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Abstract—Smart energy meters record electricity consump-
tion and generation at fine-grained intervals, and are among the
most widely deployed sensors in the world. Energy data embeds
detailed information about a building’s energy-efficiency, as
well as the behavior of its occupants, which academia and
industry are actively working to extract. In many cases, either
inadvertently or by design, these third-parties only have access
to anonymous energy data without an associated location. The
location of energy data is highly useful and highly sensitive
information: it can provide important contextual information
to improve big data analytics or interpret their results, but it
can also enable third-parties to link private behavior derived
from energy data with a particular location. In this paper,
we present Weatherman, which leverages a suite of analytics
techniques to localize the source of anonymous energy data.

Our key insight is that energy consumption data, as well
as wind and solar generation data, largely correlates with
weather, e.g., temperature, wind speed, and cloud cover, and
that every location on Earth has a distinct weather signature
that uniquely identifies it. Weatherman represents a serious
privacy threat, but also a potentially useful tool for researchers
working with anonymous smart meter data. We evaluate
Weatherman’s potential in both areas by localizing data from
over one hundred smart meters using a weather database
that includes data from over 35,000 locations. Our results
show that Weatherman localizes coarse (one-hour resolution)
energy consumption, wind, and solar data to within 16.68km,
9.84km, and 5.12km, respectively, on average, which is more
accurate using much coarser resolution data than prior work
on localizing only anonymous solar data using solar signatures.

I. INTRODUCTION

Smart energy meters, which measure and transmit elec-

tricity usage at fine-grained intervals, e.g., every hour or less,

are being widely deployed by utilities in many parts of the

world. Smart meter penetration is expected to increase as

utilities continue to upgrade old meters and support more

sophisticated smart grid functionality. In addition to smart

meters, end-users are also increasingly deploying Internet-

enabled meters to track their own local energy consumption

and generation. Renewable solar and wind installations

typically include such end-user metering by default.

Given the scale of the deployments above, developing

techniques that analyze big energy data to improve energy-

efficiency has become an active research area in both indus-

try and academia. Numerous startups, including Bidgely [1],

Onzo [2], and Sense [3], are now focused on monetizing

insights drawn from big energy data. These insights have

the potential to significantly improve energy-efficiency at

massive scales, e.g., by providing real-time energy-efficiency

recommendations to users or automatically identifying faults

in individual buildings or the electric grid. To gain these

insights, utilities often contract with the third-party energy

data analytics companies above and directly provide them

energy meter data, while end-users often link their meters

to public APIs that allow analytics companies to directly

access their energy data. These third-party companies often

provide analytics services to end-users “for free,” since the

energy data provides value to them, e.g., either as training

data or in profiling users’ energy usage and behavior.

Importantly, the energy data made available to the third-

party companies and academic researchers above is often

anonymous and not associated with a specific location.

Anonymous energy data includes only a series of tuples,

which each specify a timestamp and energy consumption

(or generation). The primary reason for anonymizing energy

data is to prevent third-parties from linking private informa-

tion derived from energy data with a particular location [4].

However, such private information is potentially valuable.

As one example, analyzing energy data can reveal irregular

sleeping patterns, e.g., based on sporadic energy usage at

night, which pharmaceutical companies could use to inform

direct marketing campaigns of insomnia drugs. To guard

against these privacy threats, the Voluntary Code of Conduct

(VCC) for managing customer energy data recently released

by the DOE recommends utilities remove any identifying in-

formation from energy data they share with third-parties [5].

In this paper, we present Weatherman, a suite of big data

analytics techniques that extract location from anonymous

energy consumption, wind, and solar data. Our key insight

is that energy data largely correlates with the local weather,

e.g., temperature, wind speed, and cloud cover, and that

every location on Earth has a distinct weather signature that

uniquely identifies it. Weatherman leverages this insight to

localize the source of anonymous energy data. To do so,

Weatherman combines physical system models with statisti-

cal techniques to extract a weather signature from energy

data at each location when searching a massive weather

database that includes records from 35,000 locations.

Our goal is to explore the severity of this privacy threat by

quantifying the localization accuracy for energy consump-

tion, wind, and solar data. Based on the DOE’s VCC, users

often do not consider the privacy implications of releasing

anonymous energy data to third-parties, assuming the data is

anonymous if it is not associated with location information,

e.g., an address. Understanding the localization threat is

important in i) educating users about the sensitivity of energy



data, ii) informing evolving policies on managing energy

data, and iii) developing techniques that preserve privacy,

while also enabling well-intentioned analytics. Existing tech-

niques for preserving privacy in energy data do not consider

localization threats, and thus cannot prevent them [6], [7].

Broadly, Weatherman shows how public access to large “big

data” archives of sensor data can introduce serious privacy

threats. Our hypothesis is that weather-based localization

of energy consumption, wind, and solar data is accurate to

a small region. Since wind and solar sites are identifiable

via public satellite imagery within the region [8], [9], such

localization represents a serious privacy threat, as it may be

possible to associate data with a specific home. In evaluating

our hypothesis, we make the following contributions.

Weather-based Energy Modeling. We present physical

models that characterize the energy consumption of build-

ings and the energy generation of wind and solar sites

based on the weather. These physical models show how

energy consumption, wind, and solar energy data correlate

with specific weather metrics—temperature, wind speed, and

cloud cover—in different ways, which enables localization

by correlating the energy data with weather data.

Weather-based Energy Localization. We combine our

physical models with statistical techniques to extract a

unique weather signature at each possible location from

each type of energy meter data. Weather-based localization

then involves searching a massive weather database to find

a location with weather that best matches the weather

signature. Given the scale of the database, a key challenge

is making this search both efficient and accurate.

Implementation and Evaluation. Finally, we implement

Weatherman and evaluate its accuracy on 117 smart meters

and show that it localizes coarse (hour-level) energy con-

sumption, wind, and solar data to within 16.68km, 9.84km,

and 5.12km regions, respectively, on average. This repre-

sents significantly higher accuracy than recent work on solar

localization [9], which i) only localizes solar energy data

based on its solar signature, and not its weather signature,

and ii) requires fine-grained second- or minute-level data

and is not accurate using coarse hourly or daily data. We

also evaluate how accuracy varies based on how well energy

consumption data varies with outdoor temperature, which is

a function of multiple factors, including the local climate,

characteristics of the building’s HVAC system, and the

tightness of the building’s envelope.

II. BACKGROUND

Weatherman assumes it is given anonymous energy data

that includes only a time-series of energy readings at a

coarse resolution, e.g., every hour, with no other metadata.

Weatherman’s goal is to then analyze this anonymous energy

data to infer the location—a latitude and longitude—of the

smart meter that collected it. Weatherman currently focuses

narrowly on localizing “pure” energy data, e.g., from either

consumption, wind, or solar, and not “net” meter data that

combines two or more types. Localizing net meter data that

combines two or more data sources is future work.

To localize energy data, Weatherman searches a database

of historical weather data to find a location where the

weather data best correlates with a weather signature

extracted from the energy data. Constructing a massive

historical weather database from public sources, such as

Weather Underground, that includes thousands of locations

is not challenging. Our current weather database stores

temperature, wind speed, and cloud cover each hour for

35,000 locations in the U.S., but could be expanded to other

areas. We discuss more details of our prototype’s weather

database in §IV. For each type of energy data, Weatherman

leverages a different physical model based on how that

energy data relates to the location’s weather to extract a

weather signature. Below, we describe the physical models

Weatherman uses to generate a weather signature for energy

consumption, wind, and solar data.

A. Energy Consumption-Temperature Model

The dominant fraction of energy consumption in resi-

dential homes is due to space heating and cooling, which

accounts for over 48% of energy usage [10]. The energy

consumed for heating and cooling generally correlates with

the outdoor temperature. This relationship is captured by

the degree-day metric (in units of degree-time), which is the

integral of the degrees above or below a specified base tem-

perature over time for cooling and heating, respectively [11].

The base temperature represents the “balance” point at which

no cooling or heating is required, and is typically estimated

as 18C (or 65F) for buildings. The energy required to

heat or cool a building is then modeled as being directly

proportional to the number of heating or cooling degree-

days, respectively. To illustrate this relationship, Figure 1

plots a home’s daily energy usage on the y-axis, and the

daily degree-days on the x-axis, over summer. We use a

base temperature of 18C, so a degree-day less than 0 is a

day where the temperature was always less than 18C.

The degree-days metric linearly correlates with energy

consumption, with higher slopes indicating a greater corre-

lation between changes in energy consumption and changes

in outdoor temperature. However, the slope of the line and

base temperature(s) vary significantly across buildings based

on multiple factors, including the local climate, type of

HVAC system, building insulation, and user behavior. For

example, homes in San Diego, California, which has a mild

local climate with a constant temperature near 65F, may

have a low correlation, since the temperature is steady and

HVAC is often not required. Of course, homes must have

electric HVAC to exhibit a large slope. Since all cooling is

electric, slopes are typically higher during warmer months.

In contrast, only ∼38% of U.S. homes use electric heating,

so 62% of homes will have lower slopes during the winter
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Figure 3. Solar energy is a linear function of solar irradiance.

time-series of a particular weather metric at each location in

our weather database. There are many functions that quantify

how well two time-series correlate, enabling a ranking of

locations based on how well energy data matches a weather

metric. For example, the Pearson Correlation Coefficient

(PCC) is a measure of the linear correlation between two

variables, computed as the covariance between the variables

divided by the product of their standard deviation.

A naı̈ve approach simply selects the locations with the

highest PCC. Unfortunately, this naı̈ve approach is impre-

cise, as energy data, itself, does not highly correlate with

weather. For example, while changing weather instantly

affects wind and solar energy, there is often a lag in the

effect on energy consumption as a building heats up or cools

down, which simple “instantaneous” correlation coefficients,

such as the PCC, do not capture. Thus, Weatherman extracts

a custom signature for each location that accounts for such

effects in each type of energy data. In addition, searching all

locations in a large weather database can be highly ineffi-

cient, since Weatherman must extract and compare a weather

signature from energy data based on each location’s weather

metrics over a long period of time, e.g., multiple months to

years. As a result, to improve efficiency, Weatherman first

extracts weather signatures on coarse day-level data to filter

the possible locations, as each type of energy also correlates

with weather each day.

B. General Weather-based Localization Approach

Weatherman uses the same general approach to localize

energy consumption, wind, and solar data. Weatherman

extracts a custom weather signature from the energy data at

each location in its weather database. To improve efficiency,

it first extracts and correlates this weather signature at

each location with coarse day-level weather data. Using

day-level data both reduces the size of the input by 24×,

and thus increases efficiency, and, in the case of energy

consumption, also mitigates the impact of a variable lag

in the energy response to temperature changes (since this

lag is only evident at hour-level). Weatherman uses the day-

level analysis to first filter possible locations by clustering

the points using k-Means clustering, and then selecting the

cluster with the highest average correlation. Filtering is

important in reducing the large search space of locations.

Weatherman then re-computes the correlation using higher

resolution data, and finds the weighted geographic midpoint

of locations in the cluster (based on the magnitude of the

correlation with each location) to estimate a final location.

As we discuss below, the only differences between energy

consumption, wind, and solar data is the method of ex-

tracting the weather signatures, the weather metric used for

correlation, and the specific correlation function.

C. Energy Consumption Weather Signatures

Based on the degree-days model from §II, when cor-

relating with each location, Weatherman removes energy

consumption datapoints whenever the corresponding tem-

perature is below the typical 18C base temperature. We

assume energy consumption is linear with degree-days above

a base temperature, and simply compute the correlation

using the PCC between the daily energy and temperature

data. Note that the daily correlation is robust to changes in

user behavior, which are most prevalent within a day, e.g.,

from setting a programmable thermostat schedule that differs

over the day, rather than across days. Figure 4(a) shows the

CDF of the PCC for all locations, with the ground truth

indicated as a red dot. This graph is for the same home as

in Figure 1, and filters the locations from 35k to ∼300.

Unfortunately, for higher resolution hourly energy data,

there is typically a variable lag between the increase in

temperature and the corresponding increase in energy con-

sumption, as it takes time for a building to heat up and for

its thermostat to detect this and activate the HVAC system.

This lag is variable, as it depends on the thermostat setting,

which may vary, and the tightness of the building’s envelope.

As a result, the impact of a temperature increase is often

not observed in energy data for an hour or more. Thus, the

PCC does not work well with hour-level data, since it only

considers the correlation between each two points in time.

In this case, Weatherman applies Granger causality anal-

ysis [13], which captures the extent to which changes in

one variable predict (or lag) another over time using an F-

test. Note that, unlike the PCC, Granger causality analysis

does not require that changes be linearly correlated, only that

they lag and have the same direction. Computing Granger

causality is more computationally-intensive than computing

the PCC, since it searches over multiple possible lag values.

As a result, performing Granger causality at hour-level

over 35k locations is time-consuming. For example, a full

search, assuming the date and hour are well-known, takes

8.5 hours using 80 high-end data center servers. If the date

is not included in the timestamp, the search would take

∼8.5 ∗ 120=1020 hours (42.5 days) on the same set of

servers, since we only conduct this search over the summer

months. Thus, we only performGranger causality analysis

over the filtered list of sites using the daily data analysis

above, which takes ∼5 minutes.

Figure 5(a) shows the CDF of the Granger causality of the

hourly energy data (using an F-test with a p-value<0.001).

In this case, the final weighted geographic midpoint of these
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Figure 4. CDF of correlation analysis across all locations for daily energy consumption, wind energy, and solar energy data.
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Figure 5. CDF of correlation analysis across all locations for hourly energy consumption, wind energy, and solar energy data.

locations results in an estimated location 6.14km from the

actual location (and within the same town). Note that the

home is 4.1km from the nearest weather station, which has

the fifth highest correlation in this case.

D. Wind Energy Weather Signatures

As Figure 2 shows, the relationship between wind power

and speed is defined by a piecewise function based on the

cut-in, rated, and cut-out speeds. A simple approach for

extracting a wind weather signature would be to focus on just

one part of this function. However, this would remove useful

information. Instead, Weatherman projects this piecewise

function onto the single line y = 0 (where y is the energy

generation and x is the wind speed), such that the wind

power data as a function of wind speed after this projection

should be zero at the correct location. Since PCC and other

correlation coefficients are undefined when the variance

of one variable is zero, we rank locations based on their

average absolute value after the projection, i.e., the average

perpendicular distance from y = 0.

Weatherman does not alter the energy datapoints that

correspond to wind speeds from 0-3m/s and >22m/s, since

these should already map to zero. For datapoints in the range

4-13m/s, we first take the cube root of the energy data,

perform a linear regression, and then find the distance each

datapoint is from this line. We then project these points by

replacing their original energy generation value on the y-axis

with this distance value on the y-axis. For datapoints in the

range 14-21m/s, we find the horizontal line that minimizes

the root mean squared error with the datapoints, and then

subtract the y-value of this horizontal line from the y-value

of each datapoint. After this projection, wind power data

that perfectly correlates with wind speed will lie at y=0.

We perform the same projection when filtering based on

daily and hourly data, as described above. After performing

this projection, Weatherman proceeds based on the basic

approach above, where the weather metric is wind speed

and the correlation function is the average of the absolute

value of the projected data. Figure 4(b) and Figure 5(b) show

the CDF of this average across all locations for the daily and

hourly data for the data in Figure 2, with the ground truth

location indicated by the red dot. We again are able to filter

from 35k to ∼300 sites using the daily energy data. Here, the

nearest weather station to the actual location ranks fifth and

the geographic midpoint of the selected locations is 24.37km

from the target site. We then perform the same analysis

on the filtered sites using the hourly data. In this case, the

nearest weather station ranks third, and the geographic mid-

point of the filtered locations is 3.87km from the location.

E. Solar Energy Weather Signatures

Solar power has a near linear correlation with solar

irradiance, which is largely determined by cloud cover that

is measured by weather stations in oktas, as discussed in

§II. Unfortunately, raw solar generation does not directly

correlate with oktas, as solar output varies over both the

time-of-day and the day-of-year. Since these variations are

a function of location, Weatherman does not know them

precisely. However, we can roughly estimate the maximum

generation potential Ps of solar by observing that the average

clear sky irradiance, which is a well-known function of time

at each location based on a site’s efficiency, tilt, orientation,

etc. should be an upper-bound on solar output, as described

by the equation below. Here, β is the tilt angle, φ is the

orientation angle, Θ is the Sun’s zenith angle, α is the Sun’s

azimuth angle, Iincident is the clear sky solar irradiance, and

k is a module-specific parameter that combines a module’s

efficiency and size. The solar angles and clear sky irradi-

ance are themselves a function of latitude, longitude, and



time [14]. We can search for the parameters, e.g., latitude,

longitude, efficiency, tilt, and orientation, that defines a valid

solar curve that yields the tightest upper bound.

Ps(t) = Iincident(t)∗k∗[cos(90−Θ)∗sin(β)∗cos(φ−α)

+ sin(90−Θ) ∗ cos(β)] (2)

We search for the parameters above as described in prior

work [9], [15], [16]. Specifically, we first use prior work on

localization using solar signatures to estimate a location by

associating the first, last, and maximum hour of generation

with the time of sunrise, sunset, and solar noon [9]. Note that

we use this search only to provide a rough estimate of the

hourly maximum generation; the latitude and longitude we

find are not accurate for localization. Accurate localization

based on the solar signature using hourly data is not possible,

as it has a maximum accuracy of at most 1656km based on

the speed of the Earth’s rotation. Given this rough location,

we then conduct a binary search for the efficiency, tilt, and

orientation parameters that represents the tightest upper-

bound on the data, as described in prior work [15], [16],

since solar generation is bounded by the maximum clear

sky irradiance at any time.

The model above does not account for temperature, which

increases solar efficiency by some percentage c for every

degree Celsius decrease in temperature. Thus, when extract-

ing the weather signature for each location, we use the

same model from prior work to adjust for these temperature

effects [15], [16]. This approach conducts a binary search

for the temperature coefficient c that results in the tightest

upper bound on the data. That is, the approach adjusts the

efficiency parameter k above at each time t for each c based

on the equation below, where Tbaseline is the temperature at

the time where the model above is closest to the actual solar

data and Tair is the temperature at every time t.

k′(t) = k ∗ (1 + c ∗ (Tbaseline − Tair(t))) (3)

Since temperatures are different at each location, we must

repeat this process at each location. This search provides a

temperature-adjusted estimate of the maximum solar gener-

ation for each hour and day at each location. Weatherman

then normalizes the daily and hourly data in its weather

signature at each time period by dividing each data point by

this maximum estimated solar generation. This normalized

solar output (relative to the maximum possible clear sky

output) should linearly correlate with the cloud condition in

oktas reported by weather stations. As a result, Weatherman

directly uses the PCC to quantify this correlation.

Figure 4(c) and Figure 5(c) show the CDF of the PCC

across all locations for the daily and hourly solar data.

We again filter from 35k locations to ∼300 locations us-

ing the daily data, and then perform analytics using the

hourly data. The nearest weather station ranks fourth in

the daily data with the geographic midpoint of the filtered

locations 13.53km from the actual location. The nearest

weather station ranks second using the hourly data with

the geographic midpoint an estimated location 2.05km from

the actual location. Again, the nearest weather station is

12.73km away from the actual location, so Weatherman’s

estimate is closer than any single point.

IV. IMPLEMENTATION

We implement Weatherman in Python, and make it and

the data for this paper publicly available at the UMass Trace

Repository.1 We use the scikit package, which functions for

PCC and Granger causality analysis. We implement a stan-

dard approach for finding the weighted geographic midpoint.

Finally, we use the Pysolar Python package for estimating

the clear sky irradiance [17]. Note that we set the thresholds

for filtering the daily and hourly data based on an empirical

analysis. We experimented with different thresholds in this

range, and it did not significantly change the results. For

the daily data, we use k-Means clustering with k equal to

50 to generate at least as many clusters as there are states.

In general, larger values of k do not significantly affect

the results. We then re-compute the correlation function of

the locations in the selected cluster using the hourly data,

and then compute their weighted geographic midpoint. We

build our weather database by fetching data from DarkSky’s

weather data API. 2 Our database currently stores hourly

and daily temperature, wind, and sky condition data from

35,000 weather stations in the U.S. The database includes

data over four-month period from June to September, 2016.

V. EXPERIMENTAL EVALUATION

§III illustrates Weatherman’s approach on an example

building, wind site, and solar site. In this section, we evaluate

accuracy across many sites, and highlight how it varies

across sites with different characteristics. Our evaluation

uses energy consumption data from a sample of 100 homes

in the Pecan St. dataset [18], as well as 10 solar sites and 7

wind sites. Each home in the Pecan St. dataset is located in

the Pecan St. neighborhood near Austin, Texas.

A. Energy Consumption

Figure 6 shows Weatherman’s localization accuracy for

the Pecan St. homes, in terms of the distance between the

location Weatherman infers and the ground truth location

of the home. We sort homes by the slope of their average

energy usage versus degree-day line, as depicted in Figure 1,

which appears as a number above each bar. We also color

each bar based on whether the home has zero, one, or two air

conditioner circuits sub-metered, as we expect homes with

more air conditioners to have a higher degree-day slope.

We also experiment with two different timestamp meta-data

assumptions: one where we know each point’s date and hour

1http://traces.cs.umass.edu/
2http://darksky.net
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Figure 6. Weatherman localization accuracy for 100 different homes in Texas (on a log-scale). Homes are sorted by their degree-day slope, which appears
atop each bar. The bar color indicates whether the home has zero, one, or two air conditioners.

(but not the timezone), and one where we only know the

hour (but not the date or timezone). We indicate the decrease

in accuracy from removing the date by placing an additional

green bar atop each bar. Note that the y-axis has a log scale.

The graph shows that homes without air conditioners

have a relatively flat degree-day slope, which indicates that

their energy consumption does not change significantly with

outdoor temperature. The first four bars of the graph have

a localization accuracy of >200km and exhibit a nega-

tive degree-day slope, such that their energy consumption

decreases as the temperature increases. Four other homes

with no air conditioners have a non-negative slope in the

range 0.0-0.1 and thus have a slightly better localization

accuracy of ∼80km. There are two other homes without air

conditioners that exhibit much higher degree-day slopes 0.9-

1.0, and thus yield better accuracy of ∼20km. These homes

likely operate other temperature-dependent loads.

As expected, homes with a single air conditioner exhibit

degree-day slopes ranging from 0.3-4.6, and exhibit much

higher localization accuracy, ranging from 5-40km with an

average accuracy of 16.98km. Homes with two air condition-

ers tend to have an even larger degree-day slope and thus a

higher average localization accuracy of 11.89km on average.

Here, accuracy is a roughly linear function of degree-day

slope, so homes with lower degree-day slopes, whether due

to their local climate, HVAC system, building insulation,

or user behavior, have a lower localization accuracy. We

also observe that removing the timestamp’s date does not

significantly alter the localization accuracy: for homes with

degree-day slopes >1.2 (near Building ID 37) it does not

change, and for homes with degree slopes <1.2 it only

slightly decreases. This shows that weather signatures are

distinct, not only across locations, but also across time.

B. Wind Energy

Figure 7 shows the localization accuracy for 7 wind sites

in Washington (#1), Idaho (#2), California (#3), Colorado

(#4,6), Wisconsin (#5), and Texas (#7). In this case, we sort

the sites by the variance in the average wind speed at their

location over a year. We use variance as a proxy for the

uniqueness of a location’s weather signature, since the more

the wind speed varies, the more opportunity Weatherman has

to distinguish one location from another. As expected, the

localization accuracy increases as the variance in wind speed

at a location increases. In this case, the highest variance

yields the highest localization accuracy of ∼3km, while the

lowest variance yields the lowest accuracy ∼21km. Thus,

wind localization is slightly more accurate than energy usage

localization (for homes with air conditioners). For wind

energy, removing the date from the timestamp also has little

effect on the accuracy (indicated by the green bars as before).

C. Solar Energy

Figure 8 shows Weatherman’s localization accuracy for

10 solar sites, as well as the accuracy for prior work on

SunSpot [9], which localizes using a site’s solar signature.

The solar sites are in North Carolina (#1), Washington (#2),

Colorado (#3-5), Texas (#6), Wisconsin (#7), Massachusetts

(#8,10), and Ohio (#9). In this case, for SunSpot, we localize

using minute-level data, while for Weatherman we localize

using hour-level data. Similar to above, we sort the sites by

the variance in their location’s sky condition data, which is

listed atop each bar. Using the same intuition as for wind,

the more variable the sky condition, the more opportunity

Weatherman has to distinguish one location from another.

As above, we see that Weatherman’s accuracy improves as

the variance increases, with the most variable site having an

accuracy of ∼2km. In addition, we see that solar localization

accuracy based on weather is typically higher than either

energy consumption or wind with all the sites having an ac-

curacy between 2-7km. In general, the relationship between

solar power and cloud cover (and temperature) is more direct

than the similar relationships with energy consumption and

wind, since solar is a purely electric device, while the other

two involve more complex mechanical relationships.

We also see that weather-based solar localization is sig-

nificantly more accurate using hour-level data than SunSpot

using minute-level data. In particular, the worst site for

Weatherman has an accuracy of 6.86km, while the best site

for SunSpot has an accuracy of ∼12km. In addition, SunSpot

has more variable accuracy, indicating that its solar signature

is less robust than Weatherman’s weather signature. Finally,

we again see that removing the date from the timestamp has

a minimal effect on localization accuracy.

VI. RELATED WORK

As noted above, the work most similar to Weatherman

is SunSpot [9], which localizes pure solar data using a
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Figure 7. Localization accuracy for 7 wind sites, sorted by variance in
wind speed, which appears atop each bar.

solar signature, specifically by inferring the time of sunrise,

sunset, and solar noon. Weatherman shows that weather-

based localization is significantly more accurate using much

lower resolution data and requiring much less data. In

particular, Weatherman’s average solar localization accuracy

using hour-level data is 5.12km, which is more accurate

than SunSpot’s accuracy using data that is 60-3600× lower

resolution. In addition, SunSpot requires more than six

months of data, since it needs data in both the spring/summer

and fall/winter to pinpoint an accurate latitude, while our

evaluation here only used data from four months in the

summer. Finally, Weatherman is more general and also

capable of localizing energy consumption and wind energy

data to similar (or better) levels of accuracy.

There have been numerous papers on privacy-preserving

techniques for energy data. These techniques generally focus

on obscuring identifiable patterns in high resolution energy

data, e.g., second-level or minute-level, using a control-

lable power source, such as a battery [6], [7] or a water

heater [19]. These techniques are likely not effective in

preventing weather-based localization, since it requires only

coarse day- and hour-level data. In general, the battery

and water heater capacity required to significantly alter

day- and hour-level energy usage over a long period is

prohibitively expensive. In addition, we also show that even

modifying energy data to eliminating timestamp metadata,

e.g., by not including the date or hour, does not significantly

affect Weatherman’s accuracy. Thus, preventing weather-

based localization represents a challenging problem, which

we plan to explore as part of future work.

VII. CONCLUSION

We present Weatherman, which leverages a suite of big

data analytics techniques to localize anonymous energy

usage, wind, and solar data. Weatherman shows how access

to large archives of publicly-available, and seemingly in-

nocuous, sensor data can introduce serious privacy threats.

Our work shows that weather-based localization is highly

accurate for multiple types of energy data. In particular, we

show that Weatherman localizes coarse (one-hour resolution)

energy consumption, wind, and solar data to within a radius

distance of 16.68km, 9.84km, and 5.12km. These results

are significantly more accurate using much lower resolution

 0

 15

 30

 45

 60

 75

 90

1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
 (

k
m

)

Solar Site ID

SunSpot Weatherman No Date

5.3 6.6 6.9 6.9 7.9 8.4
11.8 12.1 12.3 13.0

Figure 8. Localization accuracy for 10 solar sites, sorted by variance in
sky condition, which appears atop each bar.

and much less energy data than prior work on energy-

based localization, which only localized solar data to within

∼20km using second-level energy data.
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