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Abstract—In a primitive relay channel, a new one-shot relaying
scheme termed “color-and-foward” is proposed that guarantees
a probability of error equal to zero. This relaying scheme
constructs a relaying compression graph of relay outputs based
on the joint conditional distribution of the relay and destination
outputs and forwards a minimum coloring of this graph. The
n-letter extension of the proposed color-and-forward scheme is
shown to be optimal in the sense that it results in the smallest
needed out-of-band relay to destination link rate for the overall
message rate to equal the single input multiple output outer
bound for any fixed number of channel uses. This is used to obtain
an upper bound on the asymptotic minimal relay to destination
link rate needed to achieve the single input multiple output outer
bound.

I. INTRODUCTION

A primitive relay channel (PRC) (X , p(y, yR|x),Y × YR),
illustrated in Figure 1(b), is a special type of relay channel
(X × XR, p(y, yR|x, xR),Y × YR), shown in Figure 1(a).
Both consist of a source terminal S that communicates a
message to a destination terminal D aided by a relay ter-
minal R. In a primitive relay channel, the broadcasting links
(X , p(y, yR|x),Y ×YR) from the source to the relay and des-
tination terminals are out-of-band, or orthogonal to the error-
free but rate-limited relay to destination (R-D) link. Quantities
of interest may then be the maximal number of codewords (the
message rate) that can be reliably communicated for a given
R-D link rate r (the relay rate), or the minimal relay rate
needed to transmit at a desired message rate (provided the
desired message rate is feasible at all).

This paper characterizes the relaying scheme that, for a fixed
number of channel uses, minimizes the relay rate needed to
achieve the maximal possible message rate. When the R-D
link rate is large enough, the relay can forward its entire ob-
servation to the destination terminal. Thus, the primitive relay
channel effectively turns into a point-to-point channel with a
single input and two outputs, say (X , p(y, yR|x),Y × YR),
shown in Figure 1(c), for which we have finite n (or n-
shot, where n is the number of channel uses) and asymptotic
expressions for the zero-error capacity. This capacity is an
upper bound to the message rate achievable for any finite
relay rate. The question addressed here is how large the relay
rate should be to ensure that overall message rate achieved
meets the capacity of the single-input multiple output (SIMO)
channel (X , p(y, yR|x),Y × YR).
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the contents of this article are solely the responsibility of the authors and
do not necessarily represent the official views of the NSF. The work was
presented in part at Allerton 2014 and ISIT 2015. The authors would like to
sincerely thank the anonymous reviewer for their help.

The small-error 1 version of this question was considered in
[1], [2], [3] and remains open. Recent work by Wu and Özgür
[4] has shown that in general, the cut-set bound is loose for
such channels. We propose and study the zero-error version of
this problem. We propose a new one-shot (or n = 1) “color-
and-forward” relaying scheme whose n-shot extension yields
the minimum relay rate needed to achieve the n-letter SIMO
bound for any given number of channel uses n. This is used
to obtain an upper bound on the asymptotic relay rate needed
to achieve the asymptotic SIMO upper bound.

A. A motivating example
Consider a PRC with p(y, yR|x) = p(y|x)p(yR|x) as in

Figure 2, noting that in zero-error communication the values of
the conditional probabilities is immaterial, only whether they
are non-zero or not matters. The destination, upon receiving
Y can tell whether {1, 2} or {3, 4} were sent, but not which
input within those sets. The relay can resolve this ambiguity
by forwarding E or O, i.e. whether the X was even or odd.
This amounts to considerable savings for the R-D link capacity
with respect to sending YR directly, and allows the destination
to fully resolve which X was sent as long as the R-D link
capacity is at least 1 bit. It may be checked that this channel
does not fall into any class of PRCs for which capacity is
known, i.e. it is not a degraded, semideterministic, orthogonal-
component, or semideterministic PRC [2]. The “color-and-
forward” relaying scheme proposed here generalizes this ex-
ample to arbitrary PRCs and yields achievable (message rate,
relay rate) pairs for any number of channel uses n.
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Fig. 2: Toy Problem: p(y, yR|x) = p(y|x)p(yR|x). A solid
link indicates the probability value p(+|x) is positive, where
+ indicates y or yR.

B. Background on zero-error communication over a PRC
Zero-error communication over a primitive relay channel

at first glance seems to be a combination of two notoriously

1Communication allowing a vanishing probability of error is called small-
error or ε−error communication, while communication without error is called
zero-error or 0-error communication.
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(a) Classical relay channel
(X ⇥XR, p(y, yR|x, xR),Y ⇥ YR)

(b) Primitive relay channel
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(c) Single input multiple output channel
(X , p(y, yR|x),Y ⇥ YR)
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Fig. 1: The relay, primitive relay, and single-input multiple output channels. The question posed here is, in a zero error setting,
how large the perfect link in (b) needs to be to render (b)’s capacity equal to that of (c).

difficult and open communication problems in information
theory: computing the zero-error capacity over a point-to-
point channel, and deriving the small-error capacity of a relay
channel. As outlined in the excellent survey [2], the small-error
capacity of primitive relay channels is in general unknown,
except for degraded [5], semideterministic [6], orthogonal-
component [7], and semideterministic primitive [8] relay chan-
nels.

The zero-error capacity of the PRC has not been studied
besides the authors’ initial results [9], [10]. This problem does
however generalize a point-to-point zero-error source coding
problem with correlated side information available only at the
receiver end, a problem studied by Witsenhausen [11]. This
connection will be explained in Section VII.

The zero-error capacity of a point-to-point channel
(X , p(y|x),Y) with discrete finite channel input and output
alphabets is characterized as the limit as the number of
channel uses n→∞ of the normalized independence number
α([GX|Y ]�n) of the n-fold AND (or strong) product of
the confusability graph GX|Y associated with p(y|x). This
generally uncomputable limiting expression may be unsatis-
fying. Even for small alphabet sizes, this is a challenging
problem: Shannon’s conjecture that the capacity of the famous
“pentagon graph” channel is 1

2 log 5 was only formally proven
by Lovasz [12] 23 years later by proposing the θ function,
which serves as an upper bound for the independence number
of a graph and can be computed in polynomial time [13]. Thus,
a computable expression for the zero-error capacity for even
the simplest, point-to-point channel remains open, except for
a small class of channels with perfect graphs2[14].

C. Contributions and organization

In Section II, notation and zero-error preliminaries are
introduced. The main contributions follow in:
• Section III, where zero-error communication over a prim-

itive relay channel is formally defined.
• Section IV: where a new one-shot n = 1 color-and-

forward relaying scheme is proposed that achieves zero
error. Achievable (message rate, relay rate) pairs are char-
acterized. The extension to n channel uses is immediate.
The color-and-forward scheme is shown to be optimal in
the sense that for any fixed number of channel uses n, this
relaying scheme results in the smallest relay rate such that

2A perfect graph is a graph where the chromatic number of every induced
subgraph is that subgraph’s largest clique size.

the overall message rate equals the n-letter SIMO upper
bound.

• Section V: where an upper bound on the minimum
required asymptotic (in blocklength) relay rate to achieve
the asymptotic SIMO upper bound is developed.

• Section VI: where one example is worked out, and a
class of channels for which the bound is tight and easily
characterized is presented.

• Section VII: where connections with Witsenhausen’s
problem on zero-error source-coding with receiver side
information are made, and conclusions are made.

II. NOTATION AND ZERO-ERROR PRELIMINARIES

Throughout the paper we will use subscripts z to emphasize
the zero-error context. We use upper and lower cases to
differentiate the message rate Rz and the R-D link rate, or
relay rate rz . Graphs use the letter G – subscripts are used
to differentiate relaying compression graphs (e.g. GR) from
confusability graphs (e.g. GX|Y,YR

), where additional sub-
scripts and superscripts will indicate the number of channel
uses or restrictions on alphabets, and will be defined later.
Sequences of length n are denoted using superscript n as xn.
When a conditional joint pmf p(y, yR|x) with support X and
output Y ×YR is restricted to input K, we denote its induced
conditional pmf, support, and output by pK(y, yR|x), K and
Y|K × YR|K respectively. All logarithms are base 2.

A. Graph theoretic notation

A graph G(V,E) consists of a set V of vertices or nodes
together with a set E of edges, which are two-element subsets
of V . Two nodes connected by an edge are called adjacent.
We will usually drop the V,E indices in G(V,E).

An independent set of a graph G is a set of vertices, no two
of which are adjacent. Let the independence number α(G) be
the maximum cardinality of all independent sets. A maximum
independent set is an independent set that has α(G) vertices.
Note that one graph can have multiple maximum independent
sets. A coloring of graph G is any function c over the vertex
set such that c−1 induces a partition of the vertex set into
independent sets of G. The chromatic number χ(G) of the
graph G is the least number of colors in any coloring. A
minimum coloring of graph G uses χ(G) colors.

The strong product G�H of two graphs G and H is defined
as the graph with vertex set V (G�H) = V (G)× V (H), in
which two distinct vertices (g, h) and (g′, h′) are adjacent iff
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g is adjacent or equal to g′ in G and h is adjacent or equal to
h′ in H . G�n denotes the strong product of n copies of G.

A confusability graph GX|Y of X given Y , specified by
conditional probability function p(y|x) with support X and
output Y , is a graph whose vertex set is X and an edge is
placed when two different nodes x, x′ ∈ X may be “confused”
at the output, that is, if ∃y ∈ Y : p(y|x) · p(y|x′) > 0.

B. Zero-error preliminaries

The zero-error capacity of a point-to-point discrete memo-
ryless channel was studied by Shannon in [15] in 1956; see
[12], [14] for further insight. We outline the results we will
build upon need next.

Consider zero-error communication over a point-to-point
channel (X , p(y|x),Y). An n-shot protocol (n,X , g) for
communicating over a point-to-point channel without error is
composed of a codebook X ⊆ Xn and a decoding function
g : Yn → X that estimates the transmitted codeword as
X̂ = g(Y n). Message rate R(n)

z := 1
n log ‖X‖, where ‖X‖

is the cardinality of set X is called achievable if there exists
an n-shot protocol (n,X , g) for which g(Y n) = X for all
codewords X ∈ X . The capacity is the supremum over all n
of all achievable rates.

First, note that only whether p(y|x) is zero or not matters for
communication without error. Next, consider communicating
using a single channel use: the maximal number of channel in-
puts the destination can distinguish without error is α(GX|Y ),
the maximum number of vertices that are non-adjacent, or
pairwise distinguishable. When multiple channel uses are al-
lowed, α([GX|Y ]�n) is the number of distinguishable channel
inputs Xn, where [GX|Y ]�n is the strong product of n copies
of graph GX|Y .3 Thus, the zero-error capacity of a point-to-
point channel (X , p(y|x),Y) is defined as the supremum of
all achievable message rates, i.e., sup

n

1
n logα([GX|Y ]�n).

The zero-error capacity may then be shown to be charac-
terized as [12]

sup
n

1

n
logα([GX|Y ]

�n) = lim
n→∞

1

n
logα([GX|Y ]

�n)

= lim
n→∞

log n

√
α([GX|Y ]�n) ,

which may be upper and lower bounded as [15], [12]:

logα(GX|Y ) ≤ lim
n→∞

log n

√
α([GX|Y ]�n) ≤ log ‖X‖.

The behavior of the sequence of independence numbers for
strong product graphs, say {α(G�n)}∞n=1, is a long standing,
notoriously difficult open question and attracts attention in
graph theory and combinatorics [16], [17], [18].

III. ZERO-ERROR COMMUNICATION OVER A PRIMITIVE
RELAY CHANNEL AND THE MINIMUM R-D LINK RATES r∗z

AND r
∗(n)
z

We first define zero-error communication over a PRC, then
introduce finite n and asymptotic upper bounds on the message

3Note that the n-fold strong product graph [GX|Y ]�n is equivalent to
the confusability graph GXn|Y n constructed from the extended channel
(Xn, p(yn|xn),Yn) with p(yn|xn) = ∏n

i=1 p(yi|xi).

rate SIMO(n) and SIMO, as well as the quantities of
interest here – the minimum needed relay rate r∗(n)z and r∗z to
achieve these finite n and asymptotic upper bounds.

A. Zero-error communication over a primitive relay channel

An n-shot protocol (n,X , h, g) for n ≥1 chan-
nel uses, for zero-error communication over a PRC
(X , p(y, yR|x),Y × YR) shown in Figure 3 is composed of
a codebook X ⊆ Xn, a relaying function h : Yn

R →WR, and
a decoding function g : Yn ×WR → X .

S

R

Y
n
R

D

Perfect link

Xn Y n

WR := h(Y n
R ) ∈ {1, · · · , ‖WR‖}

X̂ := g(Y n,WR)
X ∈ X ⊆ Xn

Fig. 3: An n-shot protocol (n,X , h, g) for zero-error com-
munication over a PRC (X , p(y, yR|x),Y × YR)), with a
codebook X , a relaying function h and a decoding function
g.

A rate pair (R
(n)
z , r

(n)
z ), where R

(n)
z := 1

n log ‖X‖ is
the message rate, and r

(n)
z is the relay rate is said to be

achievable if there exists an n-shot protocol (n,X , h, g)
over a PRC (X , p(y, yR|x),Y × YR) such that the relaying
function uses on average less than r

(n)
z bits per channel

use, i.e. ‖WR‖ ≤ 2n·r
(n)
z , and it achieves zero error, i.e.

Pr[g(Y n,WR) 6= X | X sent] = 0 for all X ∈ X .
For n channel uses, define C(n)

z (r
(n)
z ) to be the maximum

R
(n)
z such that there exists an achievable (R

(n)
z , r(n)) pair

for which r(n) ≤ r
(n)
z . We define Cz(rz), the zero-error

capacity of the relay channel at R-D link rate rz , to be
the supremum over n of all R(n)

z such that there exists an
achievable (R

(n)
z , r

(n)
z ) pair for which r(n)z ≤ rz .

It is easy to see the following properties of Cz(rz):
• Cz(rz) ≤ log ‖X‖;
• Cz(rz) is a non-decreasing function of rz;
• Cz(r) = Cz(∞) whenever r ≥ log ||YR||;
We next present upper bounds to the asymptotic Cz(rz) and

define the problem of interest – finding the minimum R-D link
rate to achieve this bound, either asymptotically or for fixed
n.

B. SIMO bounds and the minimum R-D link rates r∗z and r∗(n)z

We first present upper bounds on Cz(rz) and C
(n)
z (r

(n)
z ),

analogous to the cut-set bound, and termed the single input (in
this case X ) multiple output (in this case Y,YR) outer bound,
or SIMO bound.

Proposition 1 (Zero-error capacity SIMO upper bound).

Cz(rz) ≤ Cz(∞) := SIMO := log lim
n→∞

n

√
α([GX|Y,YR

]�n).

(1)

Proof. By giving the destination terminal perfect access to
the full sequence of received YR values, we cannot decrease
the value of Cz(rz), as we are making the destination more
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capable. With this knowledge of YR, we obtain a single-input,
multiple-output point-to-point channel with input X and vector
output (Y, YR), whose zero-error capacity is given by the
SIMO value defined above.

We are interested in determining the smallest rz such that
Cz(rz) = SIMO, defined formally next as r∗z .

Definition 1 (The minimum R-D link rate r∗z to achieve the
SIMO bound).

r∗z := inf{rz : Cz(rz) = SIMO} . (2)

Clearly, r∗z ≤ log ||YR||; this work revolves around finding
a tighter upper bound.

For finite n, we have analogous bounds and definitions,
below. We initially focus on characterizing these quantities
for fixed n, and then derive an upper bound on r∗z based on
r
∗(n)
z .

Proposition 2 (The n-shot SIMO bound).

C(n)
z (rz) ≤ SIMO(n) := log n

√
α([GX|Y,YR

]�n). (3)

We remind the reader that SIMO :=
limn→∞ SIMO(n) = supn SIMO(n).

Definition 2 (The n-shot minimum R-D link rate r
∗(n)
z to

achieve the n-shot SIMO bound).

r∗(n)z := min{rz : C(n)
z (rz) = SIMO(n)} . (4)

In the following we characterize r
∗(n)
z exactly as an n-

letter extension of the one-shot “color-and-forward” scheme
presented next.

IV. A ONE-SHOT “COLOR-AND-FORWARD” SCHEME AND
ITS n-SHOT EXTENSION

In the following, we simplify the problem and propose a
one-shot relaying scheme – that we term “color-and-forward”
– on a restricted input alphabet. Extensions to arbitrary input
alphabets and n channels uses are straightforward and will be
outlined thereafter.

The main problem of the paper can be stated and solved
as follows. For the PRC (X , p(y, yR|x),Y × YR)), let K be a
maximal independent set of the confusability graph GX|Y,YR

.
Note that K need not be unique. Then, by definition, for
each (y, yR) there exists at most one x ∈ K for which
p(y, yR|x) > 0. Assume that every symbol x ∈ K has
a positive and equal probability. This condition guarantees
that the maximum amount of information is transmitted from
X ∈ K to (Y, YR) ∈ YK × YR|K.

Question. Find the minimum cardinality relaying function
h : YR|K →WR (and its cardinality) such that (Y, h(YR)) can
distinguish X without error, namely, for each (y, h(yR)) with
positive probability, there exists at most one x ∈ K for which
p(y, h(yR)|x) > 0. This is a reformulation of the problem of
finding r∗(1)z for the PRC (K, pK(y, yR|x),Y|K × YR|K).

To answer this question, we construct a a new graph, for
which a coloring provides the optimal compression function,
i.e. the minimal R-D link rate needed to achieve a message
rate equal to SIMO(n).

Construction of the relaying compression graph G
(1)
R |K.

The relaying compression graph G
(1)
R |K is defined as fol-

lows:
• Vertices: YR|K
• Edges: vertices yR 6= y′R both in YR|K share an edge

when ∃x ∈ K and ∃x′ ∈ K, x 6= x′ such that
p(y, yR|x) > 0 and p(y, y′R|x′) > 0 for some y ∈ Y|K.

Answer: Coloring of the relaying compression graph
G

(1)
R |K. Color the graph at its chromatic number and let h(yR)

be one of the corresponding minimal colorings. We term this
processing and forwarding at the relay as “color-and-forward”
relaying. We claim that this relaying function, which requires
logχ(G

(1)
R |K) bits per channel use for the R-D link to transmit,

recovers all x ∈ K with zero error and does so with minimal
cardinality. We use superscript (1) to indicate that is graph
corresponds to n = 1.

Lemma 3. For the PRC (K, pK(y, yR|x),Y|K × YR|K), for
K an independent set of GX|Y,YR

, the relaying function
corresponding to a minimal coloring of G(1)

R |K described
above, r∗(1)z = logχ(G

(1)
R |K).

Proof. To show that (Y, h(YR)) can recover X with zero
error, consider every yR with h(yR) = h for some color
h. We know that at least one of them, say, y∗R, must satisfy
p(y, y∗R|x∗) > 0 for some x∗, since p(y, yR|x) > 0 for the
actual sent x and actual observation (y, yR). This x∗ must
be unique even when y∗R may not be so. To see this, by the
definition of h(yR) above, any other y′R with h(y′R) = h must
satisfy p(y, y′R|x′) = 0 for x′ 6= x∗. Otherwise, y∗R and y′R
are connected and h(y∗R) 6= h(y′R). Furthermore, since the
possible transmitted x’s form an independent set of GX|Y,YR

,
p(y, y∗R|x′) = 0 for every x′ 6= x∗. Hence, we have established
the uniqueness of x∗. This is valid regardless of the transmitted
x and hence the message rate achieved is logα(GX|Y,YR

).
Conversely, suppose that the cardinality of h(·) is less than

the chromatic number of the graph. Then, there are yR 6=
y′R with h(yR) = h(y′R) = h such that p(y, yR|x) > 0 and
p(y, y′R|x′) > 0 for some x 6= x′. Since p(x) = p(x′) by the
assumption and p(y) > 0 as y is the actual observation, the
conditional probabilities p(x, yR|y) and p(x′, y′R|y) are both
positive, which implies that p(x, h|y) and p(x′, h|y) are both
positive, which, in turn, implies that p(x|h, y) and p(x′|h, y)
are both positive. Hence, there is a positive probability of error.

From this construction, we can express r∗(1)z as follows.

Lemma 4. For the PRC (X , p(y, yR|x),Y × YR))

r∗(1)z = min
K: K is a maximum independent set of graph GX|Y,YR

logχ(G
(1)
R |K),
(5)

where χ(G(1)
R |K) is the chromatic number of graph G

(1)
R |K,

constructed via the algorithm described in the Answer above
with restricted input / codebook K.

Proof. Note that there are may be multiple maximal indepen-
dent sets of confusability graph GX|Y,YR

. Restricting the input
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to one of these, denoted by K, yields a zero-error relaying
scheme achieving the rate pair

(R(1)
z , r(1)z ) = (logα(GX|Y,YR

), logχ(G
(1)
R |K)).

Taking the minimum over all maximal independent sets yields
the theorem.

It is easy to see how this scheme may be extended to n
channel uses. In the following, note that K(n) corresponds to
a maximum independent set of graph G�n

X|Y,YR
, and should not

be confused with the n-fold Cartesian product of the set K.

Corollary 5. For the PRC (X , p(y, yR|x),Y × YR))

r∗(n)z = min
K(n): K(n) is a max. ind. set of G�n

X|Y,YR

1

n
logχ(G

(n)
R |K(n)),

(6)
where χ(G

(n)
R |K(n)) is the chromatic number of graph

G
(n)
R |K(n) , constructed via the algorithm described in the

Answer above with restricted input / codebook K(n).

In working towards the asymptotic r∗z , it may be natural to
ask whether there exists a strong product relationship between
G

(n)
R |Kn and G(1)

R |K for K an independent set of GX|Y,YR
and

Kn the n-fold strong product of K. Note that even if Kn is a
maximal independent set of G�n

X|Y,YR
(it need not be), that in

general, G(n)
R |Kn is not the n-fold strong product of G(1)

R |K.
The following can however be shown.

Lemma 6. Let K be an independent set of graph GX|Y,YR
,

and let Kn denote its n-fold Cartesian product. Then:
1) Kn is an independent set of GXn|Y n,Y n

R
, though it need

not be a maximal independent set;
2) the n-fold strong product of G(1)

R |K is a sub-graph of
the n-shot graph G(n)

R |Kn , i.e.

E
(
[G

(1)
R |K]�n

)
⊆ E

(
G

(n)
R |Kn

)
;

3) if G(1)
R |K is fully connected,

[G
(1)
R |K]�n = G

(n)
R |Kn .

Remark 3. Note that when G
(1)
R |K is fully connected, its

n-fold strong product [G
(1)
R |K]�n is also fully connected,

meaning the corresponding n-shot color-and-forward graph
G

(n)
R |Kn is fully connected.

Proof of Lemma 6. The statement in 1) is obvious.
To show 2) consider any two different nodes
[yR1, · · · , yRn], [y

′
R1, · · · , y′Rn] ∈ [YR|K]n, which are

connected by an edge in graph [G
(1)
R |K]�n. By definition of

the strong product, this implies that yRi and y′Ri are either
equal or connected by an edge in graph G

(1)
R |K, for any

i = 1, 2, · · · , n. This also implies there exist [y1, · · · , yn],
[x1, · · · , xn] and [x′1, · · · , x′n] satisfying:

• For yRi and y′Ri pairs that are connected in graph G(1)
R |K,

we know there exists some yi ∈ Y|K and xi 6= x′i ∈ X |K
such that p(yi, yRi|xi) · p(yi, y′Ri|x′i) > 0.

• For yRi and y′Ri pairs where yRi = y′Ri, there exists
at least one yi ∈ Y|K and one xi ∈ X |K such that
p(yi, yRi|xi) > 0. In this scenario, we let x′i = xi.

It can then be checked that

p([y1, · · · , yn], [yR1, · · · , yRn] | [x1, · · · , xn])
· p([y1, · · · , yn], [y′R1, · · · , y′Rn] | [x′1, · · · , x′n])

=
n∏

i=1

p(yi, yRi|xi) · p(yi, y′Ri|x′i)

is positive, and [x1, · · · , xn] 6= [x′1, · · · , x′n] because there is
at least one i such that yRi and y′Ri are connected in graph
G

(1)
R |K. Hence [yR1, · · · , yRn], [y

′
R1, · · · , y′Rn] ∈ [YR|K]n

must be connected in G(n)
R |Kn , and 2) follows.

To show 3), notice that when G
(1)
R |X is fully connected,

E
(
G

(n)
R |Kn

)
⊆ E

(
[G

(1)
R |K]�n

)
, and hence 3) follows.

Since E
(
[G

(1)
R |K]�n

)
⊆ E

(
G

(n)
R |Kn

)
, Lemma 6 guaran-

tees that a minimal coloring of [G
(1)
R |K]�n cannot be larger

than a minimal coloring of G(n)
R |Kn . However, Corollary 5

minimizes G(n)
R |K(n) over all maximal independent sets K(n)

of Gn
X|Y,YR

, which may not even contain Kn (consider for
example GX|Y,YR

a pentagon).

V. UPPER BOUND ON THE ASYMPTOTIC RATE VIA THE
PRESENTED ONE-SHOT SCHEME

We now use Corollary 5 to obtain our main result, an upper
bound on the asymptotic r∗z of Definition 1.

Lemma 7 (Upper bound on r∗z ). r∗z ≤ U1 := sup
n
r
∗(n)
z .

Proof of Lemma 7. Let rz = U1. First, U1 ≥ r
∗(n)
z holds

for any n, because U1 is the supremum of all r∗(n)z ’s. It is
also true that C(n)

z (rz) ≥ C
(n)
z (r

∗(n)
z ), because C

(n)
z (rz) is

non-decreasing with respect to rz . Note that C(n)
z (r

∗(n)
z ) =

SIMO(n) by definition. So C(n)
z (rz) ≥ SIMO(n) holds for

any n. Thus we have sup
n
C

(n)
z (rz) ≥ sup

n
SIMO(n). Equiv-

alently, Cz(rz) ≥ SIMO. This implies Cz(rz) = SIMO,
because Cz(rz) ≤ SIMO always holds. Thus, r∗z ≤ U1.

VI. EXAMPLES

In this section we first show one detailed example of how
to compute r

∗(1)
z , and how this minimization over different

maximal independent sets of GX|Y,YR
cannot be ignored. We

then show an example of a class of channels for which one
can characterize the asymptotic r∗z exactly.

A. A detailed computation of r∗(1)z

Table I enumerates a conditional joint probability mass
function p(y, yR|x), where ‖X‖ = ‖Y‖ = ‖YR‖ = 5. An
entry at position (x, y, yR) is denoted by “+” (the actual value
does not matter), when its probability p(y, yR|x) is positive
and by “0” when p(y, yR|x) = 0. To obtain r∗(1)z :
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s(p(y, yR|x)) YR YR YR YR YR

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Y

1
2
3
4
5

0 0 + + 0
+ + 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 + 0 0 0
0 0 + 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
+ 0 0 0 0
0 0 + 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 + 0
0 0 0 0 0
0 0 0 + 0
0 0 + 0 0

+ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 +

X = 1 X = 2 X = 3 X = 4 X = 5

TABLE I: Conditional joint probability mass function: p(y, yR|x), where ‖X‖ = ‖Y‖ = ‖YR‖ = 5. Note that s(p(y, yR|x))
equals to + when p(y, yR|x) > 0 (actual value is unimportant) and 0, otherwise.

1) Compute all possible codebooks: first enumerate all
maximal independent sets of GX|Y,YR

. The confusability
graph GX|Y,YR

is shown on the left of Fig. 4, and this has
two maximal independent sets (which are used as codebooks
for zero-error communication), K1 = {1, 3, 4, 5} and K2 =
{2, 3, 4, 5}.

2) Compute color-and-forward graph GR|K1
: When code-

book K1 = {1, 3, 4, 5} is chosen, GR|K1 and one possible
minimum coloring are shown in the middle of Fig. 4. It is
easy to verify that this relaying function recovers all x ∈ K1

perfectly, and does so with only 3 colors.
3) Compute color-and-forward graph GR|K2 : When code-

book K2 = {2, 3, 4, 5} is chosen, GR|K2 and one possible
minimum coloring are shown on the right of Fig. 4. It is easy to
verify that this relaying function recovers all x ∈ K2 perfectly,
and does so with only 2 colors.

4) Compute r
∗(1)
z : We thus conclude that r

∗(1)
z =

log min{χ(GR|K1
), χ(GR|K2

)} = log min{3, 2} = 1. We
note that in order to have the smallest number of colors
(smallest relay rate) we must use K2 and not K1.

B. A class of PRC channels where no information lossless
compression is possible at the relay

In this subsection, we study a class of PRC channels
where, to achieve the SIMO bound, the relay has to forward
everything that it has observed regardless of the blocklength
n.

Proposition 8. For the class of zero-error PRCs which satisfy:
(a) GX|Y,YR

is edge-free
(b) G

(1)
R |X is fully connected

then r∗z = r
∗(n)
z = log ‖YR‖, for any n.

This statement is strong in the sense that it shows that a one-
shot scheme is optimal and that multiple channel uses cannot
increase the capacity or decrease the required R-D link rate: 1)
the SIMO upper bound rate satisfies SIMO = SIMO(n) =
log ‖X‖, for any n; 2) the minimum required R-D link rate
to achieve the SIMO upper bound message rate satisfies r∗z =

r
∗(n)
z = log ‖YR‖, for any n. Figure 5 shows an example of

such a channel.

Proof of Proposition 8. Condition (a) implies that X it-
self is the (unique) maximum independent set for graph
GX|Y,YR

, and Xn is the unique maximum independent set for
[GX|Y,YR

]�n. Applying Lemma 6, and by Condition (b), we

p(y|x) p(yR|x)

X Y

1

2

3

4

5

6

1

2

X YR

1

2

3

4

5

6

1

2

3

4

5

6

7

8

GR

1g

2br
3b

4r

5p

6or
7bl

8y

Fig. 5: An example where compression at the relay is impos-
sible. Here, p(y, yR|x) = p(y|x)p(yR|x).

s(p(y, yR|x)) YR YR

1 2 3 4 5 1 2 3 4 5

Y
1
2
3

+ 0 0 0 0
0 + 0 + 0
0 0 0 + 0

0 + 0 0 +
0 0 + 0 0
0 0 0 0 +

X = 1 X = 2

TABLE II: Conditional joint probability mass function:
p(y, yR|x) for Remark 4.

know that graph G
(n)
R |Xn is the same as graph [G

(1)
R |X ]�n,

which is fully-connected, for any n. Thus, r∗z = r
∗(n)
z =

log ‖YR‖, for any n.

Remark 4. We note that even if SIMO(1) = SIMO(2), that
r
∗(2)
z can be strictly smaller than r

∗(1)
z , that is, compressing

over blocks can reduce the minimal R-D link rate needed.
To see this, consider a relay channel for which GX|Y,YR

is
edge free (hence the entire X is a maximal independent set
and SIMO(1) = SIMO(2) = SIMO(n) = log(‖X‖)
for any n), and for which the relay compression graph G

(1)
R

is a pentagon. An example of such primitive relay channel
distribution p(y, yR|x) is provided in Table II. In this case, 1
channel use will require a R-D link rate of log(3) bits, while
two will only require a link-rate of 1

2 log(7) < log(3) bits.

VII. CONNECTIONS AND CONCLUSIONS

In this section, we compare our color-and-forward, or relay-
ing compression graph with Witsenhausen’s graph on source
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1
2

3

4

5

Confusability graph GX
p(y,yR|x)

1g
2b

3b

4r

5r

One minimum coloring of G
(1)
R |K1

1r
2b

3b

4r

5r

One minimum coloring of G
(1)
R |K2

Fig. 4: Construction of confusability graph GX|Y,YR
and two relaying compression graphs G(1)

R |K1 and G
(1)
R |K2 for its two

maximal independent sets K1 and K2.

coding problem [11] and conclude this paper by presenting
open questions.

A. Connection with Witsenhausen’s source coding problem
[11]

Readers might be reminded of Witsenhausen’s work in [11],
as shown in Fig. 6, where a point-to-point zero-error source
coding problem with correlated side information available only
at the receiver’s end is studied. Using our notation (but with
a subscript W to indicate the distributions in Witsenhausen’s
problem), the problem solved in [11, Section III, Proposition
2] may be posed as follows. Given are random variables
(X,Y ), distributed i.i.d. according to pW (x, y). The problem
is to transmit X ∈ X , to a receiver which has knowledge
of Y ∈ Y (the side information) by means of a discrete
signal WR (notation used to parallel our problem) taking as
few values as possible. The solution is to transmit a minimal
coloring of graph GX with vertices X and edges between
x 6= x′ if ∃y : pW (y|x) · pW (y|x′) > 0. Their main result is:

Proposition 9. [11, Proposition 2] When Y is not known at
the transmitter, the minimum signal alphabet size, for encoding
a sequence of n independent pairs with n ≥ 1, is χ

(
G�n

X

)
.

The r
∗(n)
z obtained in Corollary 5 for the case YR = X

coincides with the answer in Proposition 9. To see this,
consider a PRC for which p(y, yR|x) is such that p(yR|x) = 1
whenever yR = x (i.e. random variable YR = X), and for
which the marginal

∑
yR
p(y, yR|x) is equal to the pW (y|x)

of Witsenhausen4. Since YR = X , we know that graph
GX|Y,YR

is edge-free, and hence the maximal independent set
for any n is Xn (and hence the minimization in Corollary 5
disappears). In this case, our solution in Corollary 5 obtains
the smallest relay rate, for any n, for which the network
message rate attains the maximal 1

n log ‖X ||. We now show
that our construction G(n)

R |Xn = G�n
X , where G�n

X denotes the
n fold strong product of the graph GX constructed by Witsen-
hausen. Note that both G

(n)
R |Xn and G�n

X have vertices Xn.
Next, note that xn := (x1, x2, · · ·xn) 6= (x′1, x

′
2, · · ·x′n) =:

x′n ⊂ Xn share an edge if there exists a yn such that
p(yn|xn) · p(yn|x′n) > 0. Since the channels are memoryless
i.e. p(yn|xn) =

∏n
i=1 p(yi|xi), this means G(n)

R |Xn = G�n
X ,

4Note that only pW (y|x) matters in Witsenhausen’s Proposition 9, and
hence the choice of p(x) in our problem is immaterial.

and hence the r
∗(n)
z obtained in Corollary 5 for the case

YR = X coincides with the answer in Proposition 9.

S D
Perfect link, send WR = h(Xn)

X̂n = g(Y n,WR)

Xn Y n

Fig. 6: Witsenhausen’s problem: How to transmit Xn to a
receiver which has knowledge of Y n (the side information)
by means of a discrete signal WR taking as few values as
possible. (Xn, Y n) are generated i.i.d. according to pW (x, y).

We note that in general, finding the minimum R-D link
rate r

∗(n)
z is different from Witsenhausen’s source coding

problem with receiver side information. This is because not
all PRCs have YR = X with probability 1. In general, the
SIMO bound is not the absolute maximum log ‖X‖, and hence
there may be more than one choice of maximal independent
sets of the confusability graph G�n

X|Y,YR
. Since for each n,

G
(n)
R |K(n) is constructed from a maximal independent set K(n)

of G�n
X|Y,YR

, and these maximal independent sets in general
do not form a “nice” structure [18], it follows that in general
G

(n)
R |K(n) 6= [G

(1)
R |K]�n, and cannot be constructed via any

standard graph product operations surveyed in [19]. Lemma 6
and the surrounding remarks comment on this.

B. Conclusions and future work

In this paper, the problem of communicating over a primi-
tive relay channel without error is for the first time proposed. A
relaying scheme termed “color-and-foward” is proposed. This
scheme is shown to be the most efficient way to compress
signals at the relay terminal, for any fixed number of channel
uses, to achieve the single-input multi-output (SIMO) upper
bound. We also provide bounds on the asymptotic r∗z – the
minimum required R-D link rate such that the given PRC
channel can achieve the SIMO upper bound message rate.
The general relationship between r

∗(n)
z and r∗z depends on

the behavior of the sequence of SIMO bounds {SIMO(n)}.
This is a sequence of normalized independence numbers of the
strong products of a graph specified by the broadcasting com-
ponent of the PRC, whose behavior is a long-standing open
question [16], [17]. We believe understanding the behavior of
the color-and-forward graphs G(n)

R |K(n) plays a central role
in determining how the relay terminal can contribute to the
overall communication.
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