces

Observe that the coeflicient % for the D = 11 result (4.14) matches the coefficient for the
massive ITA case given in the first line of (4.6). This translates into a relation between
both mass matrix traces. To see this, we need the following property

Dn,N—l = Dn,N - Dn—l,N 5 (4'16)

of the dimension of the symmetric traceless representation of the orthogonal group, which
easily follows from (2.44). The property (4.16) and the fact that both mass matrix traces
have the same coefficient implies the universality relation

n
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Here, we have added labels D2 and M2 to the quantities in (4.6) and (4.14) corresponding
to the solutions of massive ITA [7] and D = 11 [5], respectively. The relation (4.16) implies
that the traces on both sides of equation (4.17) are effectively taken over the same number
of states. The traces tabulated in tables 1 and 2 are useful for a quick check of the relation
(4.17) up to KK level n = 3.

Here we have only shown the universality relation (4.17) to hold for the N' = 2 SU(3) x
U(1) solutions of massive IIA [7] and D = 11 [5] supergravity, which respectively uplift
from the vacua of D = 4 N = 8 dyonic ISO(7) [7] and electric SO(8) [49] supergravities
with that symmetry. However, we have checked that this is not an isolated case: the
relation (4.17) also holds for the massive IIA and D = 11 uplifts of other pairs of vacua
of these N' = 8 supergravities with the same symmetries. Further details will be given
elsewhere. Thus, while the strong, eigenvalue by eigenvalue universality of the n = 0 KK
mass spectra is broken at higher KK levels, a certain form of universality is nevertheless
still preserved at the level of the KK graviton mass matrix traces.

5 N =2 spectrum at n = 0 KK level

We have seen how the universality of the n = 0 KK mass spectrum of the AdS, solutions
of massive IIA and D = 11 supergravity under consideration is lost at higher KK levels
(though still maintained in a weaker form). The higher-dimensional origin, the compacti-
fication manifolds and the dual field theories are different, so differences in the spectrum
were expected to arise. Here, we would like to enquire if these differences actually manifest
themselves even at KK level n = 0, in spite of the universality of supergravity masses at
this level. It turns out that they do, in a very subtle way. We will again focus on the N' = 2
SU(3) x U(1)-invariant vacua of the SO(8) and dyonic ISO(7) supergravities and show that
the spectra within their respective A/ = 8 supergravities share the same supermultiplet
structure, with a few different R-symmetry and conformal dimension assignments.

The mass spectrum of the ' = 2 SU(3) x U(1) vacuum [49] of electrically-gauged SO(8)
supergravity [35] was computed and allocated into OSp(4]2) x SU(3) representations by
Nicolai and Warner [50]. They noted that the U(1) R-symmetry could be embedded
in SO(8) in two possible ways, which they argued to be essentially equivalent for their
purposes. More recently, this question was re-examined by Klebanov, Klose and Murugan
(KKM) [28]. KKM renamed these two possible U(1) embeddings as scenarios I and II and
realised that, while both scenarios led to the same masses for all fields within N' = 8 SO(8)
supergravity, they led to small differences in the R-charge and conformal dimensions of
a few fields. Except for these minor differences, the supermultiplet structure implied by
both scenarios was found to be identical. A KK graviton analysis [29] confirmed the choice
of [50], KKM’s scenario I [28], as the correct one describing the spectrum of the NV = 2
vacuum [49] of N/ = 8 SO(8) supergravity within this theory. We will now show that the
spectrum of the N' = 2 vacuum [8, 40] of N' = 8 dyonic ISO(7) supergravity within the
latter theory turns out to realise KKM’s scenario II. In appendix C we also show that the
existence of these two scenarios and their associated R-charge assignments have an origin
in SO(8) triality.
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Spin 80(7) SU(3)U(1)
2 1 1,
. _
3 8 1 3. 3.,
14
1 21+ 7 19 8o 34 3 . 1p
3 3
3 2 32
3 _3
3 2 32
3 _3 —
i 48 + 8 841 31 |31 6.1 | 61 |14 3.
3 73 3 3 _ 3
81| 3. |3 1.4 |3,
3 3 3
3 s 3s 14
3 3
14
ot 274+ 74+ 1 8 |3 2 32 6 4 64 10 | 3_2
3 3 3 3 3
19 32
3
1
0~ 35 8o 62 é_g 1,9 34
3 3 3
10 | 3 2
_ 3
15113 4
3
32
3
@) o
i g
= =
2 o &0 &0 .
o o kS
w2225 F ¢
20 2 g g g gl
< < < < < < < <
= = = = = = = 3

Table 3: The OSp(4]2) x SU(3) spectrum of the N’ = 2 solution of N’ = 8 dyonic ISO(7)
supergravity within the A" = 8 theory. This coincides with scenario IT of KKM [28].
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For the N' = 2 vacuum of the dyonic ISO(7) supergravity, the embedding of the residual
SU(3) x U(1) symmetry into the compact SO(7) subgroup of the ISO(7) gauge group is
unique. The fundamental, 7 = [1,0, 0], and spinor, 8 = [0, 0, 1], representations of SO(7)
branch under SO(7) D SO(6) D SU(3) x U(1) uniquely as

7 SO 6+1SU(3)_X>U(1) (3_%+§+§)+107 (5.1)
g SO® 4 | 75UEXUQ) (3% +1.9)+ (g_% +141) . (5.2)

The branching (5.1) is of course (2.45) with n = 1. It is natural to assign the (electric)
vectors, scalars and pseudoscalars of the N' = 8 ISO(7) theory to the 21 + 7, the 27 +
7 4+ 1 and the 35 representations of SO(7), respectively, and the gravitino and spin 1/2
fermions to the 8 and 48 + 8, see appendix C for a justification. Tensoring (5.1) and (5.2)
with themselves and (anti)symmetrising appropriately, we determine how these SO(7)
representations decompose under SU(3) x U(1). Finally, we group up fields in the same
SU(3) representations into OSp(4]2) multiplets [55, 56, 50] (see also appendix A of [28]).
In this way, we obtain the OSp(4|2) x SU(3) breakdown of the N' = 8 supergravity fields
at the NV = 2 point: see table 3. This table exactly matches table 5 of [28], corresponding
to KKM'’s scenario I, with the choice ¢ = +1 for the arbitrary R-charge sign . We
kindly borrow their format for ease of comparison. The only technical difference with
KKM’s scenario II is that, in their case, the N' = 8 fields naturally group up in SO(8)
representations before branching into SU(3) x U(1), whereas in the present case the N' = 8
fields fill out instead the SO(7) representations described above and recorded in table 3.

The structure of OSp(2]|4) x SU(3) representations is identical for both scenarios I
and II, except that the hypermultiplet in the 6 of SU(3) has U(1) R-charge R = % in
the first case and R = —% in the second. The conjugate hypermultiplets, in the 6 of
SU(3), have the same R-charges with opposite sign. This is the only difference as far
as the allocation of N' = 8 supergravity fields into supermultiplets is concerned. There
are a few other differences, though. The long vector multiplet of scenario I contains
three scalars with R-charges 0, +2, and two neutral pseudoscalars. In scenario II, the
role of scalars and pseudoscalars within the long vector multiplet is exchanged. In [40]
(and in section 2 above), these SU(3)-singlet scalars were denoted by ¢, ¢, the neutral
pseudoscalar by x and the charged pseudoscalars by (, 5 . There are also differences in
the structure of Goldstone bosons. For example, in scenario I (II), the massive vector eats
an R-neutral SU(3) singlet pseudoscalar (scalar). This eaten scalar was denoted by a in
[40]. Incidentally, the D = 4 supergravity describing the full non-linear interactions of the
(linearised) SU(3)-singlet fields in table 3 was constructed in [40] and uplifted to massive
type IIA in [13]. In particular, equation (2.9) above is the full, non-linear potential for
the SU(3)-singlet scalars and pseudoscalars, and (2.5) describes their embedding into the
ten-dimensional metric. The analogue D = 4 supergravity containing the full non-linear
interactions of the SU(3) singlets of scenario I was constructed in [57].

The masses of the N' = 8 ISO(7) supergravity fields at the A' = 2 point were computed
in [40]. Now, we can partially reproduce this mass spectrum from group theory. All fields
except those falling in the SU(3)-singlet multiplet that does not contain the graviton
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‘ scalar /pseudoscalar ‘ SU(3)uq) ‘ M2L? ‘ A ‘ Osp(4]2) multiplet
77 — %6{:2 Z, 89 -2 1 massless vector
77,4 3 93 7% % short gravitino
A 32/3 7% % short gravitino
Zlazb) 6_4/3 —% % hypermultiplet
Z(a Zb) (_54/3 — % % hypermultiplet
Z%Z, — 3242, 19 3— V17 H'%/ﬁ long vector
Re(Z42%) 1 3+V17 ‘r’+ﬁ long vector
Im(Z%Z%) 1o 0 - eaten
VAVA 3 93 0 - eaten
Zaly 3973 0 - eaten
dZ® NdZy NdZA N dZy, — ie“debefdzc NdZg N dZE N dZF— trace 8o -2 2 massless vector
ecdlagz) N dZ, NdZg N dZ* 62/3 -4 z hypermultiplet
fcd(ade) ANdZC NAZENdZy 6_5/3 —% % hypermultiplet
€apedZ® N dZP N dZC N dZ* 1.9 2 3+§/ﬁ long vector
€cdZ, NdZy NdZ. NdZy 1, 2 3+2ﬁ long vector
dZ% NdZy NdZP N dZy + 2dZ% N dZ, AN dZ* N dZ, 1 2 3+%ﬁ long vector
dZ® NdZP N dZy N dZ* 3 93 0 - eaten
dZg NdZy NdZb N dZy 32/3 0 - eaten
€ldZe NdZy N dZ, N dZg + 3e¢P°dZy A dZ. NdZENdZy 343 0 - eaten
€bcddZq NAZP N AZC N dZ% + 3eqpedZ® A dZC N dZy N\ dZ* 3 43 0 - eaten

Table 4: The spectrum of scalars and pseudoscalars on the N' = 2 SU(3) x U(1)-invariant solution of
massive type IIA [7] at KK level n = 0. The OSp(4/2) supermultiplet to which each these belong according
to table 3 is indicated.

fill in short representations of OSp(4/2). Thus, their U(1) R-charges fix their conformal
dimensions (and the latter then determine their masses, as always). The SU(3)-singlets
other than those that fill out the massless graviton multiplet belong to a long vector
multiplet. For this reason, their dimensions are not fixed by the R-symmetry. For these
fields, we merely import their masses from [40]. We reproduce the scalar and pseudoscalar
masses around the A/ = 2 vacuum in table 4. The table includes for convenience the
schematic form of the mass eigenstates in the SL(8) basis of the N/ = 8 supergravity
(note, however, that additional mixings might occur). In this basis, the relation between
N = 8 scalars, R” coordinates transverse to the D2-branes, and the dual operators is most
transparent. The pseudoscalar mass eigenstates are included for completeness, even though
their expressions in the SL(8) basis in terms of selfdual four-forms is not too enlightening.
A triality rotation relates these to fermion bilinears of the boundary theory.

We conclude this section with a discussion of the form of the field theory operators
in protected supermultiplets that are dual to n = 0 KK modes. Some of these can be
inferred from tables 3 and 4. As we already discussed in section 3.2, the massless graviton
multiplet is dual to the stress-energy tensor superfield (3.7). The octet massless vector
multiplet is dual to the conserved global SU(3) supercurrent multiplet ja(o)b, whose scalar
component can be read off from table 4 to be given by the operator

tr 22y, — 304t Z°Z, . (5.3)

The dimension of this operator is fixed to A = 1, in agreement with the supergravity result

of table 4, because the spin-one component of ja(o)b, the conserved SU(3) global current
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Ob _ 5 T b 1shi 5 o e . : : _
Jud =1trZ, Ou Z 300t Ze 9y Z° , must have protected classical dimension A = 2.

From table 4, the sextet hypermultiplets can be seen to be dual to mass terms for the
chiral and antichiral superfields Z¢, Z,,

tr2ezb w2,z (5.4)

According to table 4, these have exactly the protected dimension, A = %, that follows
from the assignment (3.6) for the chirals. In the analogue M2-brane N = 2 field theory
[3], these mass terms have instead protected dimension A = %, in agreement with the
relevant dimension assignment (3.9). Finally, for the fields dual to the the short gravitini
we propose the following fermionic superfields

tr €qpe 2P Do Z° tr ez, Do 2, , (5.5)

These respectively transform in the 3_1 and 31 and have scaling dimension A = %. These
3 3

assignments correctly reproduce the assignments R = % and A = % recorded in table 4 for

the scalar components in these superfields.

6 Final comments

Pairs of AdSy x S® and AdS; x S” solutions of massive IIA and D = 11 supergravity
that respectively uplift from pairs of vacua of N' = 8 dyonic ISO(7) and electric SO(8)
supergravity with the same symmetries, exhibit an identical mass spectrum at KK level
n =0. The n = 0 KK level mass spectrum is thus universal, and insensitive to the S% or
S7 compactification manifold and to the massive IIA or D = 11 origin. We have shown
that this universality is lost at higher KK levels, n > 1, as expected: the masses of the
higher KK modes do differ. We have seen this explicitly for the spectrum of KK gravitons
above the N/ = 2 AdS, solutions of massive IIA [7] and CPW [5] of D = 11 supergravity.
The spectra nevertheless still exhibit a weaker form of universality: the traces of the KK
graviton mass matrices match KK level by KK level. At least for the supersymmetric
solutions, a similar KK level by KK level match might be enforced upon the traces of
mass matrices of the fields of spin s < 2 by supersymmetry. Checking this explicitly seems
a complicated task because, in principle, the entire KK spectrum about those solutions
should be calculated first, and that is a difficult problem.

Since the masses of higher KK modes differ, the spectrum of dual single trace operators
obviously differs too. We have illustrated this explicitly for the spectrum of protected spin-
2 operators of the N' = 2 infrared Chern-Simons field theories on the D2 [7] and M2 [3]
branes dual to the AdSy solutions of massive ITA [7] and D = 11 [5] supergravity. In
fact, for these field theories, one does not need to go beyond the n = 0 KK level to start
noticing differences in the spectrum of dual single trace operators, even if the supergravity
masses are identical at this level. Already at KK level n = 0, subtle differences arise.
These are due to different R-symmetry (and conformal symmetry) assignments in either
case, coming in turn from different U(1) R-symmetry embeddings in the respective N' = 8
supergravities. These two possible U(1) embeddings were called scenarios I and IT by KKM
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[28], and can be understood in terms of SO(8) triality. The spectrum of the CPW solution
[5] realises scenario I at lowest [50] and higher [28, 29] KK levels. The massive ITA N = 2
AdSy solution of [7] turns out to realise scenario II at lowest, n = 0, KK level.

Of course, scenario II should also be realised up the KK tower for the massive I1A
N = 2 solution of [7]. Indeed, the group theory method of KKM [28] does find a series of
short graviton multiplets with precisely the SU(3) x U(1) charges of (3.3): see tables 22 and
23 of [28]. A puzzle however arises, because group theory also predicts series of multiplets
with no KK interpretation. For example, KKM note an infinite series of SU(3) x U(1)-
neutral massless gravitons. However, these offending representations can be argued to be
projected out from the physical spectrum. We will return to these questions in the future.
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A Mass operator

Here we give some details on the derivation of the eigenvalue equation (2.15) from the
general equation (2.4) evaluated on the geometry (2.5). We start by noting that the latter
line element can be formally written as

dsg = L7272 [e 2T X 1da? + d32 ] , (A1)
where, for each constant value of « within its range (2.6), the five-dimensional geometry
d3? = d3*(CP?) + (dip + )2, (A.2)
with
d32(CP?) =sina A7 ds2(CP2),  B=dj+6=X Y2A;"sina(dy +0), (A3)

corresponds to a deformation of the usual metric ds? = ds?(CP?) + (di + ¢)? on the unit
radius round S° adapted to the Hopf fibration over CP2.
Next, evaluating (2.4) on (A.1) we obtain

P (Xe%—v’(ag +5cotada) + is)Y(y) — MY (y), (A.4)

where

|j5 = _\}58m<\/§§mﬁaﬁ> ’ Th,ﬁ = 1’ ) 5 ’ (A5)

is the scalar Laplacian of the five-dimensional metric (A.2) at constant «. The Laplacian
(A.5) for the type of fibered geometries (A.2) has been computed in e.g. [58] to be

Os = 3" (Va — B2 05) (Vy = By 0;) + 05 . (A.6)
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where ¢%Y, x,y = 1,...,4 are the inverse metric components corresponding to d3? (C]P’Q) in
(A.2). Taking into account the conformal factors in (A.3), this becomes
~ A XA
L5 = 21 gwy(vx — By 3w) (Vy - By 5w) + -

sin“ « sin? o

a2, (A7)

where now ¢*¥ is the inverse Fubini-Study metric and B = dy + 0. Now, (A.7) can be
written in terms of the scalar Laplacian (gs on the round, unit S° by using the untilded
version of (A.6),

9" (Ve — By 0y) (Vy — By 0y) = Ogs — 0}, (A.8)

Finally, inserting (A.7) with (A.8) into (A.4), the eigenvalue equation (2.15) brought to
the main text is obtained.

The graviton mass operator in (2.15) is associated to the geometry (2.5) corresponding
to the massive ITA embedding [13] of the SU(3)-invariant sector of dyonic ISO(7) super-
gravity [40]. Accordingly, it depends on the vevs of the SU(3)-invariant scalars of the
D = 4 supergravity. More generally, we can give an expression for the graviton mass oper-
ator corresponding to the ITA embedding of the full N' = 8 supergravity, thus dependent
on the vevs of the E77)/SU(8) scalars that enter the general background metric. The
relevant ten-dimensional geometry is

ds2y = L* A1 ds*(AdSy) + Gmn dy™ dy™ (A.9)

with AdSy of unit radius, so that L? ds?(AdSy) has radius L. Now, L? = -6V ! with V
the scalar potential of the full ISO(7) supergravity, and A~ is the warp factor, dependent
on the S® coordinates y™, m = 1,...,6. The inverse internal metric is [7, 41]

472 A g™ = MR KT Ky (A.10)

where M!7 XL is one of the SL(7)-covariant blocks of the E7()/SU(8) scalar matrix, and
Kpy =292 g™ urOnprg), I = 1,...,7, are the SO(7) Killing vectors of the S8 equipped
with its round metric §,,. Recall from the main text that p! are constrained coordinates
in R7 that define the S® as the locus 7/’ = 1 and depend on the S% coordinates y™.

The spectrum of spin-2 fluctuations corresponding to the geometry (A.9) is determined
by inserting (A.10) into (2.4). After some algebra, the resulting mass operator reads

L2 MITEE K 0, (Kjep0 Y () = = MY (y) | (A.11)
The S° Killing vector K7 9y, lifts to R7 as 20110, s+ It can be seen that the S6 spherical

harmonics (see (2.42)) obey

ipDpy i = Cpy (- Jul L L) ) (A12)
where we have defined

Cry(Jy- Jo|l -+ 1) = —na[{lfl5J1{J15§§ : --5(11:1]; . (A.13)

27



Using these results, the general algebraic mass matrix corresponding to the differential
operator on the Lh.s of (A.11) is deduced to be

My =g YT MUTEEC (I LKy K)CRp (K Kol Jy e )
Ki-Kn
(A.14)

B Mass matrix trace for the N = 3 solution

The graviton spectrum for the massive type ITA AdS, solution [11] that uplifts from the
N =3 S0(4) critical point [43] of dyonic ISO(7) supergravity was computed in [27]. As we
will now show, the trace of the graviton mass matrix in this case also follows the pattern
discussed in section 4.1 of the main text.

The KK graviton masses for this N/ = 3 solution were found to be given in terms of
four quantum numbers 7, jr, jv, jr by [27]
LPMZ ;. g = 5 (20 (4F + 25y +5) + 4jrjv + j7 + Tip + J0 + 5jv + j& + jr +477°)

(B.1)

(with n in [27] denoted here as n). In terms of the SO(7) KK level n of the main text,
defined in this case as

n=2n+2jr+ jv, (B.2)
the spectrum (B.1) can be rewritten as
LQM"%ijvjV:jR = % (n(n + 5) - 3]% + ]723 —3jr + ]R) . (B.3)

The branching rules for the [n,0, 0] representation of SO(7) under the relevant SO(3)
subgroups, denoted below as in [11], are

(3] 2k+1

Y > 1542k +1—4] , ifnisodd (B.4)
k=0 j=0

(5] 2k

S > 15,42k~ 4], ifnis even (B.5)

k=0 j=0
(5] 2k41  2k+1-3j

RSIOELESICUN S5 Y [rl Lifnisodd (B.6)

k=0 j=0 jr=|2k+1-3j]|

SO(3)LxSO(3)rxSO(3)y

[n,0,0]

("5 ok 2k—3J

Z Z Z [%,jn] ,ifniseven  (B.7)

k=0 570 jr—2h- 351
where SO(3)r = SO(3)r, and SO(3)r = [SO(3)r x SO(3)v]diag- Now, using these branch-
ings and the mass formula (B.3) we compute

L? trM(,y =21 Dp19 (B.8)

for this solution. Curiously, the coefficient is the same than that for the non-supersymmetric
Gy solution in (4.6). As noted in [40], the N' = 3 SO(4) solution and the N' = 0 Gy solution
also have the same cosmological constant.
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C The two scenarios of KKM and SO(8) triality

The two scenarios of KKM [28] turn out to be related by an SO(8) triality rotation. To
see this recall that, by triality, there are three different SO(7) subgroups of SO(8) (or,
more precisely, Spin(7) subgroups of Spin(8)), denoted SO(7), and SO(7)+, such that
the three inequivalent eight-dimensional representations of SO(8) decompose according to
three possibilities, I, IT or III:

I i 11
g, M- 71, g, %2 g o8, 9 g

g, "2~ g ;8,2 g, 20k g (G
g, 90 g g, 20 g AU S

All three SO(7) subgroups of SO(8) share the same SU(3) subgroup, so we can drop the
labels to denote the latter, SU(3) = SU(3), = SU(3)4+. But this SU(3) commutes with a
different U(1) subgroup of SO(8) inside SO(7), and SO(7)+. We accordingly denote these
as U(1)y, U(1)x. The branching of the 8,, 8, 8_ representations of SO(8) under each
of the SU(3) x U(1),, SU(3) x U(1)4+ and SU(3) x U(1)_ subgroups can be computed by
combining (C.1) with the unique decompositions (5.1) and (5.2). From these, the branching
of the N/ = 8 fields, in SO(8) representations, under the different SU(3) x U(1) subgroups
may be worked out by taking appropriate tensor products and (anti)symmetrisations.

Going through this exercise, we find that the branchings under SU(3) x U(1)_ and
SU(3) x U(1), respectively reproduce KKM’s scenarios I and II. Indeed, from (C.1), (5.2),
we see that the gravitino, in the 85 of SO(8), branches under SU(3) x U(1)_ and SU(3) x
U(1), in the same way, yielding

85—>3%+1_1+§_%+1+1. (C.2)

The 565 of SO(8), where the N' = 8 spin-1/2 fermions lie, is obtained by tensoring the 8
with itself three times and antisymmetrising totally. It also branches under both SU(3) x
U(1)— and SU(3) x U(1), in the same way,

565 — 2x1,1+2x1_1+3%x31+3x3_14+3 5+35+6_1+61+8,1+8 7. (C.3)
3 3 3 3 3

3
The identical decompositions (C.2), (C.3) under both SU(3) x U(1) subgroups explains
why the fermion structure in both scenarios is the same.
Moving on to the bosons, the (electric) vectors lie in the adjoint of SO(8). This again
decomposes under both SU(3) x U(1)_ and SU(3) x U(1), in the same manner,

28—>2><10+3%+§7%+2x37%+2x§§+80, (C.4)

leading to the same SU(3) x U(1) content of vectors in both scenarios. The only differ-
ences arise for the 35, scalars and the 35, pseudoscalars. Tensoring the 8, and 8. with
themselves and symmetrising, we find the following decompositions under SU(3) x U(1)_:

35, — 1g+1 0+19+3 2+32+3:s+3 _4+62+6_2+8, (C.5)
3 3 3 3 3 3
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35c—>3><10+2><3_g+2><§g+6_§+6g+80. (CG)
3 3 3 3
These turn out to be swapped under SU(3) x U(1),:

35, —3x1p+2%x3 2+2x32+6_4+64+8, (C.7)
3 3 3 3
35, — 1g+1 9+19+3 2+32+34+3 4+62+6_2+8). (C.8)
3 3 3 3 3 3

Equations (C.5), (C.6) reproduce the scalar and pseudoscalar charges under SU(3) x U(1)
in scenario I, and (C.7), (C.8) do likewise in scenario II: see tables 4 and 5 of [28] (and,
for the latter case, also table 3 of the main text).

The triplet of chiral superfields Z¢, a = 1,2, 3, in both infrared N' = 2 field theories may
be thought of as descending from the vector representation, as their lowest components
correspond to the coordinates Z¢ transverse to the M2 and D2 branes. Unlike the spinor,
(C.2), the vector of SO(8) branches differently in scenarios I and II :

SU(3)xU(1)

S - 3 v 3
8 U(?’)ﬁg(l) 31 +1 1+3 1 +1,41, 8, — 3 2+19+32+19. (C.I9)
3 3 3 3

v
Satisfactorily enough, these branchings respectively reproduce the different charge assign-

ments for the chirals in both N/ = 2 field theories. In the first branching, the triplet

acquires R-charge %, in agreement with the M2-brane assignment (3.9). Similarly, in the
_2

3
(3.6). In both cases, the SU(3) singlets correspond to the transverse real directions X7,

second case the triplet has R-charge indeed reproducing the D2-brane assignment
X8 or, equivalently, to the complex field Z*4 that is integrated out at low energy. In the
M2-brane case, Z4 ~ €,y 220 Z¢ [28, 29] in the infrared, again compatible with the +1
R-charge that the first branching in (C.9) predicts for the singlets. In the D2-brane case,
the integrated-out field X7 is indeed neutral, in agreement with the second branching. In
this case, though, only one of the two singlets, corresponding to X7, is relevant, as X® and
its associated singlet do not have a clear interpretation.

A minor point still needs to be made. We computed these branchings starting from
representations of SO(8). This is obviously appropriate for the CPW solution [5] as it
uplifts from the SO(8) gauging, but requires some justification for the N' = 2 solution of
massive ITA [7] because SO(8) is larger than the symmetry of the problem in the latter
case. In both cases, the n = 0 KK fields fill out an N' = 8 superPoincaré supermultiplet,
and this can always be decomposed under SL(8) C Eg;) because both gauge groups,
SO(8) and ISO(7), are contained in SL(8). In the massive ITA case, the N/ = 8 fields can
be regarded as lying in representations of the semisimple factor SO(7) of ISO(7). And
these branch from the SL(8) representations through the intermediate SO(8) via the chain
SL(8) D SO(8) D SO(7). At this point, one still needs to decide which of the three
SO(7) subgroups of SO(8) is the relevant one here. The only choice compatible with the
requirement that ISO(7) (in particular, the seven translations acted upon semidirectly by
its SO(7) factor) be contained in SL(8), is SO(7),. This choice fixes the N’ = 8, SO(7)-
covariant field content reported in table 3.

Finally, we note that triality also allows in principle for a scenario III, that is, an
SU(3) x U(1)4+—invariant vacuum. It follows from [49, 40] that such solution does not exist
in either the SO(8) or the dyonic ISO(7) N = 8 gauged supergravities. However, it could
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in principle exist for other N/ = 8 gaugings, realised as an AdS, a Minkowski, or even a

de-Sitter vacuum. In scenario III, the gravitini, vectors, spin-1/2 fermions, scalars and

pseudoscalars would respectively split as

8
28

56

35,

35,

—

—

—

—

—

3 24+19+32+1,
3 3
2x1g+34+3 4 +2x3 24+2x32+8,
3 3 3 3

2x19+1 904+19+2%x3_2+2x32+2x34+2x3_
3 3 3
+62 +6_2 +2x 8, (C.10)
3 3

ol

lo+1 9+15+3 2+32+3:s+3_4+62+6_2+8),

lo+1 204+12+3 2+32+31+3_1+62+6_2+8,
3 3 3 3 3 3

with the same caveat as above about the SO(8) representations in the Lh.s., because the
relevant gauging, if it exists, cannot be contained in SO(8). The first branching in (C.10)
indicates that the SU(3)-singlet gravitini are neutral under the would-be R-symmetry

U(1)4. For this reason, scenario III is not compatible with A/ = 2 supersymmetry.
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