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ABSTRACT

!e rapid expansion of intermi"ent grid-tied solar capacity is mak-

ing the job of balancing electricity’s real-time supply and demand

increasingly challenging. To address the problem, recent work

proposes mechanisms for actively controlling solar power output

to the grid by enabling so#ware to cap it as a fraction of its time-

varying maximum output. Utilities can use these mechanisms to

dynamically share the grid’s solar capacity by controlling the solar

output at each site. However, while enforcing an equal fraction

of each solar site’s time-varying maximum output results in “fair”

short-term contributions of solar power, it does not result in “fair”

long-term contributions of solar energy. !is discrepancy arises

from fundamental differences in enforcing “fair” access to the grid

to contribute solar energy, compared to analogous fair-sharing in

networks and processors. In this paper, we present a centralized and

distributed algorithm to enable control of distributed solar capacity

that enforces fair grid energy access. We implement our algorithm

and evaluate it on synthetic data and real data across 18 solar sites.

We show that traditional rate allocation, which enforces equal rates,

results in solar sites contributing up to 18.9% less energy than an

algorithm that enforces fair grid energy access over a single month.
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1 INTRODUCTION

!e amount of grid-tied solar power continues to grow at an expo-

nential rate with capacity increasing by an average of 33% each year

over the past six years [6]. !is growth is driven by consistent drops

in solar module prices, which have fallen 10% per-year on average

over the past three decades. In many locations, the average cost of

solar energy is now less than the cost of energy from fossil fuels.

As a result, some estimates project that solar could contribute as

much as 20% of global electricity consumption as early as 2030 [5].

Unfortunately, the increasing penetration of solar energy in the

grid complicates utility operations. In particular, utilities are re-

sponsible for balancing electricity’s real-time supply and demand,

requiring them to compensate for variations in solar output. How-

ever, compensating for large solar variations using mechanical gen-

erators is challenging, since generator ramp rates are less than solar

ramp rates. As a result, governments generally limit the amount of

grid-tied solar capacity that can feed energy into the grid. In the

U.S., these limits vary widely by state, and o#en restrict both the

percentage of users with grid-tied solar, and their aggregate solar

power capacity. !e rapid growth in solar power is now causing

states to frequently hit these limits, triggering a complex political

process (o#en taking many months) that is required to raise them.

Since the limits, which are a form of admission control, are hard,

once they are hit, additional users cannot install grid-tied solar until

they are raised. For example, users in Hawaii were recently barred

from installing grid-tied solar for two years [3, 10].

Importantly, the aggregate power limits above are static and

based on the rated installed capacity of each solar site, and not the

amount of power they actually generate. Standard Test Conditions

(STC) for rating solar module capacity specifies an irradiance of

1kW/m2 with an air mass of 1.5, no wind speed, and a cell tem-

perature of 25C.!ese conditions approximate the generation of

a south-facing solar module (tilted at the same angle as the Sun)

at solar noon near the equinox on a clear sunny day in the U.S.

with an ambient air temperature of 0C. Of course, weather condi-

tions are rarely this “ideal:” the ambient air temperature at STC is

unrealistic, roof lines dictate non-ideal orientations and tilts, and

solar irradiance is usually much less than 1kW/m2, e.g., during the

morning, evening, over much of winter, and under cloudy skies.

!us, the actual aggregate solar power generated is rarely, if ever,

at (or even near) the rated capacity, and varies widely each day, over

the year, and as the weather changes. For example, on cloudy days,

the aggregate contribution of solar power across many distributed

sites is much less than on sunny days. As a result, on a cloudy day,
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the grid could potentially accept solar power from many sites that

are currently forced off-grid without exceeding its capacity limit.

To address the problem, recent work proposes mechanisms [13]

and policies [8, 12] for actively controlling solar power output to

the grid. !is work enables so#ware to cap the solar power injected

to the grid as a configurable fraction of its time-varying maximum

output [13], and then, inspired by similar problems in networks,

designs rate allocation policies to limit the aggregate contribution

of distributed solar subject to the grid’s capacity [8, 12].

An important metric when determining how to dynamically

limit each solar site’s power output is preserving fairness between

sites. Prior work co-opts the traditional notion of “fairness” from

the networking literature, which computes it with respect to the in-

stantaneous sending rates of flows, and not the cumulative amount

of traffic they send over time. !is makes sense in networking, as

senders can potentially generate an arbitrary amount of traffic at

any time. !us, if one idle sender does not generate traffic for a

long period, then i) other senders should be able to increase their

rate to consume any excess bandwidth during this time, and ii)

the idle sender should not be able to accumulate unlimited credit

for their idleness, enabling them to monopolize the link once they

resume sending. !e former property ensures allocations are work-

conserving, while la"er property prevents starvation of senders.

Analogously, prior work a"empts to maintain “fair” grid rate allo-

cations, such that each solar site contributes near the same fraction

of their time-varying maximum instantaneous power output.

!e problem is that this traditional notion of fairness in networks

does not map well to the grid. Instead, we argue that the grid

should express fairness in terms of the total fraction of energy

users contribute over time (with respect to each other) rather than

in terms of their instantaneous rates of power. Ultimately, users

care about the amount of total solar energy they can feed into

the grid (over some time window), as a fraction of the total solar

energy they could possibly feed in, since this impacts both the cost

of their system and the revenue it generates. In particular, users

directly receive compensation for the energy they feed in, which

decreases with the fraction of energy they can contribute. !e

expected fraction of energy users cannot feed into the grid may

also necessitate additional system costs to store excess energy.

As we show, enforcing fair instantaneous rates, as in networking,

may result in unfair contributions of total energy over time. Unlike

in networking, solar sites can only generate “traffic” at certain times

based the Sun’s irradiance, which is a function of location, time,

local weather, and physical installation characteristics. Importantly,

solar sites cannot control their location, the Sun, the weather, and o#en

their physical characteristics, and thus have no control over when

and how much solar power they can generate. In contrast, network

clients that are not generating traffic are doing so voluntarily, and

could generate traffic if desired. Clearly, if network clients directly

received compensation for the total amount of data they sent, they

most certainly would generate traffic all the time, and the total

amount of data they sent over time would be critically important.

!is paper identifies this fundamental difference between fair

rate allocation in networks and fair grid energy access for solar, and

discusses how and why it arises. We then design a rate allocation

algorithm to enforce weighted fair grid energy access and evaluate

its tradeoffs. In doing so, we make the following contributions.

Fairness Definition. While preserving fairness is a first-class

concern when sharing processors and networks, it has generally

not been a metric of interest in electric grids. We introduce and

define the notion of distributed solar fairness (DSF), and discuss

how it differs from similar notions of fairness in computer systems

and networking. We also discuss how unfairness arises among

distributed solar sites with limits on their aggregate solar output.

Fair Energy Allocation Algorithm. We propose a simple energy

allocation algorithm to enforce fair grid energy access among dis-

tributed solar sites. While this algorithm allocates rates to different

solar “flows” over time, as in computer systems and networks, it

varies these rates to ensure users contribute the same fraction of

their actual solar energy capacity. !e algorithm exposes tradeoffs

in its convergence speed, fidelity to the aggregate limit it enforces,

and robustness, i.e., the interval over which it must exchange data.

Implementation and Evaluation. We implement our algorithm

above and evaluate it on both synthetic data and real data from 18

solar sites. We show that traditional equal rate allocation results in

solar sites contributing up to 18.9% less energy over a single month

than our algorithm that enforces fair grid energy access.

2 FAIRNESS IN THE ELECTRIC GRID

In this paper, we consider grid-tied solar arrays capable of “net

metering.” Currently, the grid allows a net metered grid-tied solar

array to feed any amount of power into the grid, up to its maximum

installed capacity, with no restrictions. !us, the “admission control”

decision of whether to allow a solar array to net meter must be made

at installation time. As discussed earlier, this limits the number of

solar installations the grid can permit, since policies must plan for

the worst-case scenario, i.e., where all solar arrays concurrently

feed in their maximum capacity, even though this scenario is highly

unlikely (if not impossible), and can only occur one time per year.

!us, enforcing such limits at “run time” has the potential to

enable a much larger number of grid-tied solar arrays, while still

limiting the total net metered power to a pre-specified capacity. In

the future, we expect the grid to rate control the amount of power

that can be injected by a grid-tied solar array. !e ability to rate

control solar arrays at the time-scale of minutes or hours has many

benefits. For example, rate control can enable any number of solar

arrays to connect to the grid, while limiting their stochasticity. In

addition, rate control can also incentivize energy storage to save

surplus solar power that the grid cannot accept due to the limits.

Given such a scenario, we examine the problem of how the grid

should assign rates to different solar arrays, while maintaining an

aggregate limit on solar output and fairness across users. Prior work

has used an analogy to the rate allocation problem in computer

networks and has taken the notion of fairness from networking.

Specifically, prior work uses analytical models of TCP’s rate control

algorithm and weighted versions of this rate allocation problem to

model the problem [2, 8, 12]. However, with solar, owners directly

receive compensation for the solar energy they contribute and thus

are incentivized to always produce as much power as possible.

!us, rather than using a notion of fairness from networking,

we instead propose a new fairness metric for rate-controlled solar

arrays called distributed solar fairness (DSF) that is based on net

metered compensation. Let Eactual
i

(t2−t1) denote the actual energy
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Algorithm 1 Centralized Energy Allocation (Fast)

Require: Pi (t) and P
assiдned
i

(t) f or all homes over time T , L(t)

1: Compute EFi =

∑
T

t=0 P
assiдned
i

(t )
∑
T

t=0 Pi (t )
, ∀ i

2: Compute FEF =

∑
n

i=0

∑
T

t=0 P
assiдned
i

(t )
∑
n

i=1

∑
T

t=0 Pi (t )

3: Sort & index homes in ascendinд order o f EF (↑n
i=1)

4: Pavail (t) = L(t) −
∑
n

i=1 P
assiдned
i

(t)

5: while (Pavail (t) > 0) do

6: if (EFi < FEF ) then

7: P
assiдned
i

(t) = Pi (t)

8: Update Pavail (t), i + +

9: else

10: break

11: Rate(t) =
P
avail (t )

∑
n

i=1 Pi (t )
f or homes above FEF

12: Update EF f or all homes

Algorithm 2 Centralized Energy Allocation (Slow)

Require: Pi (t) and P
assiдned
i

(t) f or all homes over time T , L(t)

1: Compute EFi as in Alдorithm 1

2: Compute FEF as in Alдorithm 1

3: Sort & index homes in ascendinд order o f EF (↑n
i=1)

4: Compute f air rate Rate(t) =
L(t )

∑
n

i=1 Pi (t )

5: Pavail (t) = L(t) −
∑
n

i=1 P
assiдned
i

(t)

6: while (Pavail (t) > 0) do

7: if (EFi < FEF ) then

8: P
assiдned
i

(t) = (1 + (FEF − EFi )) × Rate(t)

9: Update Pavail (t), i + +

10: else

11: break

12: Rate(t) =
P
avail (t )

∑
n

i=1 Pi (t )
f or homes above FEF

13: Update EF f or all homes

of their maximum power, we can set a limit between the equal

rates computed in Equation 2 and 100%. In our algorithm, we apply

proportional control to set these rates, such that the more behind a

solar site, the faster it is able to catch up. In particular, we increase

the rate in Equation 2 by the same proportion the site is behind in

energy. !us, if a solar site has 20% less than their “fair” fraction

of global energy, we allow it to increase its rate in Equation 2 by

20%. Algorithm 2 shows the pseudocode for this algorithm, which

we label as slow centralized allocation, where line 7 applies the

proportional adjustment to the rate.

DistributedAlgorithm. !e centralized algorithms above assume

accurate generation information is available from all solar sites in

real-time, and that it is able to instantaneously set the rates of all

solar sites without any delay. !is implies that solar sites form a

tightly-coupled system with utilities, where they stream generation

data to utilities in real-time and utilities are able to instantaneously

control their rates. Implementing such a tightly-coupled system

is not realistic today. Most smart meters communicate wirelessly

Algorithm 3 Distributed Energy Allocation

Require: L(t), Pestaдд(t), and Rate(t) over time T

1: Estimate aддreдate power Pestaдд(t) usinд дossip protocol

2: Compute EFi as in Alдorithm 1

3: Estimate FEF =

∑
T

t=0(P
est
aдд (t )×Rate(t ))

∑
T

t=0 P
est
aдд (t )

4: Compute f air rate Rate(t) =
L(t )

P
aдд
est

(t )

5: P
assiдned
i

(t) = (1 + K(FEF − EFi )) × Rate(t)

over the cell network and thus have limited bandwidth and periodic

connectivity issues. In addition, a centralized approach represents

a single point of failure and is not robust to network failures. !us,

we also present a distributed algorithm that uses incomplete infor-

mation propagated at lower rates, e.g., minutes to hours.

In this case, individual sites do not know the specific power and

energy generation of other sites, and thus cannot compute precise

rates that satisfy the aggregate limit and correctly apportion fair

rates across sites. Individual sites can only increase or decrease

their rate relative to the equal rates in Equation 2 and based on

the difference between the globally fair energy fraction and their

local fraction of energy. !us, in our distributed algorithm, sites

that are both above and below the globally fair energy fraction

decrease and increase, respectively, the rate in Equation 2 by the

same proportion that the site is ahead or behind in energy.

Algorithm 3 shows the pseudocode for this algorithm, which we

label as distributed energy allocation. Each solar site independently

runs the distributed algorithm at a specified interval to determine

their solar rate. !e length of this interval represents the expected

time period between disseminating new generation information to

other solar sites. While each solar site can broadcast to all other

solar sites, full mesh communication has the same issues as the

tightly-coupled centralized approach. Instead, similar to prior work

on distributed rate limiting in networks [11], we can use a more

robust push-sum gossip protocol that periodically disseminates

recent generation information to a random set of N other sites

each interval [7]. !is push-sum gossip protocol may take a few

intervals to converge, such that each site has an accurate estimate

of the “fair” fraction of global energy and the global equal rate

from Equation 2. We also add a multiplicative gain factor, K , as

a configurable parameter to adjust how fast sites catch up in the

distributed algorithm, similar to Algorithm 2.

3.3 Fidelity of Control

Both the centralized and distributed algorithms must make deci-

sions based on stale information, as solar power changes contin-

uously. In the centralized case, even though this time period may

be small, e.g., one minute, solar output can fluctuate significantly

even over these short time periods. Since large fluctuations can

have a negative impact on electronics, the fidelity of the control,

i.e., how close the algorithm is able to maintain the aggregate limit

that is set, is an important performance metric. In addition, large

fluctuations in the rates from the algorithm can also have a negative

impact on the electronics that control solar output, and thus are

also undesirable. As we show, the centralized algorithm with a










