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Abstract. Let ϕ(x) = xd + c be an integral polynomial of degree at least 2,

and consider the sequence (ϕn(0))∞n=0, which is the orbit of 0 under iteration

by ϕ. LetDd,c denote the set of positive integers n for which n | ϕn(0). We give
a characterization of Dd,c in terms of a directed graph and describe a number

of its properties, including its cardinality and the primes contained therein. In

particular, we study the question of which primes p have the property that the
orbit of 0 is a single p-cycle modulo p. We show that the set of such primes is

finite when d is even, and conjecture that it is infinite when d is odd.

1. Introduction

A dynamical sequence is the orbit α, ϕ(α), ϕ2(α), . . . of some α in a ring R under
iteration of a map ϕ : R → R. In arithmetic dynamics, one often takes ϕ to be
a rational map defined over a number field and α to be an algebraic number.
Such dynamical sequences have many properties in common with their more well-
known cousins: recurrence sequences and algebraic divisibility sequences arising
from algebraic groups, such as Lucas sequences and elliptic divisibility sequences.
In particular, all such sequences an are divisibility sequences, i.e. whenever n | m,
then an | am.

The study of the primes appearing in such sequences has a centuries-long history
dating back at least to Fermat’s study of primes of the form 22

n

+ 1, which is a
dynamical sequence with α = 3 and ϕ(x) = (x− 1)2 + 1. The primes appearing in
a dynamical sequence encode information about the dynamical system in residue
fields. For example, taking R = Z, if p | ϕn(0), then 0 has period dividing n in
the dynamical system ϕ : Z/pZ → Z/pZ. (The period of 0 is the smallest positive
integer k for which ϕk(0) = 0.) In particular, p | ϕp(0) if and only if the dynamical
system given by ϕ on Z/pZ consists of a single orbit of size 1 or p. Silverman
studied the statistics of orbit sizes for rational maps modulo a varying prime p [27]
(see also [8]).

In this paper, we restrict ourselves to the study of the maps ϕ(x) = xd+c ∈ Z[x],
where d ≥ 2. The orbit structure for x2 + c is of particular interest for primality
testing, integer factorization and pseudo-random number generation [6, 20, 22].
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Silverman collected some numerical data on quadratic maps x2 + c [27], while
Peinado, Montoya, Muñoz and Yuste give explicit upper bounds for the cycle sizes
of x2 + c in a finite field [21]; more explicit structure is known for the exceptional
maps x2 and x2−2 [33]. Jones [18] found that the natural density of primes dividing
at least one nonzero term of a dynamical sequence is zero for four infinite families
of quadratic functions, including ϕ(x) = x2 + c, where c ∈ Z and c ̸= 1. Hamblen,
Jones, and Madhu [13] later generalized the results to ϕ(x) = xd + c (see also [5]).
In other words, the primes p for which 0 is periodic (instead of pre-periodic) are of
density zero. These results imply that the primes p for which the dynamical system
consists of a single p-cycle modulo p are of density zero.

Let Sd,c be the set of primes p such that the dynamical system ϕ : Z/pZ → Z/pZ
consists of a single p-cycle. We show the following.

Theorem 1.1. Let ϕ(x) = xd + c, where c, d ∈ Z and d ≥ 2. Then whenever d is
even and c is odd, Sd,c = {2}; while if d is even and c is even, then Sd,c = ∅.

Based on numerical data and heuristics, we conjecture that there are infinitely
many such primes otherwise.

Conjecture 1.2. Sd,c is infinite whenever d is odd.

Using an analysis of the cycle structure of the permutation x ↦→ xd on Z/pZ, we
are able to somewhat restrict the set Sd,c as follows.

Theorem 1.3. If d ≡ 3 (mod 4), and p ≡ 1 (mod 4) is prime, then p /∈ Sd,c.

For example, when d is an odd power of 3, we conclude that Sd,c contains only
primes congruent to 11 (mod 12) (Corollary 4.4).

A related question arises naturally by reversing the roles of p and c: fix p and
ask which maps ϕc in some varying family such as ϕc = xd + c have a single p-
cycle modulo p. Hutz and Towsley consider a generalization of this question for the
families xd + c [15]; see [25, Section 6.1] for an overview of the setting. We touch
on this problem in Sections 5 and 6.

Theorem 1.1 is a consequence of our study of index divisibility in dynamical
sequences. The question of index divisibility for a sequence (an)

∞
n=0 seeks to char-

acterize those integers n ≥ 1 such that n | an. It has a substantial history for
Fibonacci and Lucas sequences [3, 14, 17, 24, 30, 31, 32, 34], and has also been
studied for elliptic divisibility sequences [12, 29] and general linear recurrences [2].
As another example, composite integers n for which n | an − a are called pseudo-
primes to the base a.

Throughout, let ϕ(x) = xd + c ∈ Z[x] where d ≥ 2, let (Wn) denote the orbit of
0 under ϕ, i.e. Wn = ϕn(0), and define

Dd,c := {n ∈ Z : n ≥ 1, n | Wn}, and Pd,c := {p ∈ Dd,c : p is prime}.

We show that except in a few restricted cases, Dd,c is infinite.

Theorem 1.4. The set Dd,c is finite if and only if either

(1) d is even and c = 1, or
(2) d = 2 and c = −2.

Moreover, if Dd,c is finite, then Dd,c = {1, 2}.
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In the spirit of Smyth and of Silverman and Stange [29, 30], we represent Dd,c by
a directed graph that connects each element to its minimal multiples. To construct
this index divisibility graph G, initially let 1 be in the vertex set GV , then add
vertices and edges to G iteratively according to the following rules.

Let vp(x) denote the p-adic valuation of an integer x. For each n ∈ GV , adjoin
the vertex np and the directed edge (n, np) if

(1) p is a prime satisfying vp(ϕ
n(0)) > vp(n) (edge of type 1), or

(2) p ∈ Pd,c satisfies vp(n) = 0 (edge of type 2).

We prove Theorem 1.4 via a characterization of Dd,c and Pd,c in terms of this
graph.

Theorem 1.5. Let ϕ(x) = xd + c, where c, d ∈ Z and d ≥ 2. Let G be the index
divisibility graph corresponding to ϕ, and let GV be the vertex set of G. Then
GV = Dd,c.

As for Pd,c, we obtain a partial characterization.

Theorem 1.6. Let ϕ(x) = xd + c, where c, d ∈ Z and d ≥ 2. Then Pd,c satisfies
the following.

(1) 2 ∈ Pd,c.
(2) Every divisor of c is an element of Dd,c. In particular, if p is prime and

p | c, then p ∈ Pd,c.
(3) If p is prime and d ≡ 1 (mod p− 1), then p ∈ Pd,c.

If d is even, then we are able to fully characterize Pd,c.

Theorem 1.7. If d is even, then

Pd,c = {2} ∪ {p prime : p | c}.

Theorem 1.1 is an immediate consequence.
Two main tools we use in our investigation are the notions of a rigid divisibility

sequence and of a primitive prime divisor.
An integer sequence (an) is a rigid divisibility sequence if for every prime p the

following two properties hold:

(1) if vp(an) > 0, then vp(ank) = vp(an) for all k ≥ 1, and
(2) if vp(an) > 0 and vp(am) > 0, then vp(an) = vp(am) = vp(agcd(m,n)).

In particular, rigid divisibility sequences are divisibility sequences.
Rice [23] showed that for any polynomial ϕ ∈ Z[x] of degree d ≥ 2 where 0 is

a wandering point (i.e. of infinite orbit), the integer sequence (ϕn(0)) is a rigid
divisibility sequence if and only if the coefficient of the linear term of ϕ is zero. In
particular, this means that the orbit of zero under ϕ(x) = xd + c, where c, d ∈ Z
and d ≥ 2, is a rigid divisibility sequence.

Given a sequence (an) of integers, the term an contains a primitive prime divisor
if there exists a prime p such that p | an, but p ∤ ai for all 0 < i < n. The study
of primitive prime divisors dates back to Bang and Zsigmondy, who showed that
every term of the sequence (an − bn), where a, b ∈ Z and gcd(a, b) = 1, has a
primitive prime divisor [4, 35]. Carmichael’s Theorem asserts that the same is true
for the Fibonacci numbers beyond the 12th term [7]. The Zsigmondy set is the
set of terms not having a primitive prime divisor; for the Fibonacci numbers, it is
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Figure 1. A portion of the index divisibility graph for ϕ(x) =
x2 + 3. The circled vertices are elements of P2,3, and edges are
labeled by their type.

{1, 2, 6, 12}. Similarly, Silverman has shown that elliptic divisibility sequences have
finite Zsigmondy sets [28].

Turning to dynamical sequences, Rice [23] showed that if ϕ(x) ∈ Z[x] is a monic
polynomial of degree d ≥ 2, and (ϕn(0)) is an unbounded rigid divisibility sequence,
then all but finitely many terms contain a primitive prime divisor. Ingram and
Silverman [16] generalized the results to rational functions over number fields (see
also [10, 11]). Doerksen and Haensch [9] extended upon this by finding explicit
upper bounds on the Zsigmondy set for certain polynomial maps.

The following examples illustrate our results.

Example 1.8. Suppose ϕ(x) = x2 + 3. Then the orbit of 0 is

0, 3, 12, 147, 21612, 467078547, . . . .

Here,

D2,3 = {1, 2, 3, 4, 6, 12, 21, 42, . . .} and P2,3 = {2, 3}

by Theorems 1.6 and 1.7. The index divisibility graph is shown in Figure 1.

Notice in Figure 1 that all type 2 edges are also type 1 edges. However, this is
not always the case, as shown in Figure 2.

Example 1.9. Suppose ϕ(x) = x3 + 4. Then the orbit of 0 is:

0, 4, 68, 314436, . . . .

The index divisibility graph is illustrated in Figure 2.

In Section 2, we study index divisibility and prove Theorems 1.1, 1.5, 1.6, and
1.7.

In Section 3, we prove Theorem 1.4.
In Section 4, we study Pd,c and its subset Sd,c in the case where d is odd, and

prove Theorem 1.3.
In Section 5, we ask the question, for a fixed n, of which pairs (d, c) satisfy

n ∈ Dd,c.
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Figure 2. A portion of the index divisibility graph for ϕ(x) =
x3 + 4. The circled vertices are elements of P3,4, and edges are
labeled by their type.

Finally, in Section 6, as a computational experiment, we find all pairs (p, c),
where 0 < c < p/2 and p ≤ 37619, for which p is in S3,c (see Figure 3). We combine
this data with heuristics to support Conjecture 1.2.

Acknowledgements. The authors would like to thank the Boulder Valley School
District’s Science Research Seminar program for making this research project pos-
sible, and would like to thank the first author’s teacher in that program, Ryan
O’Block, for his support. The authors also wish to thank Anna Haensch, Rafe
Jones, Michelle Manes and Joseph Silverman for helpful conversations. The au-
thors are also indebted to the anonymous referee for useful and thought-provoking
comments.

2. Index divisibility

For the remainder of the paper, we maintain the notation presented in the in-
troduction, namely ϕ(x) = xd + c is an integral polynomial of degree at least 2,
Wn = ϕn(0), Dd,c = {n ∈ Z : n ≥ 1, n | Wn}, and Pd,c is the set of primes in Dd,c.

Before proceeding to the proofs, we identify two significant properties of Dd,c.

Lemma 2.1. Suppose n ∈ Dd,c and let p be the smallest prime divisor of n. Then
p ∈ Dd,c.

Proof. Let n ∈ Dd,c, and write n = pm, where p is the smallest prime factor of n.
Then p | Wn as p | n and n | Wn. In particular, 0 is periodic modulo p, so letting
b denote the period of 0, it follows that 0 < b ≤ p, p | Wb, and b | n. However,
since p is the smallest factor of n greater than 1, either b = 1 or b = p. If b = p,
then p | Wp as desired. Otherwise, if b = 1, then p | W1, and hence p | Wp since
W1 | Wp. □

Lemma 2.2. If a, b ∈ Dd,c are relatively prime, then ab ∈ Dd,c.
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Proof. Let a and b be relatively prime numbers in Dd,c. Since (Wn) is a rigid
divisibility sequence, we have that a | ab implies Wa | Wab, and b | ab implies
Wb | Wab. Then because a | Wa, a | Wab. Similarly, because b | Wb, we have
b | Wab. Since a and b are relatively prime, ab | Wab, and so ab ∈ Dd,c. □

Proof of Theorem 1.5. First we show GV ⊆ Dd,c. To begin, we have 1 | W1,
and so 1 ∈ Dd,c.

Next we show that if n ∈ Dd,c and (n, np) ∈ GE (the edge set of G), then
np ∈ Dd,c. We examine edges of type 1. Suppose there exist n ∈ Dd,c and a
prime p such that vp(Wn) > vp(n). Since n | Wn and vp(Wn) > vp(n), we see that
np | Wn. Then since (Wn) is a rigid divisibility sequence, n | np implies Wn | Wnp.
Thus np | Wnp, and so np ∈ Dd,c.

For edges of type 2, if p ∈ Pd,c and p ∤ n, then np ∈ Dd,c by Lemma 2.2. Thus
we have shown that GV ⊆ Dd,c.

We now proceed to show Dd,c ⊆ GV . Suppose n ∈ Dd,c. To prove that n ∈ GV ,
we show that G contains a path from 1 to n. If n = 1, there is nothing to show, so let
n = pα1

1 pα2
2 · · · pαk

k be the prime factorization of n, where p1 < p2 < p3 < · · · < pk.
From Lemma 2.1, we know that p1 ∈ Dd,c, hence (1, p1) is an edge of type 2 in G.

Now suppose 1 ≤ i ≤ k and m is the largest divisor of n supported on primes pj ,
where j < i. If pi ∈ Pd,c, then (m,mpi) is an edge of type 2. For the case pi /∈ Pd,c,
we note the following.

(1) If 0 is periodic modulo k and k′ | k, then 0 is periodic modulo k′. Moreover,
the period of 0 modulo k′ divides the period of 0 modulo k.

(2) Since n | Wn, we have 0 is periodic modulo n. Moreover, the period of 0
modulo n is a divisor of n.

From these observations, we see that 0 is periodic modulo pi, and the period of 0 is
a divisor of n. Therefore if pi /∈ Pd,c, then the period of 0 modulo pi is a divisor of
n that is strictly less than pi. In particular, the period of 0 modulo pi divides m,
and hence pi | Wm. Thus vpi(Wm) > vpi(m), and so (m,mpi) is an edge of type 1.

We have now established that mpi ∈ Dd,c, and hence pi | Wmpi
| Wmpt

i
for each

1 ≤ t < αi. By rigid divisibility, vpi
(Wmpt

i
) = vpi

(Wn) ≥ αi > t = vpi
(mpti).

Therefore, we also have an edge of type 1: (mpti,mpt+1
i ). All told, we have the

following path of directed edges in G from 1 to n:

1
2−→ p1

1−→ p21
1−→ · · · 1−→ pα1

1

1or2−−−→ pα1
1 p2

1−→ pα1
1 p22

1−→ · · · 1−→ pα1
1 pα2

2

1or2−−−→ · · ·
1or2−−−→ pα1

1 pα2
2 · · · pk

1−→ pα1
1 pα2

2 · · · p2k
1−→ · · · 1−→ pα1

1 pα2
2 · · · pαk

k = n.

Thus, Dd,c ⊆ GV . □

Proof of Theorem 1.6. First, W2 = cd + c = cd−1(c+ 1). It follows that 2 | W2,
and thus 2 ∈ Pd,c. Second, W1 = c, and therefore c | Wn for all n since (Wn) is a
divisibility sequence.

For the third property, we show that if p is prime, then p ∈ Pd,c if d ≡ 1
(mod p − 1). Let d = (p − 1)k + 1, where k ∈ Z. We have ϕ(x) = xd + c =
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x(p−1)k+1 + c ≡ x+ c (mod p), so ϕp(x) ≡ x+ pc ≡ x (mod p). In particular, this
means that Wp = ϕp(0) ≡ 0 (mod p), so p ∈ Pd,c. □

Proof of Theorem 1.7. Let d be even. We show that if p is an odd prime, then
p ∈ Pd,c only if p | c.

Suppose that p ∈ Pd,c. Then p | Wp, and the period of 0 modulo p is a divisor of
p. If the period of 0 is 1, then p | W1 = c. Otherwise if the period of 0 is p, then 0
has a unique preimage modulo p. In particular, d

√
−c ≡ − d

√
−c (mod p). Therefore

d
√
−c ≡ 0 (mod p), so c ≡ 0 (mod p). □

In conjunction with Theorem 1.6, Theorem 1.7 provides a full characterization
for Pd,c when d is even. In particular, we can now prove Theorem 1.1.

Proof of Theorem 1.1. When c is odd, the orbit of 0 has period 2. When c is
even, the orbit of 0 has period 1. When p | c, the orbit of 0 has period 1. □

3. Cardinality of Dd,c

In this section, we prove Theorem 1.4, which identifies all pairs (d, c) for which
Dd,c is finite. First, we note some simple infinite cases where Dd,c is explicit.

Lemma 3.1.

(1) For all d, Dd,0 is the set of positive integers.
(2) If d is even, then Dd,−1 is the set of even positive integers.

Proof. If c = 0, then Wn = 0 for all n. When c = −1, then

Wn =

{
0 if n is even

−1 if n is odd.

In both cases, the result is immediate. □

We now provide a simple yet sufficient condition for Dd,c to be infinite.

Lemma 3.2. If there exists n ∈ Dd,c such that n ≥ 3, then Dd,c is infinite.

Proof. Suppose that n ∈ Dd,c for some n ≥ 3. From [9], Wn contains a primitive
prime divisor p. Therefore, 0 is periodic modulo p, with some period r ≤ p. There-
fore p | Wr, and primitivity then ensures that n ≤ r ≤ p. Hence either p = n, or
p and n are coprime. If the latter holds, then, by Theorem 1.5, there is an edge of
type 2: (n, np). This implies that n is not the largest element of Dd,c. Therefore it
suffices to consider the case p = n.

First, suppose that d is even and p = n. Then, by Theorem 1.7, we have p | c,
so that p | Wn for all n. This contradicts primitivity, so d must be odd.

Therefore, suppose that d is odd and p = n. In this case, write Wp = pm for
some integer m. If |m| > 1, then for each prime divisor q of m, the index divisibility
graph contains the edge (p, pq), hence p is not the largest element of Dd,c.

Thus we are left considering the case d is odd, p = n, and Wp ∈ {0,±p}.
However, we claim that this is not possible, by the growth of Wn. For, since d is
odd, the signs of Wn, W

d
n , and c are all the same by induction. This implies that

|Wn+1| = |W d
n + c| = |W d

n | + |c| ≥ |Wn|d. In particular, since |W2| ≥ 2, we have

|Wn| > 2d
n−2

. (Here we use that |c| ≥ 1. The case c = 0 is covered by Lemma 3.1.)
This rules out |Wp| ≤ p for any p ≥ 3. □
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Consequently, Dd,c is infinite in most cases.

Proof of Theorem 1.4. By Theorem 1.6, c ∈ Dd,c, hence it follows from Lemma
3.2 that Dd,c is infinite whenever |c| ≥ 3. Similarly, if d is odd, then 3 ∈ Pd,c by
Theorem 1.6, and again Dd,c is infinite.

For the remainder of the proof, assume that d is even. The cases c = 0 and
c = −1 are handled by Lemma 3.1, leaving only the cases c = 1 and c = −2 to
consider.

Suppose c = 1. In this case W1 = 1 and W2 = 2, and by Theorem 1.7, we have
Pd,1 = {2}. Following the construction of the index divisibility graph, we have a
single edge of type 2 emanating from the vertex 1 (the edge (1, 2)), and there are
no edges emanating from the vertex 2. Thus Dd,1 = {1, 2}.

Suppose c = −2. If d = 2, then W1 = −2 and W2 = 2. Similar to the previous
case, the index divisibility graph only contains a single edge—the edge (1, 2)—and
hence D2,−2 = {1, 2}.

Otherwise suppose d ≥ 4. Then W2 = (−2)d − 2 = −2((−2)d−1 + 1), where
|(−2)d−1 + 1| > 1 and is odd. Hence W2 has an odd prime divisor p, and therefore
(2, 2p) is an edge of type 1 in the index divisibility graph. Since 2p ∈ Dd,−2, it
follows that Dd,−2 is infinite. □

4. Sd,c and p-cycles modulo p

In Theorem 1.6, we give a description of the set Pd,c. In the case that d is even,
Theorem 1.7 concludes that Theorem 1.6 completely determines Pd,c. However,
when d is odd, the conditions in Theorem 1.6 are insufficient to completely describe
the set. This insufficiency is illustrated in Example 1.9 where we see that 11 ∈ P3,4,
yet 11 does not satisfy any of the conditions in Theorem 1.6.

Suppose then that p ∈ Pd,c where both p and d are odd. As we have previously
noted, if p ∈ Pd,c, then the period of 0 in Z/pZ is a divisor of p. If that period is
1, then p | c, which Theorem 1.6 already accounts for. Therefore, the primes that
are the exceptions are the odd primes for which 0 has period p modulo p. In other
words, the primes of interest are the odd primes p for which xd + c induces a single
cycle of size p in Z/pZ.

It is well known that π(x) = xd is a permutation of Z/pZ if and only if gcd(d, p−
1) = 1. Hence under the same conditions, it follows that xd + c is a permutation
of Z/pZ. In particular, we have ϕ = τ c ◦ π (over Z/pZ), where τ(x) = x+ 1. Since
every p-cycle is an even permutation, we see that ϕ is a p-cycle only if π is an even
permutation. Equivalently, if π is an odd permutation of Z/pZ, then p /∈ Pd,c.

We now use this observation to prove Theorem 1.3. For the remainder of this
section, let ordn m denote the order of m in (Z/nZ)∗.

In order to understand the sign of π as a permutation, we consider its cycle
structure, which is given thusly.

Lemma 4.1. Suppose π(x) = xd is a permutation of Z/pZ. Then π has a cycle
of length m if and only if there exists a divisor k of p − 1 such that ordk d = m.
Moreover, the number of cycles Nm of length m satisfies

mNm =
∑

i|m,i<m

iNi.
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Proof. See Lidl and Mullen [19, Theorem 1], as well as Ahmad [1, Theorem 1] for
a more general statement. □

In particular, letting φ denote the Euler totient function, the theory of cyclic
groups gives the following cycle structure.

Lemma 4.2. Let p be prime, and suppose gcd(d, p − 1) ̸= 1. Then x ↦→ xd is a
permutation of Z/pZ with the following cycle structure:

(1) 0 is fixed, and
(2) for each divisor k of p − 1, there are φ(k) elements of (Z/pZ)∗ of order

ordk d, i.e. the permutation contains φ(k)/(ordk d) cycles of length ordk d
for each divisor k of p− 1.

The following Lemma will also prove useful.

Lemma 4.3. Let d be an odd integer, let µ = v2(d− 1), and let ν = v2(d
2 − 1)− 1

(i.e. ν = max{v2(d− 1), v2(d+ 1)}). Then

ord2k d =

⎧⎪⎨⎪⎩
1 0 ≤ k ≤ µ

2 µ < k ≤ ν

2k−ν ν < k.

Proof. If v2(d − 1) ≥ k, then d ≡ 1 (mod 2k), hence ord2k d = 1. If v2(d + 1) ≥
k > 1, then d ≡ −1 (mod 2k), hence ord2k = 2. Otherwise v2(d

2j − 1) = ν+ j, and
it follows that 2k−ν is the order of d. □

Proof of Theorem 1.3. Let p be a prime where p ≡ 1 (mod 4). We will show
that π(x) = xd is an odd permutation of Z/pZ if and only if d ≡ 3 (mod 4), which
by the discussion at the start of this section is sufficient to prove the theorem.
Moreover, we assume that gcd(d, p− 1) = 1, as this is both necessary and sufficient
for π to be a permutation.

The cycle type of π is given in Lemma 4.2. Let Nk = φ(k)/(ordk d) be the
number of cycles of length ordk d in π. Since a k-cycle is the product of k − 1
transpositions, we see that π may be written as a product of the following number
of transpositions: ∑

k|p−1

Nk((ordk d)− 1) =
∑
k|p−1

φ(k)−
∑
k|p−1

Nk

= p− 1−
∑
k|p−1

Nk.

It now suffices to determine when
∑

k|p−1 Nk is odd.

To count the cycles, write p− 1 = 2λω, where ω is odd. Then∑
k|p−1

Nk =
∑
δ|ω

∑
0≤i≤λ

N2iδ.

Consider first the sum over δ > 1; we will show that this is even. Using the same
notation as in Lemma 4.3, let µ = v2(d− 1) and ν = v2(d

2 − 1)− 1. Then for each
δ, we have∑

0≤i≤λ

N2iδ = Nδ +N2δ +
∑

2≤i≤µ

φ(2iδ)

ord2iδ d
+

∑
µ<i≤ν

φ(2iδ)

ord2iδ d
+

∑
ν<i≤λ

φ(2iδ)

ord2iδ d
.
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Note that Nδ +N2δ = 2Nδ since

N2δ =
φ(2δ)

lcm(ord2 d, ordδ d)
=

φ(δ)

ordδ d
= Nδ.

Next, ord2iδ d = lcm(ord2i d, ordδ d) by the Chinese remainder theorem. More-
over, ordδ d | φ(δ) because φ(δ) = #(Z/δZ)∗, and ordδ d is the order of d in (Z/δZ)∗.
Hence ∑

2≤i≤µ

φ(2iδ)

ord2iδ d
=

∑
2≤i≤µ

2i−1φ(δ)

ordδ d
≡ 0 (mod 2).

Now since i ≥ 2,∑
µ<i≤ν

φ(2iδ)

ord2iδ d
=

∑
µ<i≤ν

2i−1φ(δ)

lcm(2, ordδ d)
≡ 0 (mod 2),

and similarly, ∑
ν<i≤λ

φ(2iδ)

ord2iδ d
=

∑
ν<i≤λ

2i−1φ(δ)

lcm(2k−ν , ordδ d)
≡ 0 (mod 2).

We conclude that the portion of the sum where δ > 1 is even.
We are left to consider the contribution from δ = 1. Here,∑

0≤i≤λ

N2i =
∑

0≤i≤λ

φ(2i)

ord2i d

= 2 +
∑

2≤i≤λ

2i−1

ord2i d

≡

{
1 (mod 2) if v2(d− 1) = 1

0 (mod 2) otherwise.

Therefore, π is odd if and only if d ≡ 3 (mod 4), concluding the proof. □

Corollary 4.4. If p ∈ P3k,c and k is odd, then either p = 2, p | c, or p ≡ 11
(mod 12).

Proof. The cases p = 2 and p | c are due to Theorem 1.6. Otherwise, if p ∈ P3k,c,

k is odd, and p ∤ c, then x3k + c is a cyclic permutation of Z/pZ, and hence p ̸≡ 1
(mod 3). Finally, p ̸≡ 5 (mod 12) by Theorem 1.3. □

As evidenced in Example 1.9, primes p ∈ P3k,c with p ≡ 11 (mod 12) do exist.

5. Fixed n and variable c, d

In this section, we investigate Dd,c from a different perspective: for a fixed n ∈ Z,
in which Dd,c does n appear? Let Hn = {(d, c) : n ∈ Dd,c}.

Proposition 5.1. For any integers d, c ∈ Z, where d ≥ 2, we have the following.

(1) If n | c, then (d, c) ∈ Hn.
(2) If d ≡ 1 (mod n− 1) and n is prime, then (d, c) ∈ Hn.
(3) If (d, c0) ∈ Hn, then (d, c) ∈ Hn whenever c ≡ c0 (mod n). Additionally,

if d is odd, then (d,−c) ∈ Hn whenever (d, c) ∈ Hn.
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Proof. The first two properties are immediate from Theorem 1.6. For the third,
set ϕc(x) = xd + c. If c ≡ c0 (mod n), then ϕc and ϕc0 are identical over Z/nZ.
Hence (d, c) ∈ Hn if and only if (d, c0) ∈ Hn. Moreover, if d is odd, then ϕ−c(x) =
−ϕc(−x). Thus if ϕn

c (0) ≡ 0 (mod n), then ϕn
−c(0) ≡ 0 (mod n). □

Finally, we have a result regarding the powers of d when d is prime.

Theorem 5.2. If d is prime, there exist d-adic integers a1, a2, . . . , ad−1, where
a1 ≡ 1 (mod d), a2 ≡ 2 (mod d), . . . , ad−1 ≡ d− 1 (mod d), such that if c ≡
0, a1, a2, . . . , ad−1 (mod dn), then (d, c) ∈ Hdn .

Proof. Let d be prime. From Theorem 1.6, we have d ∈ Dd,c for all c ∈ Z. In
particular, Wd ≡ 0 (mod d) for c ≡ 0, 1, . . . , d − 1 (mod d). Considering Wd as a
function in c (e.g. Wd(c) = (ϕd−1(0))d + c), we see that d

dcWd(c) ≡ 1 (mod d).
Thus by Hensel’s Lemma, each value modulo d lifts to a unique d-adic solution.
Namely, if a0, a1, a2, . . . , ad−1 ∈ Zd are these lifts (where ai ≡ i (mod d)) and
c ≡ ai (mod dn) for one of these ai, then Wd(c) ≡ 0 (mod dn). It now follows from
rigid divisibility that if dn | Wd, then dn | Wdn . It is straightforward to verify that
a0 = 0. □

6. Heuristics and Experiment for the infinitude of Sd,c

In this section, we consider some data and heuristics to support Conjecture 1.2,
that Sd,c is infinite, particularly in the case that d = 3.

We will find it helpful to generalize the question by allowing both p and c to vary:
we begin by considering the pairs (p, c) such that p ∈ S3,c. In Figure 3, we plot all
pairs (p, c) ∈ [3, 37619] × [1, p/2] for which p ∈ S3,c. When d is odd, if p ∈ Sd,c,
then p ∈ Sd,c′ for any c′ ≡ ±c (mod p) (Proposition 5.1), hence the restriction to
the interval [1, p/2]. In Corollary 4.4, we observed that for k odd, if p ∈ P3k,c, then
p = 2, p | c or else p ≡ 11 (mod 12). Therefore only primes p ≡ 11 (mod 12) may
appear in this data.

The data indicates that these pairs occur somewhat frequently and that the pairs
(p, c/p) seem to be distributed randomly in the rectangle [1, 37619]× [0, 0.5]. Based
on this observation, it seems reasonable to hypothesize that, at least for data in
this range (i.e. p ≥ 2|c|), the pair (p, c) is a Bernoulli random variable that occurs
with a probability that is independent of c. Based on the existence of 906 data
points for 1000 potential primes (i.e. those 11 (mod 12) and ≤ 37619), we will
also hypothesize the following: that, for a given prime p ≡ 11 (mod 12), there are
on average 0.906 values of 1 ≤ c ≤ (p − 1)/2 for which p ∈ S3,c. Under these
suppositions, we are led to the following heuristic assumption.

Hypothesis 6.1. For any fixed c the probability that a prime p ≥ 2|c| satisfies
p ∈ S3,c is 0.906 · 2/(p− 1).

For small primes (those with p < 2|c|), we make no assumption on the behaviour.
We remark, for example, that p = 2, 3 and p = c have special behaviour, and
otherwise the occurrence of (p, c) is determined by the occurrence of (p,±c mod p)
by Proposition 5.1.

Under this hypothesis, we may compute the expected number of pairs (p, c) in
the data set for any given c. Namely, the expectation for the number of data points
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Figure 3. The graph on the top shows a scatterplot of pairs (p, c)
such that p ≤ 37619 is prime and p ∈ S3,c. Below, the same
scatterplot is scaled so that the pairs are of the form (p, c/p). There
are a total of 906 data points. There are 3986 primes ≤ 37619, of
which 1000 are 11 (mod 12).

for any fixed c is

EX(c) =
∑

p∈[2|c|,X]
p≡11 mod 12

1.812

p− 1
.

In particular, EX(c) → ∞ as X → ∞, which is the statement of Conjecture 1.2.
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Figure 4. The data in Figure 3 is collected by c value in bins
of size six. For each k ∈ N, the value of the blue graph on the
interval [6(k − 1), 6k) is the number of pairs (p, c) in the data for
which 6(k − 1) ≤ c < 6k. At each point x, the green line is the
average of the blue function over the interval (x− 60, x+60). The
red line is the theoretical expectation under the assumption that
the data is random, i.e. it is the graph of E37619(x).

To test Hypothesis 6.1, the theoretical quantity EX(c) is compared to the actual
count for our data (X = 37619) in Figure 4. The closeness of fit verifies that
Hypothesis 6.1 is at least plausible, and gives some credence to Conjecture 1.2.

We make one more numerical experiment to verify the validity of Hypothesis
6.1. If it is indeed the case that all 906 pairs (p, c) are uniformly assigned to
primes p ≡ 11 (mod 12), then a standard computation reveals that the expected
number of primes which do not receive a pair is ≈ 403. Therefore, we should
expect approximately 60% of the primes p ≡ 11 (mod 12) to have a corresponding
c such that p ∈ P3,c. In Figure 5, we see that, indeed, for approximately 60% of 11
(mod 12) primes, there exists a c for which p ∈ P3,c.

We finish this section with a brief discussion of a relationship to certain polyno-
mials arising in the study of portraits for post-critically finite polynomials. We will
observe that, fixing p, the number of 1 ≤ c ≤ p−1 for which p ∈ S3,c is the number
of non-zero roots of a certain polynomial, as follows. Given a family of maps ϕc

(for us, ϕc(x) = x3 + c), write Ψn,0(c) ∈ Z[c] for the polynomial whose roots are
those c for which 0 has period n, i.e.

Ψn,0(c) = ϕn
c (0).
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Figure 5. Let T (X) = {p ≤ X : p prime, p ≡ 11 (mod 12)} and
U(X) = {p ∈ T (X) : p ∈ P3,c for some c}. The plot shows the
ratio #U/#T for X ≤ 37619.

(In the case that ϕc(x) = x2 + c, these are sometimes called Gleason polynomials.)
Then define Φn,0(c) so that

Ψn,0 =
∏
d|n

Φd,0.

In particular, Φn,0 has as roots those c such that 0 has formal period n under the
map x3 + c. (Dynatomic curves are obtained by considering the n-th dynatomic
polynomial as a polynomial in the variables z and c simultaneously; we are taking
the slice z = 0, allowing c to vary. For more on these standard definitions, see [26,
Section 4.1–2].)

With this setup, for a fixed p, the number of 1 ≤ c ≤ p− 1 for which p ∈ S3,c is
equal to the number of non-zero roots of Φp,0(c) modulo p. This raises an interesting
general question.

Question 6.2. As the integer n and prime p vary, what is the splitting behaviour
of Φn,0(c) modulo p?

These polynomials fall into a more general family of polynomials whose roots
include the values of c for which 0 has a given finite portrait (i.e. a given preperiodic
length, following by a given period). As 0 is the only critical point for xd + c, the
study of these polynomials is the study of ϕc,d which are post-critically finite; for
example, in the case that 0 is strictly pre-periodic, the value c is called aMisiurewicz
point. It is known that for xd + c, the points c where 0 has a given portrait are the
roots of a polynomial in Z[c], all of whose roots are simple [15, Theorem 1.1]. It is
unknown if these polynomials are irreducible, or what their Galois groups are.
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