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Abstract—Smart energy meters record electricity consump-
tion and generation at fine-grained intervals, and are among the
most widely deployed sensors in the world. Energy data embeds
detailed information about a building’s energy-efficiency, as
well as the behavior of its occupants, which academia and
industry are actively working to extract. In many cases, either
inadvertently or by design, these third-parties only have access
to anonymous energy data without an associated location. The
location of energy data is highly useful and highly sensitive
information: it can provide important contextual information
to improve big data analytics or interpret their results, but it
can also enable third-parties to link private behavior derived
from energy data with a particular location. In this paper,
we present Weatherman, which leverages a suite of analytics
techniques to localize the source of anonymous energy data.

Our key insight is that energy consumption data, as well
as wind and solar generation data, largely correlates with
weather, e.g., temperature, wind speed, and cloud cover, and
that every location on Earth has a distinct weather signature
that uniquely identifies it. Weatherman represents a serious
privacy threat, but also a potentially useful tool for researchers
working with anonymous smart meter data. We evaluate
Weatherman’s potential in both areas by localizing data from
over one hundred smart meters using a weather database
that includes data from over 35,000 locations. Our results
show that Weatherman localizes coarse (one-hour resolution)
energy consumption, wind, and solar data to within 16.68km,
9.84km, and 5.12km, respectively, on average, which is more
accurate using much coarser resolution data than prior work
on localizing only anonymous solar data using solar signatures.

I. INTRODUCTION

Smart energy meters, which measure and transmit elec-
tricity usage at fine-grained intervals, e.g., every hour or less,
are being widely deployed by utilities in many parts of the
world. Smart meter penetration is expected to increase as
utilities continue to upgrade old meters and support more
sophisticated smart grid functionality. In addition to smart
meters, end-users are also increasingly deploying Internet-
enabled meters to track their own local energy consumption
and generation. Renewable solar and wind installations
typically include such end-user metering by default.

Given the scale of the deployments above, developing
techniques that analyze big energy data to improve energy-
efficiency has become an active research area in both indus-
try and academia. Numerous startups, including Bidgely [1],
Onzo [2], and Sense [3], are now focused on monetizing
insights drawn from big energy data. These insights have
the potential to significantly improve energy-efficiency at
massive scales, e.g., by providing real-time energy-efficiency
recommendations to users or automatically identifying faults

in individual buildings or the electric grid. To gain these
insights, utilities often contract with the third-party energy
data analytics companies above and directly provide them
energy meter data, while end-users often link their meters
to public APIs that allow analytics companies to directly
access their energy data. These third-party companies often
provide analytics services to end-users “for free,” since the
energy data provides value to them, e.g., either as training
data or in profiling users’ energy usage and behavior.

Importantly, the energy data made available to the third-
party companies and academic researchers above is often
anonymous and not associated with a specific location.
Anonymous energy data includes only a series of tuples,
which each specify a timestamp and energy consumption
(or generation). The primary reason for anonymizing energy
data is to prevent third-parties from linking private informa-
tion derived from energy data with a particular location [4].
However, such private information is potentially valuable.
As one example, analyzing energy data can reveal irregular
sleeping patterns, e.g., based on sporadic energy usage at
night, which pharmaceutical companies could use to inform
direct marketing campaigns of insomnia drugs. To guard
against these privacy threats, the Voluntary Code of Conduct
(VCC) for managing customer energy data recently released
by the DOE recommends utilities remove any identifying in-
formation from energy data they share with third-parties [5].

In this paper, we present Weatherman, a suite of big data
analytics techniques that extract location from anonymous
energy consumption, wind, and solar data. Our key insight
is that energy data largely correlates with the local weather,
e.g., temperature, wind speed, and cloud cover, and that
every location on Earth has a distinct weather signature that
uniquely identifies it. Weatherman leverages this insight to
localize the source of anonymous energy data. To do so,
Weatherman combines physical system models with statisti-
cal techniques to extract a weather signature from energy
data at each location when searching a massive weather
database that includes records from 35,000 locations.

Our goal is to explore the severity of this privacy threat by
quantifying the localization accuracy for energy consump-
tion, wind, and solar data. Based on the DOE’s VCC, users
often do not consider the privacy implications of releasing
anonymous energy data to third-parties, assuming the data is
anonymous if it is not associated with location information,
e.g., an address. Understanding the localization threat is
important in i) educating users about the sensitivity of energy



data, ii) informing evolving policies on managing energy
data, and iii) developing techniques that preserve privacy,
while also enabling well-intentioned analytics. Existing tech-
niques for preserving privacy in energy data do not consider
localization threats, and thus cannot prevent them [6], [7].
Broadly, Weatherman shows how public access to large “big
data” archives of sensor data can introduce serious privacy
threats. Our hypothesis is that weather-based localization
of energy consumption, wind, and solar data is accurate to
a small region. Since wind and solar sites are identifiable
via public satellite imagery within the region [8], [9], such
localization represents a serious privacy threat, as it may be
possible to associate data with a specific home. In evaluating
our hypothesis, we make the following contributions.
Weather-based Energy Modeling. We present physical
models that characterize the energy consumption of build-
ings and the energy generation of wind and solar sites
based on the weather. These physical models show how
energy consumption, wind, and solar energy data correlate
with specific weather metrics—temperature, wind speed, and
cloud cover—in different ways, which enables localization
by correlating the energy data with weather data.
Weather-based Energy Localization. We combine our
physical models with statistical techniques to extract a
unique weather signature at each possible location from
each type of energy meter data. Weather-based localization
then involves searching a massive weather database to find
a location with weather that best matches the weather
signature. Given the scale of the database, a key challenge
is making this search both efficient and accurate.
Implementation and Evaluation. Finally, we implement
Weatherman and evaluate its accuracy on 117 smart meters
and show that it localizes coarse (hour-level) energy con-
sumption, wind, and solar data to within 16.68km, 9.84km,
and 5.12km regions, respectively, on average. This repre-
sents significantly higher accuracy than recent work on solar
localization [9], which i) only localizes solar energy data
based on its solar signature, and not its weather signature,
and ii) requires fine-grained second- or minute-level data
and is not accurate using coarse hourly or daily data. We
also evaluate how accuracy varies based on how well energy
consumption data varies with outdoor temperature, which is
a function of multiple factors, including the local climate,
characteristics of the building’s HVAC system, and the
tightness of the building’s envelope.

II. BACKGROUND

Weatherman assumes it is given anonymous energy data
that includes only a time-series of energy readings at a
coarse resolution, e.g., every hour, with no other metadata.
Weatherman’s goal is to then analyze this anonymous energy
data to infer the location—a latitude and longitude—of the
smart meter that collected it. Weatherman currently focuses
narrowly on localizing “pure” energy data, e.g., from either

consumption, wind, or solar, and not “net” meter data that
combines two or more types. Localizing net meter data that
combines two or more data sources is future work.

To localize energy data, Weatherman searches a database
of historical weather data to find a location where the
weather data best correlates with a weather signature
extracted from the energy data. Constructing a massive
historical weather database from public sources, such as
Weather Underground, that includes thousands of locations
is not challenging. Our current weather database stores
temperature, wind speed, and cloud cover each hour for
35,000 locations in the U.S., but could be expanded to other
areas. We discuss more details of our prototype’s weather
database in §IV. For each type of energy data, Weatherman
leverages a different physical model based on how that
energy data relates to the location’s weather to extract a
weather signature. Below, we describe the physical models
Weatherman uses to generate a weather signature for energy
consumption, wind, and solar data.

A. Energy Consumption-Temperature Model

The dominant fraction of energy consumption in resi-
dential homes is due to space heating and cooling, which
accounts for over 48% of energy usage [10]. The energy
consumed for heating and cooling generally correlates with
the outdoor temperature. This relationship is captured by
the degree-day metric (in units of degree-time), which is the
integral of the degrees above or below a specified base tem-
perature over time for cooling and heating, respectively [11].
The base temperature represents the “balance” point at which
no cooling or heating is required, and is typically estimated
as 18C (or 65F) for buildings. The energy required to
heat or cool a building is then modeled as being directly
proportional to the number of heating or cooling degree-
days, respectively. To illustrate this relationship, Figure 1
plots a home’s daily energy usage on the y-axis, and the
daily degree-days on the x-axis, over summer. We use a
base temperature of 18C, so a degree-day less than O is a
day where the temperature was always less than 18C.

The degree-days metric linearly correlates with energy
consumption, with higher slopes indicating a greater corre-
lation between changes in energy consumption and changes
in outdoor temperature. However, the slope of the line and
base temperature(s) vary significantly across buildings based
on multiple factors, including the local climate, type of
HVAC system, building insulation, and user behavior. For
example, homes in San Diego, California, which has a mild
local climate with a constant temperature near 65F, may
have a low correlation, since the temperature is steady and
HVAC is often not required. Of course, homes must have
electric HVAC to exhibit a large slope. Since all cooling is
electric, slopes are typically higher during warmer months.
In contrast, only ~38% of U.S. homes use electric heating,
s0 62% of homes will have lower slopes during the winter
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Figure 1. Daily average power and degree-days over the summer for a
home with central air conditioning.
months. Even in locations that exhibit large changes in
temperature, a building’s insulation will affect the slope:
a less insulated building will have a higher slope, since it
will require more energy to maintain the base temperature
when the outdoor temperature significantly deviates from
it. Finally, the base temperature is also a function of user
behavior, as it depends on the thermostat setpoint. Given
these factors, the localization accuracy of energy usage data
varies widely across buildings. As we discuss, our evaluation
focuses on summer months where the correlation between
energy usage and temperature is likely to be higher.

B. Wind Energy-Speed Model

The relationship between wind speed and wind energy
generation is much simpler, since 100% of wind energy is a
function of wind speed. Wind power generation is based on
the cubic function below, where A derives from the turbine’s
rotor area, p is the air density, and v is the wind speed.

P= %Amﬁ (D

Wind turbine designs also dictate cut-in, rated, and cut-
out thresholds that represent the wind speed at which power
generation starts to increase, stops increasing, and termi-
nates, respectively. At low wind speeds under the cut-in
speed, there is not enough power to overcome the friction of
the rotor. After the cut-in wind speed, power then increases
cubically up to the turbine’s rated wind speed, where its
generator limits power to a constant output. The turbine
generates this constant power up to a cut-out wind speed
that can damage it, at which point the turbine engages brakes
and power output drops to zero. While these thresholds vary
based on a wind turbine’s size and design, typical cut-in
wind speeds are 3-4 meters per second (m/s), rated speeds
are 12-17 m/s, and cut-out speeds are ~25 m/s. Figure 2
is a scatterplot of hour-level wind generation and speed
measurements with annotations of the turbine’s cut-in speed,
cubic function, rated speed, and cut-out speed.

C. Solar Energy-Cloud Cover Model

Solar energy embeds perhaps the most precise location
information. Figure 3 shows the solar output of a small
rooftop solar site as a function of the measured Global
Horizontal Irradiance (GHI) in W/m? using a pyranometer
at the same location. As expected, the relationship is almost
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Figure 2. Hourly measurements of wind power and speed.
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perfectly linear, since solar modules translate irradiance
directly into power with some efficiency loss. The small
imprecision in the graph is due to minor temperature effects,
which cause efficiency to decrease as the temperature rises.

Unfortunately, unlike temperature and wind speed, most
weather stations do not include pyranometers, and thus do
not report ground-level irradiance. Thus, to localize solar
data, we cannot simply correlate ground-level irradiance
measurements with solar output. As a result, we use the
coarse sky condition information reported by weather sta-
tions, which is typically measured in oktas that represent
how many eighths of the sky are covered in clouds. Oktas
range from O (completely clear sky) to 8 (completely over-
cast). The sky conditions reported by the National Weather
Service translate directly to oktas [12] where “Clear/Sunny”
is <1 okta, “Mostly Clear/Mostly Sunny” is 1-3 oktas,
“Partly Cloudy/Partly Sunny” is 3-5 oktas, “Mostly Cloudy”
is 5-7 oktas, and “Cloudy” is 8 oktas.

III. WEATHERMAN DESIGN

Weatherman uses the physical relationships above to
search a large weather database to determine the location
with weather that best correlates with a weather signature
extracted from the energy data at each possible location.
Since Weatherman assumes energy data is anonymous, it
makes minimal assumptions about the associated metadata.
For example, Weatherman does not assume the type of
energy data is given, since classifying the data as energy
consumption, wind, or solar is straightforward. Weatherman
also does not require the associated units of energy data,
e.g., watt-hour or kilowatt-hours, or their sign, as the cor-
relation of energy with weather does not depend on the
magnitude. In addition, Weatherman also supports different
assumptions about the metadata information encoded in the
timestamp. The specificity of the timestamp simply increases
or decreases the Weatherman’s search space. By default,
Weatherman assumes the timestamp includes the date and
hour. However, if the timestamp does not include the date,
Weatherman simply correlates weather signatures for every
possible daily time offset at each location, which increases
the search space by 365 x over a year.

A. Weather-based Localization Challenges

A naive approach to weather-based localization is to
directly correlate the time-series of energy data with the
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Figure 3. Solar energy is a linear function of solar irradiance.

time-series of a particular weather metric at each location in
our weather database. There are many functions that quantify
how well two time-series correlate, enabling a ranking of
locations based on how well energy data matches a weather
metric. For example, the Pearson Correlation Coefficient
(PCC) is a measure of the linear correlation between two
variables, computed as the covariance between the variables
divided by the product of their standard deviation.

A naive approach simply selects the locations with the
highest PCC. Unfortunately, this naive approach is impre-
cise, as energy data, itself, does not highly correlate with
weather. For example, while changing weather instantly
affects wind and solar energy, there is often a lag in the
effect on energy consumption as a building heats up or cools
down, which simple “instantaneous” correlation coefficients,
such as the PCC, do not capture. Thus, Weatherman extracts
a custom signature for each location that accounts for such
effects in each type of energy data. In addition, searching all
locations in a large weather database can be highly ineffi-
cient, since Weatherman must extract and compare a weather
signature from energy data based on each location’s weather
metrics over a long period of time, e.g., multiple months to
years. As a result, to improve efficiency, Weatherman first
extracts weather signatures on coarse day-level data to filter
the possible locations, as each type of energy also correlates
with weather each day.

B. General Weather-based Localization Approach

Weatherman uses the same general approach to localize
energy consumption, wind, and solar data. Weatherman
extracts a custom weather signature from the energy data at
each location in its weather database. To improve efficiency,
it first extracts and correlates this weather signature at
each location with coarse day-level weather data. Using
day-level data both reduces the size of the input by 24X,
and thus increases efficiency, and, in the case of energy
consumption, also mitigates the impact of a variable lag
in the energy response to temperature changes (since this
lag is only evident at hour-level). Weatherman uses the day-
level analysis to first filter possible locations by clustering
the points using k-Means clustering, and then selecting the
cluster with the highest average correlation. Filtering is
important in reducing the large search space of locations.

Weatherman then re-computes the correlation using higher
resolution data, and finds the weighted geographic midpoint

of locations in the cluster (based on the magnitude of the
correlation with each location) to estimate a final location.
As we discuss below, the only differences between energy
consumption, wind, and solar data is the method of ex-
tracting the weather signatures, the weather metric used for
correlation, and the specific correlation function.

C. Energy Consumption Weather Signatures

Based on the degree-days model from §II, when cor-
relating with each location, Weatherman removes energy
consumption datapoints whenever the corresponding tem-
perature is below the typical 18C base temperature. We
assume energy consumption is linear with degree-days above
a base temperature, and simply compute the correlation
using the PCC between the daily energy and temperature
data. Note that the daily correlation is robust to changes in
user behavior, which are most prevalent within a day, e.g.,
from setting a programmable thermostat schedule that differs
over the day, rather than across days. Figure 4(a) shows the
CDF of the PCC for all locations, with the ground truth
indicated as a red dot. This graph is for the same home as
in Figure 1, and filters the locations from 35k to ~300.

Unfortunately, for higher resolution hourly energy data,
there is typically a variable lag between the increase in
temperature and the corresponding increase in energy con-
sumption, as it takes time for a building to heat up and for
its thermostat to detect this and activate the HVAC system.
This lag is variable, as it depends on the thermostat setting,
which may vary, and the tightness of the building’s envelope.
As a result, the impact of a temperature increase is often
not observed in energy data for an hour or more. Thus, the
PCC does not work well with hour-level data, since it only
considers the correlation between each two points in time.

In this case, Weatherman applies Granger causality anal-
ysis [13], which captures the extent to which changes in
one variable predict (or lag) another over time using an F-
test. Note that, unlike the PCC, Granger causality analysis
does not require that changes be linearly correlated, only that
they lag and have the same direction. Computing Granger
causality is more computationally-intensive than computing
the PCC, since it searches over multiple possible lag values.
As a result, performing Granger causality at hour-level
over 35k locations is time-consuming. For example, a full
search, assuming the date and hour are well-known, takes
8.5 hours using 80 high-end data center servers. If the date
is not included in the timestamp, the search would take
~8.5 x 120=1020 hours (42.5 days) on the same set of
servers, since we only conduct this search over the summer
months. Thus, we only performGranger causality analysis
over the filtered list of sites using the daily data analysis
above, which takes ~5 minutes.

Figure 5(a) shows the CDF of the Granger causality of the
hourly energy data (using an F-test with a p-value<0.001).
In this case, the final weighted geographic midpoint of these
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Figure 5.

locations results in an estimated location 6.14km from the

actual location (and within the same town). Note that the

home is 4.1km from the nearest weather station, which has
the fifth highest correlation in this case.

D. Wind Energy Weather Signatures

As Figure 2 shows, the relationship between wind power
and speed is defined by a piecewise function based on the
cut-in, rated, and cut-out speeds. A simple approach for
extracting a wind weather signature would be to focus on just
one part of this function. However, this would remove useful
information. Instead, Weatherman projects this piecewise
function onto the single line y = 0 (where y is the energy
generation and x is the wind speed), such that the wind
power data as a function of wind speed after this projection
should be zero at the correct location. Since PCC and other
correlation coefficients are undefined when the variance
of one variable is zero, we rank locations based on their
average absolute value after the projection, i.e., the average
perpendicular distance from y = 0.

Weatherman does not alter the energy datapoints that
correspond to wind speeds from 0-3m/s and >22m/s, since
these should already map to zero. For datapoints in the range
4-13m/s, we first take the cube root of the energy data,
perform a linear regression, and then find the distance each
datapoint is from this line. We then project these points by
replacing their original energy generation value on the y-axis
with this distance value on the y-axis. For datapoints in the
range 14-21m/s, we find the horizontal line that minimizes
the root mean squared error with the datapoints, and then
subtract the y-value of this horizontal line from the y-value
of each datapoint. After this projection, wind power data
that perfectly correlates with wind speed will lie at y=0.

We perform the same projection when filtering based on
daily and hourly data, as described above. After performing
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CDF of correlation analysis across all locations for hourly energy consumption, wind energy, and solar energy data.

PCC (hour)
(c) Solar energy

this projection, Weatherman proceeds based on the basic
approach above, where the weather metric is wind speed
and the correlation function is the average of the absolute
value of the projected data. Figure 4(b) and Figure 5(b) show
the CDF of this average across all locations for the daily and
hourly data for the data in Figure 2, with the ground truth
location indicated by the red dot. We again are able to filter
from 35k to ~300 sites using the daily energy data. Here, the
nearest weather station to the actual location ranks fifth and
the geographic midpoint of the selected locations is 24.37km
from the target site. We then perform the same analysis
on the filtered sites using the hourly data. In this case, the
nearest weather station ranks third, and the geographic mid-
point of the filtered locations is 3.87km from the location.

E. Solar Energy Weather Signatures

Solar power has a near linear correlation with solar
irradiance, which is largely determined by cloud cover that
is measured by weather stations in oktas, as discussed in
§II. Unfortunately, raw solar generation does not directly
correlate with oktas, as solar output varies over both the
time-of-day and the day-of-year. Since these variations are
a function of location, Weatherman does not know them
precisely. However, we can roughly estimate the maximum
generation potential P of solar by observing that the average
clear sky irradiance, which is a well-known function of time
at each location based on a site’s efficiency, tilt, orientation,
etc. should be an upper-bound on solar output, as described
by the equation below. Here, ( is the tilt angle, ¢ is the
orientation angle, © is the Sun’s zenith angle, « is the Sun’s
azimuth angle, I, cident 1S the clear sky solar irradiance, and
k is a module-specific parameter that combines a module’s
efficiency and size. The solar angles and clear sky irradi-
ance are themselves a function of latitude, longitude, and



time [14]. We can search for the parameters, e.g., latitude,
longitude, efficiency, tilt, and orientation, that defines a valid
solar curve that yields the tightest upper bound.

Py(t) = Lincident (t) xk*[cos(90 — ©) xsin () xcos(¢ — )
+sin(90 — O©) x cos(B8)] (2)

We search for the parameters above as described in prior
work [9], [15], [16]. Specifically, we first use prior work on
localization using solar signatures to estimate a location by
associating the first, last, and maximum hour of generation
with the time of sunrise, sunset, and solar noon [9]. Note that
we use this search only to provide a rough estimate of the
hourly maximum generation; the latitude and longitude we
find are not accurate for localization. Accurate localization
based on the solar signature using hourly data is not possible,
as it has a maximum accuracy of at most 1656km based on
the speed of the Earth’s rotation. Given this rough location,
we then conduct a binary search for the efficiency, tilt, and
orientation parameters that represents the tightest upper-
bound on the data, as described in prior work [15], [16],
since solar generation is bounded by the maximum clear
sky irradiance at any time.

The model above does not account for temperature, which
increases solar efficiency by some percentage c for every
degree Celsius decrease in temperature. Thus, when extract-
ing the weather signature for each location, we use the
same model from prior work to adjust for these temperature
effects [15], [16]. This approach conducts a binary search
for the temperature coefficient ¢ that results in the tightest
upper bound on the data. That is, the approach adjusts the
efficiency parameter k above at each time ¢ for each ¢ based
on the equation below, where Tpqscrine 1S the temperature at
the time where the model above is closest to the actual solar
data and Ty, is the temperature at every time t.

- Tair (t))) (3)

Since temperatures are different at each location, we must
repeat this process at each location. This search provides a
temperature-adjusted estimate of the maximum solar gener-
ation for each hour and day at each location. Weatherman
then normalizes the daily and hourly data in its weather
signature at each time period by dividing each data point by
this maximum estimated solar generation. This normalized
solar output (relative to the maximum possible clear sky
output) should linearly correlate with the cloud condition in
oktas reported by weather stations. As a result, Weatherman
directly uses the PCC to quantify this correlation.

Figure 4(c) and Figure 5(c) show the CDF of the PCC
across all locations for the daily and hourly solar data.
We again filter from 35k locations to ~300 locations us-
ing the daily data, and then perform analytics using the
hourly data. The nearest weather station ranks fourth in
the daily data with the geographic midpoint of the filtered

k/(t) =k=x (]. +cx* (Tbaseline

locations 13.53km from the actual location. The nearest
weather station ranks second using the hourly data with
the geographic midpoint an estimated location 2.05km from
the actual location. Again, the nearest weather station is
12.73km away from the actual location, so Weatherman’s
estimate is closer than any single point.

IV. IMPLEMENTATION

We implement Weatherman in Python, and make it and
the data for this paper publicly available at the UMass Trace
Repository.! We use the scikit package, which functions for
PCC and Granger causality analysis. We implement a stan-
dard approach for finding the weighted geographic midpoint.
Finally, we use the Pysolar Python package for estimating
the clear sky irradiance [17]. Note that we set the thresholds
for filtering the daily and hourly data based on an empirical
analysis. We experimented with different thresholds in this
range, and it did not significantly change the results. For
the daily data, we use k-Means clustering with k equal to
50 to generate at least as many clusters as there are states.
In general, larger values of k£ do not significantly affect
the results. We then re-compute the correlation function of
the locations in the selected cluster using the hourly data,
and then compute their weighted geographic midpoint. We
build our weather database by fetching data from DarkSky’s
weather data API. > Our database currently stores hourly
and daily temperature, wind, and sky condition data from
35,000 weather stations in the U.S. The database includes
data over four-month period from June to September, 2016.

V. EXPERIMENTAL EVALUATION

$IIT illustrates Weatherman’s approach on an example
building, wind site, and solar site. In this section, we evaluate
accuracy across many sites, and highlight how it varies
across sites with different characteristics. Our evaluation
uses energy consumption data from a sample of 100 homes
in the Pecan St. dataset [18], as well as 10 solar sites and 7
wind sites. Each home in the Pecan St. dataset is located in
the Pecan St. neighborhood near Austin, Texas.

A. Energy Consumption

Figure 6 shows Weatherman’s localization accuracy for
the Pecan St. homes, in terms of the distance between the
location Weatherman infers and the ground truth location
of the home. We sort homes by the slope of their average
energy usage versus degree-day line, as depicted in Figure 1,
which appears as a number above each bar. We also color
each bar based on whether the home has zero, one, or two air
conditioner circuits sub-metered, as we expect homes with
more air conditioners to have a higher degree-day slope.
We also experiment with two different timestamp meta-data
assumptions: one where we know each point’s date and hour

Uhttp://traces.cs.umass.edu/
Zhttp://darksky.net
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Figure 6. Weatherman localization accuracy for 100 different homes in Texas (on a log-scale). Homes are sorted by their degree-day slope, which appears
atop each bar. The bar color indicates whether the home has zero, one, or two air conditioners.

(but not the timezone), and one where we only know the
hour (but not the date or timezone). We indicate the decrease
in accuracy from removing the date by placing an additional
green bar atop each bar. Note that the y-axis has a log scale.

The graph shows that homes without air conditioners
have a relatively flat degree-day slope, which indicates that
their energy consumption does not change significantly with
outdoor temperature. The first four bars of the graph have
a localization accuracy of >200km and exhibit a nega-
tive degree-day slope, such that their energy consumption
decreases as the temperature increases. Four other homes
with no air conditioners have a non-negative slope in the
range 0.0-0.1 and thus have a slightly better localization
accuracy of ~80km. There are two other homes without air
conditioners that exhibit much higher degree-day slopes 0.9-
1.0, and thus yield better accuracy of ~20km. These homes
likely operate other temperature-dependent loads.

As expected, homes with a single air conditioner exhibit
degree-day slopes ranging from 0.3-4.6, and exhibit much
higher localization accuracy, ranging from 5-40km with an
average accuracy of 16.98km. Homes with two air condition-
ers tend to have an even larger degree-day slope and thus a
higher average localization accuracy of 11.89km on average.
Here, accuracy is a roughly linear function of degree-day
slope, so homes with lower degree-day slopes, whether due
to their local climate, HVAC system, building insulation,
or user behavior, have a lower localization accuracy. We
also observe that removing the timestamp’s date does not
significantly alter the localization accuracy: for homes with
degree-day slopes >1.2 (near Building ID 37) it does not
change, and for homes with degree slopes <1.2 it only
slightly decreases. This shows that weather signatures are
distinct, not only across locations, but also across time.

B. Wind Energy

Figure 7 shows the localization accuracy for 7 wind sites
in Washington (#1), Idaho (#2), California (#3), Colorado
(#4,6), Wisconsin (#5), and Texas (#7). In this case, we sort
the sites by the variance in the average wind speed at their
location over a year. We use variance as a proxy for the
uniqueness of a location’s weather signature, since the more
the wind speed varies, the more opportunity Weatherman has
to distinguish one location from another. As expected, the
localization accuracy increases as the variance in wind speed

at a location increases. In this case, the highest variance
yields the highest localization accuracy of ~3km, while the
lowest variance yields the lowest accuracy ~21km. Thus,
wind localization is slightly more accurate than energy usage
localization (for homes with air conditioners). For wind
energy, removing the date from the timestamp also has little
effect on the accuracy (indicated by the green bars as before).

C. Solar Energy

Figure 8 shows Weatherman’s localization accuracy for
10 solar sites, as well as the accuracy for prior work on
SunSpot [9], which localizes using a site’s solar signature.
The solar sites are in North Carolina (#1), Washington (#2),
Colorado (#3-5), Texas (#6), Wisconsin (#7), Massachusetts
(#8,10), and Ohio (#9). In this case, for SunSpot, we localize
using minute-level data, while for Weatherman we localize
using hour-level data. Similar to above, we sort the sites by
the variance in their location’s sky condition data, which is
listed atop each bar. Using the same intuition as for wind,
the more variable the sky condition, the more opportunity
Weatherman has to distinguish one location from another.
As above, we see that Weatherman’s accuracy improves as
the variance increases, with the most variable site having an
accuracy of ~2km. In addition, we see that solar localization
accuracy based on weather is typically higher than either
energy consumption or wind with all the sites having an ac-
curacy between 2-7km. In general, the relationship between
solar power and cloud cover (and temperature) is more direct
than the similar relationships with energy consumption and
wind, since solar is a purely electric device, while the other
two involve more complex mechanical relationships.

We also see that weather-based solar localization is sig-
nificantly more accurate using hour-level data than SunSpot
using minute-level data. In particular, the worst site for
Weatherman has an accuracy of 6.86km, while the best site
for SunSpot has an accuracy of ~12km. In addition, SunSpot
has more variable accuracy, indicating that its solar signature
is less robust than Weatherman’s weather signature. Finally,
we again see that removing the date from the timestamp has
a minimal effect on localization accuracy.

VI. RELATED WORK

As noted above, the work most similar to Weatherman
is SunSpot [9], which localizes pure solar data using a
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Figure 7. Localization accuracy for 7 wind sites, sorted by variance in
wind speed, which appears atop each bar.

solar signature, specifically by inferring the time of sunrise,
sunset, and solar noon. Weatherman shows that weather-
based localization is significantly more accurate using much
lower resolution data and requiring much less data. In
particular, Weatherman’s average solar localization accuracy
using hour-level data is 5.12km, which is more accurate
than SunSpot’s accuracy using data that is 60-3600x lower
resolution. In addition, SunSpot requires more than six
months of data, since it needs data in both the spring/summer
and fall/winter to pinpoint an accurate latitude, while our
evaluation here only used data from four months in the
summer. Finally, Weatherman is more general and also
capable of localizing energy consumption and wind energy
data to similar (or better) levels of accuracy.

There have been numerous papers on privacy-preserving
techniques for energy data. These techniques generally focus
on obscuring identifiable patterns in high resolution energy
data, e.g., second-level or minute-level, using a control-
lable power source, such as a battery [6], [7] or a water
heater [19]. These techniques are likely not effective in
preventing weather-based localization, since it requires only
coarse day- and hour-level data. In general, the battery
and water heater capacity required to significantly alter
day- and hour-level energy usage over a long period is
prohibitively expensive. In addition, we also show that even
modifying energy data to eliminating timestamp metadata,
e.g., by not including the date or hour, does not significantly
affect Weatherman’s accuracy. Thus, preventing weather-
based localization represents a challenging problem, which
we plan to explore as part of future work.

VII. CONCLUSION

We present Weatherman, which leverages a suite of big
data analytics techniques to localize anonymous energy
usage, wind, and solar data. Weatherman shows how access
to large archives of publicly-available, and seemingly in-
nocuous, sensor data can introduce serious privacy threats.
Our work shows that weather-based localization is highly
accurate for multiple types of energy data. In particular, we
show that Weatherman localizes coarse (one-hour resolution)
energy consumption, wind, and solar data to within a radius
distance of 16.68km, 9.84km, and 5.12km. These results
are significantly more accurate using much lower resolution
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Figure 8. Localization accuracy for 10 solar sites, sorted by variance in
sky condition, which appears atop each bar.

and much less energy data than prior work on energy-
based localization, which only localized solar data to within
~20km using second-level energy data.
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