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ABSTRACT

The rapid expansion of intermittent grid-tied solar capacity is mak-
ing the job of balancing electricity’s real-time supply and demand
increasingly challenging. To address the problem, recent work
proposes mechanisms for actively controlling solar power output
to the grid by enabling software to cap it as a fraction of its time-
varying maximum output. Utilities can use these mechanisms to
dynamically share the grid’s solar capacity by controlling the solar
output at each site. However, while enforcing an equal fraction
of each solar site’s time-varying maximum output results in “fair”
short-term contributions of solar power, it does not result in “fair”
long-term contributions of solar energy. This discrepancy arises
from fundamental differences in enforcing “fair” access to the grid
to contribute solar energy, compared to analogous fair-sharing in
networks and processors. In this paper, we present a centralized and
distributed algorithm to enable control of distributed solar capacity
that enforces fair grid energy access. We implement our algorithm
and evaluate it on synthetic data and real data across 18 solar sites.
We show that traditional rate allocation, which enforces equal rates,
results in solar sites contributing up to 18.9% less energy than an
algorithm that enforces fair grid energy access over a single month.
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1 INTRODUCTION

The amount of grid-tied solar power continues to grow at an expo-
nential rate with capacity increasing by an average of 33% each year
over the past six years [6]. This growth is driven by consistent drops
in solar module prices, which have fallen 10% per-year on average
over the past three decades. In many locations, the average cost of
solar energy is now less than the cost of energy from fossil fuels.
As a result, some estimates project that solar could contribute as
much as 20% of global electricity consumption as early as 2030 [5].

Unfortunately, the increasing penetration of solar energy in the
grid complicates utility operations. In particular, utilities are re-
sponsible for balancing electricity’s real-time supply and demand,
requiring them to compensate for variations in solar output. How-
ever, compensating for large solar variations using mechanical gen-
erators is challenging, since generator ramp rates are less than solar
ramp rates. As a result, governments generally limit the amount of
grid-tied solar capacity that can feed energy into the grid. In the
U.S., these limits vary widely by state, and often restrict both the
percentage of users with grid-tied solar, and their aggregate solar
power capacity. The rapid growth in solar power is now causing
states to frequently hit these limits, triggering a complex political
process (often taking many months) that is required to raise them.
Since the limits, which are a form of admission control, are hard,
once they are hit, additional users cannot install grid-tied solar until
they are raised. For example, users in Hawaii were recently barred
from installing grid-tied solar for two years [3, 10].

Importantly, the aggregate power limits above are static and
based on the rated installed capacity of each solar site, and not the
amount of power they actually generate. Standard Test Conditions
(STC) for rating solar module capacity specifies an irradiance of
1kW/m? with an air mass of 1.5, no wind speed, and a cell tem-
perature of 25C. These conditions approximate the generation of
a south-facing solar module (tilted at the same angle as the Sun)
at solar noon near the equinox on a clear sunny day in the U.S.
with an ambient air temperature of 0C. Of course, weather condi-
tions are rarely this “ideal:” the ambient air temperature at STC is
unrealistic, roof lines dictate non-ideal orientations and tilts, and
solar irradiance is usually much less than 1kW/m?, e.g., during the
morning, evening, over much of winter, and under cloudy skies.

Thus, the actual aggregate solar power generated is rarely, if ever,
at (or even near) the rated capacity, and varies widely each day, over
the year, and as the weather changes. For example, on cloudy days,
the aggregate contribution of solar power across many distributed
sites is much less than on sunny days. As a result, on a cloudy day,
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the grid could potentially accept solar power from many sites that
are currently forced off-grid without exceeding its capacity limit.
To address the problem, recent work proposes mechanisms [13]
and policies [8, 12] for actively controlling solar power output to
the grid. This work enables software to cap the solar power injected
to the grid as a configurable fraction of its time-varying maximum
output [13], and then, inspired by similar problems in networks,
designs rate allocation policies to limit the aggregate contribution
of distributed solar subject to the grid’s capacity [8, 12].

An important metric when determining how to dynamically
limit each solar site’s power output is preserving fairness between
sites. Prior work co-opts the traditional notion of “fairness” from
the networking literature, which computes it with respect to the in-
stantaneous sending rates of flows, and not the cumulative amount
of traffic they send over time. This makes sense in networking, as
senders can potentially generate an arbitrary amount of traffic at
any time. Thus, if one idle sender does not generate traffic for a
long period, then i) other senders should be able to increase their
rate to consume any excess bandwidth during this time, and ii)
the idle sender should not be able to accumulate unlimited credit
for their idleness, enabling them to monopolize the link once they
resume sending. The former property ensures allocations are work-
conserving, while latter property prevents starvation of senders.
Analogously, prior work attempts to maintain “fair” grid rate allo-
cations, such that each solar site contributes near the same fraction
of their time-varying maximum instantaneous power output.

The problem is that this traditional notion of fairness in networks
does not map well to the grid. Instead, we argue that the grid
should express fairness in terms of the total fraction of energy
users contribute over time (with respect to each other) rather than
in terms of their instantaneous rates of power. Ultimately, users
care about the amount of total solar energy they can feed into
the grid (over some time window), as a fraction of the total solar
energy they could possibly feed in, since this impacts both the cost
of their system and the revenue it generates. In particular, users
directly receive compensation for the energy they feed in, which
decreases with the fraction of energy they can contribute. The
expected fraction of energy users cannot feed into the grid may
also necessitate additional system costs to store excess energy.

As we show, enforcing fair instantaneous rates, as in networking,
may result in unfair contributions of total energy over time. Unlike
in networking, solar sites can only generate “traffic” at certain times
based the Sun’s irradiance, which is a function of location, time,
local weather, and physical installation characteristics. Importantly,
solar sites cannot control their location, the Sun, the weather, and often
their physical characteristics, and thus have no control over when
and how much solar power they can generate. In contrast, network
clients that are not generating traffic are doing so voluntarily, and
could generate traffic if desired. Clearly, if network clients directly
received compensation for the total amount of data they sent, they
most certainly would generate traffic all the time, and the total
amount of data they sent over time would be critically important.

This paper identifies this fundamental difference between fair
rate allocation in networks and fair grid energy access for solar, and
discusses how and why it arises. We then design a rate allocation
algorithm to enforce weighted fair grid energy access and evaluate
its tradeoffs. In doing so, we make the following contributions.
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Fairness Definition. While preserving fairness is a first-class
concern when sharing processors and networks, it has generally
not been a metric of interest in electric grids. We introduce and
define the notion of distributed solar fairness (DSF), and discuss
how it differs from similar notions of fairness in computer systems
and networking. We also discuss how unfairness arises among
distributed solar sites with limits on their aggregate solar output.
Fair Energy Allocation Algorithm. We propose a simple energy
allocation algorithm to enforce fair grid energy access among dis-
tributed solar sites. While this algorithm allocates rates to different
solar “flows” over time, as in computer systems and networks, it
varies these rates to ensure users contribute the same fraction of
their actual solar energy capacity. The algorithm exposes tradeoffs
in its convergence speed, fidelity to the aggregate limit it enforces,
and robustness, i.e., the interval over which it must exchange data.
Implementation and Evaluation. We implement our algorithm
above and evaluate it on both synthetic data and real data from 18
solar sites. We show that traditional equal rate allocation results in
solar sites contributing up to 18.9% less energy over a single month
than our algorithm that enforces fair grid energy access.

2 FAIRNESS IN THE ELECTRIC GRID

In this paper, we consider grid-tied solar arrays capable of “net
metering” Currently, the grid allows a net metered grid-tied solar
array to feed any amount of power into the grid, up to its maximum
installed capacity, with no restrictions. Thus, the “admission control”
decision of whether to allow a solar array to net meter must be made
at installation time. As discussed earlier, this limits the number of
solar installations the grid can permit, since policies must plan for
the worst-case scenario, i.e., where all solar arrays concurrently
feed in their maximum capacity, even though this scenario is highly
unlikely (if not impossible), and can only occur one time per year.
Thus, enforcing such limits at “run time” has the potential to
enable a much larger number of grid-tied solar arrays, while still
limiting the total net metered power to a pre-specified capacity. In
the future, we expect the grid to rate control the amount of power
that can be injected by a grid-tied solar array. The ability to rate
control solar arrays at the time-scale of minutes or hours has many
benefits. For example, rate control can enable any number of solar
arrays to connect to the grid, while limiting their stochasticity. In
addition, rate control can also incentivize energy storage to save
surplus solar power that the grid cannot accept due to the limits.
Given such a scenario, we examine the problem of how the grid
should assign rates to different solar arrays, while maintaining an
aggregate limit on solar output and fairness across users. Prior work
has used an analogy to the rate allocation problem in computer
networks and has taken the notion of fairness from networking.
Specifically, prior work uses analytical models of TCP’s rate control
algorithm and weighted versions of this rate allocation problem to
model the problem [2, 8, 12]. However, with solar, owners directly
receive compensation for the solar energy they contribute and thus
are incentivized to always produce as much power as possible.
Thus, rather than using a notion of fairness from networking,
we instead propose a new fairness metric for rate-controlled solar
arrays called distributed solar fairness (DSF) that is based on net
metered compensation. Let E;’”““l(tz —t1) denote the actual energy
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net metered by a solar array i over a duration [#1, t3) in the presence
of rate control, and E[*®*(t; — t1) denote the maximum amount
of energy it could have produced in this time period with no rate
control, e.g., using standard techniques such as maximum power
point tracking (MPPT). Note that a site’s maximum generation
potential varies over time based on a site’s unique location, weather,
and physical characteristics. Since rate control reduces the total
energy that can be produced, the reduction in net metered revenues
over the interval [t1, t2), which we term as loss;(t; — t1), is 1 —
E;zctual(tz_tl)
by solar array i over the specified time interval due to rate control.

To be fair across users, we require that the percentage loss is the
same for all arrays over any time interval [#;, 2). Thus our notion
of fairness requires that for any two arrays i and j,

. This can be viewed as a direct monetary loss incurred

|lossi(to — t1) — lossj(ta — t1)| < € (1)

While our ideal definition of fairness requires that this condition
be true over any arbitrary time interval, in practice, achieving
fairness over very short time scales may be infeasible. For example,
if the sun has risen at the location of array i but it has yet to rise
at the location of array j, it is not possible to guarantee fairness
over a small time scale, since array j is unable to produce any
power. In the next section, we describe a number of factors that
complicate enforcing fairness at short time scales. However, it
is both acceptable and feasible to enforce fairness over the much
longer time scale of hours, days, or even at the time scale of a
monthly billing cycle. In general, consumers’ primary concern is
whether their monetary percentage loss is fairly distributed across
all arrays over these longer time scales. Thus, in practice, the grid
only needs to ensure fairness over these longer intervals [t1, t2).

In the case of networks, fairness guarantees are provided only
when the network flows are backlogged, which requires that the
flows can continuously send data when network capacity is avail-
able. In our case, providing fairness over very short time scales
also requires that the solar arrays be capable of producing enough
power to use their allocated rates. However, over longer time scales,
it is possible for an array to not use its instantaneous allocation,
since it is unable to produce sufficient power, and yet “catch” up
later by injecting power at higher rates than other arrays.

Even when enforcing fairness over longer time scales, the prob-
lem of allocating rates to each array is complicated by many factors.
For instance, a simple approach that allocates identical rates to two
arrays of identical size can yield unfair results. This is because ar-
rays of identical size can still produce vastly different power output
at any instant due to local differences in weather, as well as factors
such as tilt, orientation, and location. Ignoring these differences can
cause the fairness measure to diverge for various arrays. Thus, a fair
rate allocation algorithm must consider several factors: assuming
identical weather conditions, two arrays at two different locations
will have slightly different sunrise, sunset and solar noon times,
yielding solar output curves that are time-shifted with respect to
one another. In the networking case, this is analogous enforcing
fairness for time shifted flows, where to two identical flows are
time-shifted and start transmitting data with different start times.
Similarly, two solar arrays that are in proximity to one another
may also produce different output due to micro climates, different
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Figure 1: Illustrative examples of non-ideal solar sites.

shading effects, etc. Finally, different arrays may have vastly dif-
ferent capacities and thus rates must be computed to equalize the
percentage loss for such heterogeneous size arrays.

Next, we describe fair rate allocation for solar arrays that
achieves our notion of fairness while accounting for these factors.

3 FAIR GRID ENERGY ALLOCATION

The previous section compares the different notions of fairness in
computer systems and networks, and in the grid. In this section,
we first examine how unfairness arises from the differences in the
shape of solar output across multiple sites. We describe the different
types of effects that cause the “shape” of a solar curve to differ even
across sites that are near each other. We then present our fair
energy allocation algorithm, and its tradeoffs.

3.1 Solar Shape Diversity

Unfairness in solar energy access to the grid derives from the differ-
ence in output between solar sites, even when they are near each
other. There are many reasons why solar output between solar sites
differs. We describe the different reasons below.

Solar Potential. The Sun’s position in the sky is unique at each
location on Earth at each instant of time. The Sun’s position in the
sky affects the air mass light must travel through, which reduces
the amount of irradiance that reaches the ground. As a result, even
with clear skies, the maximum solar generating potential is different
at every solar site at any moment.

Weather Effects. The weather also affects solar generation poten-
tial. In particular, solar power correlates with cloud cover, which
is much more stochastic and localized than other weather metrics,
such as temperature. For example, microclimates, such as those near
large bodies water, can cause weather, and thus solar generation
potential, to be significantly different at two nearby locations.
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Physical Characteristics. Finally, the physical characteristics of
a solar site also affect its solar output. These include the solar mod-
ule’s tilt and orientation, as well as any occlusions from surrounding
buildings, trees, or mountains that may shade them. For example,
an east-facing solar module will both start and stop generating
power well before a west-facing one in the morning and evening,
respectively. In general, rooftop solar deployments are complex
and not ideal. Figure 1 illustrates typical rooftop solar deployments
with multiple modules at different non-ideal tilts and orientations
with significant shading from trees and other surroundings. In ad-
dition, soiling from debris can also cause solar generation to differ
between two nearby sites with identical solar modules.

The differences above manifest themselves as differences in the
shape of solar output at each site. We characterize these differences
below, which are the root of unfairness in solar allocation.

Shifts. Shifts occur when a solar curve is shifted with respect to
another solar curve, such that the first curve starts before or ends
after another curve. Shifts occur either due to differences in the
orientation of modules or differences in location. For example, east-
and west-facing modules at the same location will be shifted with
respect to each other. Similarly, a difference in longitude between
two locations also results in a shift, since the sun rises and sets at
different times (for the same daylength).

Squeeze. Squeezes occur when a solar curve is narrower with
respect to another solar curve, such that the first curve starts be-
fore and ends after another curve. Squeezes occur either due to
differences in the tilt of modules or differences in location. For
example, a south-facing vertically tilted module will be squeezed
with respect to a horizontally flat tilted one. Similarly, a difference
in latitude between two locations also results in a squeeze, since
the length of a day changes with latitude.

Dips and Cuts. Dips occur when the solar output drops below
the power level seen when the sky is clear. Dips may be caused
by clouds, shade from trees, or nearby buildings and reduce the
amount of sunlight seen by an array. The amount of the power dip
depends on the magnitude of the reduction in the sunlight seen by
at array. Similarly, cuts occur when a solar curve’s power is cut-off
(or blocked) with respect to another solar curve, such that the first
curve generates power normally while the second curve generates
nothing. Cuts typically occur in the morning and evening, since
these blockages are more prevalent when the Sun is low in the sky.

Note that each solar deployment can exhibit an arbitrary combi-
nation of the characteristics above. These characteristics are also
static, since they are purely a function of a site’s location, physical
characteristics, and surroundings. As a result, if a solar site experi-
ences a shift, squeeze, or dip relative to another solar site one day,
it will often experience it every day (although the extent of it may
change). In addition, different weather conditions between sites
also create differences in the solar curves.

Figure 2 illustrates how two nearby homes can exhibit different
solar output over a day. In this case, Home 2, is more east-facing, as
in Figure 1 (bottom), than Home 1, and thus its power generation is
shifted with respect to Home 1 on this day. However, Home 2 has
a cut near the end of the day, indicating a blockage in solar output
that causes its output to drop to zero, as in Figure 1 (top), which
has trees on its west-side that block sunlight near the end of the
day. In this case, imposing a limit on the aggregate power from
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Figure 2: Profile of solar output for two homes 80km apart.

the two homes, and then satisfying this limit by allocating equal
rates of solar power output between the two homes results in an
unequal solar energy contribution at the end of the day.

This occurs because at the beginning of the day Home 2 is gen-
erating no power, and thus Home 1 is able to contribute a high
fraction of its generation up to the limit. Due to the cut in power,
once Home 2 starts generating power it must share the grid with
Home 1 by contributing an equal fraction of its time-varying max-
imum power potential up to the limit, even though Home 1 has
already a contributed a significant amount of energy to the grid.
Thus, even though Home 2 contributes the same fraction of power
as Home 1 at all times, its fraction of energy always remains less
than Home 1, since it is never able to catch up.

3.2 Fair Energy Allocation Algorithm

We assume a mechanism exists to remotely control the time-varying
fraction of maximum power a solar deployment contributes to the
grid, as described in recent work [13]. We also assume that a
grid balancing authority sets limits on the aggregate solar energy
output across all solar sites by controlling this mechanism at each
individual site. We assume that the grid’s transformers and feeders
are well-provisioned to handle the maximum solar generation, such
that the transformers never exceed their capacity and feeders do not
reverse their power flow. These assumptions are likely true for the
foreseeable future, as transformers and feeders are generally over-
provisioned for energy consumption, and grid-tied solar power
actually reduces the energy consumption. As a result, we need not
consider the impact of the grid’s topology or the capacity of its
distribution infrastructure in determining rate allocations.

Instead, the grid balancing authority sets aggregate limits on the
distributed solar output based solely on net metering regulations.
However, in our case, we assume these limits are dynamic and based
on actual solar generation, rather than static and based on the rated
capacity of solar sites as is the case today. The balancing authority
may also alter the limit to improve operations, such as increasing
it during times of peak demand to allow more solar energy to flow
into the grid. In this case, the curtailed solar power operates like
high-quality reserve capacity or a demand response resource.

Our problem is to allocate the fraction of maximum power con-
tributed by each site such that all sites contribute the same fraction
of energy over each time window T. In general, we assume T is
a long period, such as a week or a month, since it may be diffi-
cult or infeasible to ensure fairness over shorter time periods. The
analogous rate allocation problem in networking, if we assume the
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Figure 3: Divergence in the fraction of energy contributed
by Homes 1 and 2 from Figure 2, even when the fraction of
power they contribute is equal, assuming a 5kW limit.

grid’s transformers and feeders are well-provisioned, is to simply
enable all sites to contribute the same fraction (or rate) of their
time-varying maximum power at all times. Thus, to enforce an
aggregate limit, the balancing authority might enforce that all sites
contribute only 50% of their maximum power. Note that, we as-
sume the grid balancing authority specifies the aggregate limit as
an absolute power (as in current net metering policies), and thus it
will have to adjust the equal fraction of power contributed by each
site over time as it varies to maintain the limit. In this case, we can
compute this equal rate across all sites as simply the aggregate limit
(L) divided by the sum of the current power output (P) of each of
the n sites at any time . We can augment this approach to include
a weight, as in weighted fairness [4], such that the allocated rates
are in proportion to each site’s weights, rather than being equal.

L)

Rate(t) = min( s
i1 Pi(t)

1) @

However, as discussed above, this does not result in an equal (or
weighted) contribution of energy over time. Figure 3 illustrates this
behavior for Homes 1 and 2 in Figure 2. While the rate, expressed
as a fraction of each site’s maximum generation potential, is always
equal (top), the fraction of energy each contributes diverges (bot-
tom). In this case, the aggregate limit is set to 5kW throughout
the day. Since Home 2 does not generate any power early in the
day, Home 1 is able to feed a disproportionate amount of energy
into the grid. Then, once Home 1 starts generating power, Home
1 and Home 2 each feed power in with equal rates. However, as
the bottom graph indicates, the initial generation early in the day
enabled Home 1 to feed in more energy (as a fraction of its total
energy generation potential) relative to Home 2. In this case, Home
1 fed in 10% more energy than Home 2 in only a single day.

To address this problem, we design a rate allocation algorithm
that enforces fair energy access to the grid. We first discuss a
centralized version of this algorithm, assuming a tightly-coupled
system, and then present a distributed version. In both cases, the
algorithms first start by computing the equal rates above, and then
determine which and how much sites can deviate from this equal
rate based on the their current cumulative fraction of energy. We
use the equal rate allocation as a starting point, since we need some
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[ Variable [ Description |
n Number of solar sites
i Index of sorted homes
T Duration over which the fairness is enforced
P;i(t) Maximum power that a site i can generate at
time ¢

P_assigned(t)

i Fraction of maximum power assigned to site

i at time /.

Fraction of solar energy fed into the grid over
interval T for a given site i.

Fair Energy Fraction (FEF) | Fair fraction of solar energy over interval T.
L(1) Aggregate limit on solar capacity at time £.
pava il (t)

Energy Fraction (EF)

Difference between aggregate limit and as-
signed power at sites at time ¢.

Estimated aggregate power

Correction gain

(0]
K

Table 1: Variable definitions for Algorithms 1-3.

basis for assigning initial rates to users. Equal rate allocation repre-
sents a good starting point, since under ideal conditions, i.e., where
sites have exactly the same solar profile at all times, setting equal
rates above will result in equal long-term energy contributions.
Only when the solar profiles diverge does the equal rate allocation
also diverge from a fair long-term energy allocation.

Centralized Algorithm. Algorithm 1 shows the pseudocode for
our centralized algorithm, which we label as fast centralized alloca-
tion. Table 1 defines the algorithm’s variables. In the centralized
case, we assume that each solar site knows the fraction of solar
energy each other site has fed into the grid over the current time
window T, e.g., a month, which we call the Energy Fraction (EF).
The algorithm then simply sorts each solar site by their EF, and
assigns rates based on a solar site’s position in the list. In par-
ticular, lower-ranked solar sites get allocated higher rates than
higher-ranked solar sites to allow them to “catch up.” The algo-
rithm enables sites to catch up fast, since it allocates rates to 100%
of solar power in sorted order, starting with the lowest-ranked site,
until it reaches the aggregate power limit or it reaches a site that
has an energy fraction equal to the mean across all sites, which we
call the Fair Energy Fraction (FEF). At this point, the algorithm sets
the rates of sites with energy fractions above the FEF based on the
fair rate allocation algorithm above, but where the limit L(¢) is the
remaining power after setting rates for the low-ranked sites. Thus,
the algorithm is work-conserving in that it does not penalize sites
that have contributed more than their fair energy by not allowing
them to feed solar into the grid. As above, we can also apply a
weight to each site, such that the fraction of energy they feed in
should be in proportion to their weight.

One problem with the algorithm above is that it has the potential
to starve out solar sites if other sites are not able to feed in solar
for a long period. For example, after a snowstorm, the snow may
melt off solar modules at different rates, enabling large differences
in their maximum power. As a result, some solar site may not
be able to feed power into the grid, and will thus “get behind” in
terms of its energy contribution. Once the snow melts from this
solar site, the algorithm above would set its rate to 100% until it
catches up, which would reduce the rates of other flows. To mitigate
the starvation problem, we can limit the catch-up rates for sites
that are behind. In this case, rather than set these sites to 100%
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Algorithm 1 Centralized Energy Allocation (Fast)

Algorithm 3 Distributed Energy Allocation

Require: P;(t) and Pfssjg"ed(t) for all homes over time T, L(t)
ZT P.assigned(t)

1: Compute EF; = 2=01 L Vi
PR = e
o Zio PP

2. Compute FEF =

?:1 ZZ‘:U Pi(t)

3: Sort & index homes in ascending order of EF (T7_))
4 Pavatl(t) — L(t) _ Z?:] Pjasszgne (t)

5. while (P20%(t) > 0) do

6: if (EF; < FEF) then

7. P;zssigned(t) = P;(t)

8: Update PA02iL(t), i+ +

9 else

10: break y

11: Rate(t) = g?TPi((tt)) for homes above FEF

12: Update EF for all homes

Algorithm 2 Centralized Energy Allocation (Slow)

Require: P;(t) and Pfsszg"ed(t) for all homes over time T, L(t)
1: Compute EF; as in Algorithm 1
2. Compute FEF as in Algorithm 1
3: Sort & index homes in ascending order of EF (T7_))
L(t)
i Pil?)
5. pavail(p) = [(1) - 31 PASS9med(p)
. while (P*4iL(t) > 0) do

4: Compute fair rate Rate(t) =

6
7 if (EF; < FEF) then
5 PAS19m () — (1 + (FEF — EF;)) X Rate(t)
9 Update PA02L(t), i+ +
10: else
11 break
pavail ;)
12: Rate(t) = D) for homes above FEF

13: Update EF for all homes

of their maximum power, we can set a limit between the equal
rates computed in Equation 2 and 100%. In our algorithm, we apply
proportional control to set these rates, such that the more behind a
solar site, the faster it is able to catch up. In particular, we increase
the rate in Equation 2 by the same proportion the site is behind in
energy. Thus, if a solar site has 20% less than their “fair” fraction
of global energy, we allow it to increase its rate in Equation 2 by
20%. Algorithm 2 shows the pseudocode for this algorithm, which
we label as slow centralized allocation, where line 7 applies the
proportional adjustment to the rate.

Distributed Algorithm. The centralized algorithms above assume
accurate generation information is available from all solar sites in
real-time, and that it is able to instantaneously set the rates of all
solar sites without any delay. This implies that solar sites form a
tightly-coupled system with utilities, where they stream generation
data to utilities in real-time and utilities are able to instantaneously
control their rates. Implementing such a tightly-coupled system
is not realistic today. Most smart meters communicate wirelessly

Require: L(t), PZ;;(t), and Rate(t) over time T

1: Estimate aggregate power PZ;;(t) using gossip protocol
2. Compute EF; as in Algorithm 1

Too(PESE (t)xRate(t))

Sico Pésh(t)
4. Compute fair rate Rate(t) = PaLg(;)
est (t)

s: POSsi9ned ) _ (1 4 K(FEF — EF;)) x Rate(t)

1

3: Estimate FEF =

over the cell network and thus have limited bandwidth and periodic
connectivity issues. In addition, a centralized approach represents
a single point of failure and is not robust to network failures. Thus,
we also present a distributed algorithm that uses incomplete infor-
mation propagated at lower rates, e.g., minutes to hours.

In this case, individual sites do not know the specific power and
energy generation of other sites, and thus cannot compute precise
rates that satisfy the aggregate limit and correctly apportion fair
rates across sites. Individual sites can only increase or decrease
their rate relative to the equal rates in Equation 2 and based on
the difference between the globally fair energy fraction and their
local fraction of energy. Thus, in our distributed algorithm, sites
that are both above and below the globally fair energy fraction
decrease and increase, respectively, the rate in Equation 2 by the
same proportion that the site is ahead or behind in energy.

Algorithm 3 shows the pseudocode for this algorithm, which we
label as distributed energy allocation. Each solar site independently
runs the distributed algorithm at a specified interval to determine
their solar rate. The length of this interval represents the expected
time period between disseminating new generation information to
other solar sites. While each solar site can broadcast to all other
solar sites, full mesh communication has the same issues as the
tightly-coupled centralized approach. Instead, similar to prior work
on distributed rate limiting in networks [11], we can use a more
robust push-sum gossip protocol that periodically disseminates
recent generation information to a random set of N other sites
each interval [7]. This push-sum gossip protocol may take a few
intervals to converge, such that each site has an accurate estimate
of the “fair” fraction of global energy and the global equal rate
from Equation 2. We also add a multiplicative gain factor, K, as
a configurable parameter to adjust how fast sites catch up in the
distributed algorithm, similar to Algorithm 2.

3.3 Fidelity of Control

Both the centralized and distributed algorithms must make deci-
sions based on stale information, as solar power changes contin-
uously. In the centralized case, even though this time period may
be small, e.g., one minute, solar output can fluctuate significantly
even over these short time periods. Since large fluctuations can
have a negative impact on electronics, the fidelity of the control,
i.e.,, how close the algorithm is able to maintain the aggregate limit
that is set, is an important performance metric. In addition, large
fluctuations in the rates from the algorithm can also have a negative
impact on the electronics that control solar output, and thus are
also undesirable. As we show, the centralized algorithm with a
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Figure 4: Impact on energy fairness as a function of the magnitude of shifts (a), cuts (b), and squeezes (c) for two solar sites.
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Figure 5: Distribution of energy allocation (relative to maximum energy potential) under a limit of 60kW for the equal rate
(a), centralized fair energy (fast) (b), centralized fair energy (slow) (c), and distributed fair energy algorithms (d).

fast catch-up suffers from increased fluctuations as it periodically
focuses solar allocation on a few sites by increasing their rates to
100% of maximum output, and thus causes large changes in allo-
cated rates. Of course, the distributed algorithm may also take more
time to propagate information, causing it to diverge more from the
aggregate limit. We evaluate the fidelity of control and fairness of
this algorithm under different conditions in §5.

4 IMPLEMENTATION

We evaluate our centralized and distributed algorithms from the
previous section in simulation using both real and synthetic solar
traces. We derive our synthetic solar traces from clear sky solar
irradiance models implemented in the Pysolar Python library [1].
The resolution of this synthetic solar data is one minute, and we
convert the irradiance into power assuming a typical solar module
efficiency of 18%. We then vary the maximum solar capacity of
different sites from 1-20kW, and also vary the orientation and tilt
angles of the simulated modules. For our real solar sites, we use data
from 18 solar sites in the Western part of the U.S. We implement
our simulator in Python and vary the simulated interval by which
each site propagates its generation information.

5 EVALUATION

We evaluate both the impact of diversity in solar output on fairness
using the equal rate allocation algorithm, as well using the different
variants of our fair energy allocation algorithm. In addition, we
also evaluate the tradeoff between fairness and the fidelity of the
algorithm to maintain an aggregate limit. We quantify the fidelity
using Mean Absolute Percentage Error (MAPE) between the limit
and the actual aggregate generation, as below.

assigned
0 Pz ! (t)

ZT: |L(t) X, P
= L)

Note that we only compute the MAPE for all t where we enforce
the aggregate limit, i.e, X1 P;(t) > L(t). Quantifying fairness
is more challenging than accuracy, since average fairness metrics,
such as Jain’s fairness index, can obscure highly unfair behavior
between any two sites by averaging over many sites. For example,
if there are many flows, Jain’s fairness index can be close to 1
(indicating a fair allocation) even though some set of solar sites
(or solar “flows”) may experience highly unfair allocations. Since
energy fed into the grid directly correlates with money, unfairness
even among a few users is problematic. Thus, we avoid aggregate
measures of fairness across many sites, and instead quantify fairness
by examining the distribution of energy allocations across sites.

100
T

MAPE = 3)
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Figure 7: Daily profiles of home H1 and H18 in Figure 5(a).

5.1 Microbenchmarks: Shape Diversity

Figure 4 first looks at the impact on fairness between two solar
sites for different magnitude shifts, dips and cuts, and squeezes.
We use the equal rate allocation algorithm, which always satisfies
the aggregate limit by setting rates equal to each other. For this
experiment, we use synthetic data based on clear sky generation for
two sites at the same location, and then alter one site’s generation
to shift it, cut it, or squeeze it by a certain amount of time. Thus,
these results do not include other effects that could impact energy
fairness, such as weather, location, or tilts. The results are also a
function of the aggregate limit, which we set to 14kW in this case,
where the maximum power of the sites is 10kW (or 20kW total).
These experiments quantify the effects over an entire year, and
include two scenarios: one where the weights are equal (where
each site should contribute the same fraction of their maximum
solar energy potential) and one where the weights are in a 1:2 ratio.

Figure 4(a) shows the effect of a shift, where the x-axis indicates
the duration of the shift, the right y-axis is the percentage of energy
lost due to unfairness in the allocation, and the left y-axis is the
mean fraction of energy the solar site should have fed into the grid.
The figure shows that the energy loss is only modestly impacted
by shifts (1%-2%), in large part because they cancel each other out,
such that a shift increases one site’s allocation at the beginning of
each day, but decreases it at the end of each day. As also illustrated
in Figure 2, cuts (in Figure 4(b)) have a much larger impact on the
energy loss, causing one site to lose nearly 10% of its energy relative
to a fair allocation in the case of equal weights, and nearly 20%
when weights are in a 1:2 ratio. The unequal weights increase the
relative loss, since it exacerbates the amount of solar power one site
is able to feed into the grid when another site is unable to generate
power. This effect is similar for squeeze with losses near 10% and
20%, respectively, with equal and weighted rates.
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Figure 9: Energy difference between H1 and H18 in Fig-
ure 5(a), as a function of the aggregate limit.

5.2 Fair Energy Allocation

The previous subsection demonstrated the relative difference in fair-
ness between two ideal synthetic homes with different shifts, cuts,
and squeezes. We also experiment with controlling a small group
of 18 homes in the western U.S. to get a sense of the differences
in energy allocation across many homes with real solar power. In
this case, we experiment with the equal rate allocation algorithm,
as well as the three different variants of our fair energy allocation
algorithm, including the extreme centralized algorithm with fast
catchup, the centralized algorithm with slow (proportional) catchup,
and our distributed algorithm. For these experiments, we assume
all the rates are equal, and set the limit to 60kW. Figure 6 shows the
aggregate power across all the homes over a month-long period, as
well as the 60kW limit. While we maintain a fixed limit, note that,
in practice, a balancing authority may vary this limit over time.
Figure 5 then shows the distribution of the energy gain/loss
relative to the fair energy in each case over a one month period,
which corresponds to a typical billing cycle. Note that this percent-
age directly translates into the fraction of money gained and lost
from net metering. In the equal rate allocation case (a), the largest
difference is over 27%, such that one home gets 27.8% less than
another home and 18.9% less than their fair energy allocation. For
each of the other algorithms, the percentage drops to near 0%, since
they explicitly attempt to maintain a fair energy allocation over
time. Figure 7 then shows a sample sunny day for both the most
advantaged and disadvantaged solar site with equal rate allocation;
we can see from this graph the impact of shifts, cuts, and squeezes
on fairness, as these two homes have significantly different solar
curves. As the figure shows, these sites have significantly different
capacities, with one site having a capacity near 50kW and the other
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Figure 11: As the propagation delay increases the fidelity of
control for the distributed algorithm decreases.

having a capacity of only 7kW. Note that a goal of our fair energy
access algorithm is to enable both of these sites to contribute the
same fraction of their maximum generation potential, which is
relative to their capacity. In contrast, despite these differences, in
all variants of the fair energy allocation algorithms, we see this
difference narrowing significantly, with all having a difference of
less than 1% in terms of grid energy access over the month.

In all of the algorithms above, we assume a one-minute update
interval, such that the rate is updated once every minute based on
data from the previous minute. Figure 8 shows the fidelity of each
algorithm in maintaining the limit with this update interval. We see
that the equal rate allocation has the highest fidelity (corresponding
to the lowest MAPE), since it adjusts rates instantaneously. The
small divergence here is due to the minute-to-minute changes in
solar power, as the algorithm can only adjust rates after it senses
that solar output has changed (which takes 1 minute in this case).
The centralized algorithm with the fast catchup has a lower fidelity,
which is also exacerbated due to the stochasticity in solar at minute-
levels. This algorithm results in highly imbalanced rates during
its catch-up phase, where some solar sites are contributing 100%
of their energy generation. As a result, if these sites change their
output significantly within a minute (before the rates are updated),
the aggregate solar power will diverge from the limit. In the equal
rate allocation case, the likelihood of such aggregate changes is
low because it requires all sites to suddenly change their output
in unison. However, when a small number of sites are catching
up and have a disproportionate share of grid energy, it increases
the likelihood that these sites will alter their generation within a
minute. The centralized algorithm that uses a slower proportional
catch-up mitigates this effect and has a MAPE near that of the equal
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Figure 13: Maintaining the limit at a 1-minute interval.

rate algorithm. Finally, the distributed algorithm has significantly
lower fidelity than the others due to its long propagation delays.

The deviation above changes with the limit as shown in Figure 9.
For the equal rate algorithm, the unfairness decreases as the limit
increases, since it mitigates the effect of differences in the solar
curve between sites. However, the difference between the different
variants of our fair energy algorithms remain largely constant and
generally under 5%. However, Figure 10 shows that the equal rate
algorithm has the highest fidelity across all aggregate limits. For the
fair energy algorithms, the lower the limit, the worse the fidelity
at maintaining the aggregate limit. This impact of low limits is
particularly severe for the centralized algorithm with fast catch-
up, since at low limits it is subject to increasingly more extreme
versions of the effects described above.

5.3 Distributed Algorithm

Finally, we explore the impact of information propagation delay
in the distributed algorithm. Figure 11 shows this delay on the
x-axis, while the y-axis shows the resulting MAPE relative to the
limit. The graph demonstrates that, as expected, the fidelity of the
control decreases (yielding a higher MAPE), as the propagation
delay increases. This increase is faster for the distributed algorithm,
since it takes some time for the rates to converge. However, in
contrast, fairness actually improves as the delay increases. Figure 12
shows the percentage maximum difference in the percentage of
energy gain/loss between any two homes (in this case, H1 and H18
from Figure 5(a)). The graph shows that as the propagation delay
increases this percentage trends towards 0%. Of course, the equal
rate algorithm is unfair and thus takes longer to converge. With
longer propagation delays, solar sites operate at the same fraction
of power for longer windows of time. As a result, the amount of
energy they contribute to the grid relative to each other converges.
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Figure 14: Impact of accelerating the “catch up” of sites that
are behind in their fair energy allocation by a multiplicative
gain factor in the distributed algorithm.

Thus, our fair energy access algorithms enable a tradeoff between
propagation delay, fidelity of control, and fairness.

Figure 13 illustrates the fidelity of maintaining an aggregate
60kW limit for the distributed algorithm over a representative
sunny day with a communication interval of one-minute. The
graph shows that the centralized equal rate algorithm is able to
maintain the 60kW limit precisely, while the distributed algorithm
maintains a limit that is slightly above the 60kW threshold. Finally,
Figure 14 shows how we mind the gap between fidelity and fairness
by accelerating the catch-up amount in the distributed algorithm.
In this case, we specify a gain value, which is a multiplicative factor
applied to the typical rate computed by the distributed algorithm
(which enables sites to increase their rate in proportion to the
amount of energy they are behind). Here, a gain of 0 indicates
no additional increase, while a gain of 10 increases the rate by a
factor of 10. The graph illustrates the tradeoff between fairness and
fidelity: as we increase the gain value (to accelerate catching up
sites that are behind in their energy allocation), the MAPE of the
aggregate limit increases (reducing the fidelity of control), while
the fairness increases (as specified by the decrease in the largest
difference in energy allocation between two sites). For comparison,
we also plot the fair energy fraction for the distributed algorithm,
which increases slightly, as more power is fed into the grid (as a
result of overshooting the limit as seen in Figure 13).

6 RELATED WORK

There is a large body of work on fair rate allocation and scheduling
in networking. This work differs from our work in that it maintains
instantaneous fairness when flows are backlogged, and not fairness
over long periods. Recently, there have been adaptations of this
work to the grid to dynamically manage solar energy [8] and elec-
tric vehicles [2]. We show that this work can lead to unfair energy
access. Similarly, iPlug [12] proposes a policy for decentralized dis-
patch of solar power based on congestion-aware network protocols.
iPlug differs from this work in that solar sites backoff after sensing
grid congestion, e.g., due to a deviation in grid voltage and fre-
quency. One issue with this approach is that it requires degrading
grid power quality to send feedback signals. Balancing authorities
are unlikely to allow such degradation. Thus, we adopt an approach
that directly communicates generation via the network to maintain
a fair energy allocation over time. Finally, iPlug’s approach is not
fair, since different users sense different voltages and frequencies
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depending on their position in the grid. For example, a user at
the end of the distribution line will have lower voltages, and thus
backoff more than a user further up the line.

Finally, prior work in the power systems community explores
different strategies for curtailing solar power. However, these ap-
proaches have largely focused on preserving the reliability of the
grid, and responding to over-voltage situations [9, 14-17]. Instead,
our work focuses on enabling fair control of distributed solar ca-
pacity, which has not been a metric of interest in prior work.

7 CONCLUSIONS

This paper highlights that enforcing fairness based on the relative
amount of energy injected into the grid over time is more important
than enforcing instantaneous rates. This discrepancy arises from
fundamental differences in enforcing “fair” energy access to the grid,
compared to analogous fair-sharing in networks and processors. To
address the problem, we present both a centralized and distributed
algorithm to enable control of distributed solar capacity, while
enforcing fair grid energy access. We implement our algorithm and
evaluate it on both synthetic data and real data from 18 solar sites.
We show that traditional rate allocation that enforces equal rates
results in solar sites contributing up to 18.9% less energy than an
algorithm that enforces fair grid energy access.
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