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ABsTrACT: Organic liquid scintillators are used in a wide variety of applications in experimental
nuclear and particle physics. Boron-loaded scintillators are particularly useful for detecting neutron
captures, due to the high thermal neutron capture cross section of !°B. These scintillators are
commonly used in neutron detectors, including the DarkSide-50 neutron veto, where the neutron
may produce a signal when it scatters off protons in the scintillator or when it captures on '°B.
Reconstructing the energy of these recoils is complicated by scintillation quenching. Understanding
how nuclear recoils are quenched in these scintillators is an important and difficult problem. In this
article, we present a set of measurements of neutron-induced proton recoils in a boron-loaded organic
liquid scintillator at recoil energies ranging from 57-467 keV, and we compare these measurements
to predictions from different quenching models. We find that a modified Birks’ model whose
denominator is quadratic in dE /dx best describes the measurements, with y>/NDF= 1.6. This
result will help model nuclear recoil scintillation in similar detectors and can be used to improve
their neutron tagging efficiency.

Keyworbs: Neutron detectors (cold, thermal, fast neutrons); Scintillators, scintillation and light
emission processes (solid, gas and liquid scintillators); Liquid detectors; Radiation monitoring
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1 Introduction

Organic liquid scintillators are used in many different applications to measure the energy depositions
by charged particles. These scintillators produce a number of photons approximately linearly
proportional to the energy deposited in them by high energy electron recoils. This property makes
these liquids useful for measuring electron recoil energy spectra such as those from g and y-ray
radiation. As aresult, organic liquid scintillators are used in a wide variety of experiments, including
Borexino [1], SNO+ [2], SABRE [3], and KamLLAND [4]. These scintillators are also often used to
detect nuclear recoils; however, the high Linear Energy Transfer (LET) of these nuclei suppresses
their scintillation yield nonlinearly and makes their energies harder to reconstruct.

Boron-loaded organic liquid scintillators are particularly useful for detecting neutrons. Ap-
proximately 20% of natural boron is '°B, which has a high thermal neutron capture cross section
of 3838 b [5], and captures neutrons through the reaction

"Li (1015) + a (1775) (6.4%)
OB +n — {7Li* + @ (1471), (93.6%)
TLi* =7 Li (839) + y (478)

where the energy of each product is given in keV in parentheses.



Boron-loaded scintillators are discussed in detail in [6]. As discussedin [7, 8], these scintillators
are used in a wide range of applications that rely on neutron detection, including the DarkSide-50 [9]
neutron veto [10, 11], anti-neutrino detection experiments [12], parity violation studies [13], and
neutron monitoring applications [14, 15]. Since neutron detection relies on detecting nuclear recoils
— either from the neutron scattering on nuclei in the scintillator or from the capture products on
0B _ reconstructing the energy of events seen in the detector requires an understanding of the
nuclear recoil scintillation.

Nuclear recoils tend to be heavily suppressed in organic liquid scintillators, and they tend
to exhibit a high degree of nonlinearity in the scintillation response. Since detectors are typically
calibrated to electron recoils at a small set of recoil energies, modeling this nonlinearity relative to the
response of electron recoils is key to reconstructing the energy of nuclear recoils. This scintillation
quenching effect was first described by Birks [16] as a result of inter-molecular interactions between
species produced at high ionization densities allowing excitation energy to non-radiatively dissipate.
The result of these interactions is that energy depositions that occur with higher LET are more
heavily suppressed than those with lower LET. However, observations have shown that this model
is incomplete and does not accurately describe quenching at low proton recoil energies [17].
Furthermore, since this mechanism depends on the species that are produced by ionizing radiation,
introducing new compounds to a scintillator cocktail, such as a boron loading agent, may influence
the quenching mechanism.

This nonlinearity has been previously explored in commercial organic liquid scitillators
in [18-20], which fit empirical quadratic and exponential functions to the detector response re-
lating the deposited energy to the observed electron equivalent energy. However, these studies all
focused on recoil energies above a few hundred keV, with few to no measurements near the Bragg
peak, which tends to be ~100 keV. The lowest energy recoils reported in [19] show that these models
start to diverge at the lowest energies measured, indicating that a more complete model accounting
for the stopping power may be needed to describe the quenching of lower energy proton recoils.

Many of the optical effects of boron-loading via the addition of trimethyl borate (TMB) have
been studied in [10, 21]. In particular, it has been shown that diluting a pure pseudocumene (PC)
and 2,5-Diphenyloxazole (PPO) scintillator with equal parts TMB decreases the light yield by ~15%
and that a high light yield can be achieved using a high concentration of TMB. These properties
make TMB an effective boron-loading agent.

Boron-loaded liquid scintillator detectors that primarily rely on detecting neutron captures
may suffer from poor timing resolution (due to the thermal neutron capture time being on the
scale of 2-20 us for typical TMB concentrations [21]), lack of neutron energy resolution, and poor
tagging efficiency when the neutron escapes before capturing or when the capture signals fail to
be detected. By also tagging neutrons when they scatter in the scintillator, these factors can be
improved. Such improvements rely upon an accurate understanding of the signal that neutrons
produce when they do so.

In an organic scintillator, neutrons lose most of their energy to recoils off of hydrogen nuclei.
We therefore present measurements of proton recoil quenching factors in a boron-loaded scintillator
comprised of equal volumes of PC and TMB, with 3 g/L of a PPO wavelength shifter.

We explore three different models that have been suggested for describing the quenching of
organic liquid scintillators. We compare our measurements to these models in order to determine



which best describes our observations. In particular, we study the models described in [22-24].
The only property of the recoiling nucleus that these models depend on is the stopping power. Since
Birks’ model has been shown to disagree with data at high stopping powers [17], an improvement in
our ability to model low energy proton recoils may translate to a better ability to model quenching
of heavier nuclei, such as those produced by neutron captures. However, since this study focuses
on proton recoils, we do not test the models’ ability to extrapolate to heavier nuclei here.

This experiment was inspired by the success of the SCENE experiment, which measured the
effects of nuclear recoil quenching in liquid argon at low recoil energies (= 10keV) [25, 26]. Data
were taken using the same experimental setup as described in [27], which measured nuclear recoil
quenching factors in a Nal(TI) crystal.

2 Experimental setup

2.1 Overview

1
1

Figure 1. Drawing of the experimental setup. A proton (orange) hits a LiF target (blue) to produce a neutron
(magenta), which passes through a polyethylene collimator (white) and scatters off of the liquid scintillator
target (green) at an angle 6. The neutron then scatters in one of the 2 coincidence detectors (purple) or one
of the 5” coincidence detectors (yellow), depending on 6.

The measurements described in this document were performed at the FN tandem accelerator
at the University of Notre Dame’s Nuclear Science Laboratory. The experimental setup is depicted
in figure 1. For these studies, a bunched proton beam from the accelerator was incident upon a LiF
target, which produced neutrons through the "Li(p, n)"Be reaction at a mean energy of 690 keV at
0° scattering angle. Calculations of the outgoing neutron energy-angle distribution are discussed
in more detail in [21]. More details about the proton beam and the LiF target are discussed in [27].
Forward-scattering neutrons were selected by a polyethylene collimator (22 cm¢ X 22 cm, with a
2.5 cm¢ bore hole).

The primary liquid scintillator detector was placed at the end of the collimator, 50 cm away
from the LiF target. Three 2” and three 5” coincidence detectors were arranged at various angles
relative to the proton beam. Time-of-flight cuts between the primary liquid scintillator detector, the
coincidence detectors, and the beam pulser allowed us to identify particles and obtain clean sets of
neutron recoils.



By selecting events in which a signal was seen in the primary detector and in one of the
coincidence detectors, we could determine the scattering angle of the neutron. From this scattering
angle, we determined the energy of the recoil, which we compared to the number of photoelectrons
(PE) detected. The angles from the center of the liquid scintillator detector to the centers of each of
the coincident detectors relative to the proton beamline, along with the mean energy corresponding
to each recoil angle, as determined by GEANT4 [28] simulation, are summarized in table 1. The
uncertainties shown in the scattering angles are from the uncertainties in the positions of the
detectors, which we estimate to be ~1 cm or ~2 cm, in each direction for the 2” and 5 detectors,
respectively.

2.2 Primary liquid scintillator detector

The primary liquid scintillator detector is a stainless steel cannister holding a 7.6cm¢ X 7.6 cm
fused silica cell, which contains the scintillator. The walls of the fused silica cell are ~1-2 mm
thick. A 7.6 cm¢ Hamamatsu R11065 photomultiplier tube (PMT) is optically coupled to the cell
with optical coupling gel. A diagram of this setup is shown in figure 2.

The sides, bottom, and stem of the cell are covered in a layer of Lumirror E6SR (188 um thick)
reflector to increase the detector’s light yield. The cell is supported by a PTFE cup. A steel support
structure consisting of rods and springs holds the cell and PMT in place; the stainless steel canister
was thinned to ~1.4 mm around where the cell sits to reduce the amount of material that neutrons
must pass through before reaching the scintillator.

The primary scintillator in the fused silica cell is PC (CgH3(CH3)3). Boron is added by mixing
the PC with an equal volume of TMB (BO3(CH3)3). A total of 3 g/L of PPO is dissolved in this
mixture to shift the PC scintillation light into the visible spectrum.

Figure 2. Drawing of the canister holding the scintillator cell. (Cyan) The scintillator cell. (Yellow) The
PMT. (Gray) The stainless steel canister. (red) The high voltage and signal cables. (White) The PTFE
support cup. (Purple) Support structures and springs holding everything in place.



2.2.1 Cell preparation

It is important that the scintillator be as pure as possible to avoid contaminants suppressing the
scintillation light; it is especially important to avoid oxygen and water impurities, which may react
with the PC and TMB.

To obtain a high-purity scintillator, we separately distilled PC and TMB in a dry nitrogen
environment, following the procedure outlined in more detail in [10, 21]. The distillation process
involved boiling each liquid in a three-neck flask heated by a heating mantle, while a stirring rod
and boiling stones facilitated and steadied the boiling. Vapors traveled down a condenser, and the
resulting fluid was collected in a flask. A steady nitrogen flow maintained a dry, nitrogen-rich
environment.

Distilled fluids were then transferred to a nitrogen-filled glove box, where they were measured
and mixed together with the PPO. The mixed scintillator was then transferred to a fused silica cell
with a narrow neck.

To further remove oxygen impurities from the scintillator, we transferred the cell to a manifold,
where we bubbled nitrogen into the scintillator for several minutes. The cell was then frozen by
submerging it into a liquid nitrogen bath, and a vacuum was pulled on the cell while a torch was
used to seal the cell at the neck.

2.3 Coincidence detectors

Two different types of detectors are used as coincidence detectors. The first is a 5.1 cm¢ X 5.1 cm
Eljen 510-20 x 20-9/301 detector, and the second is a 12.7 cm¢x12.7 cm Eljen 510-50 x 50-1/301
detector. Both models use the commercial EJ-510 reflector and the EJ-301 liquid scintillator, which
is a xylene-based scintillator with wavelength-shifting organic fluors. These detectors have a typical
light yield of ~1 PE/keVe,.

2.4 Electronics and data acquisition

A schematic diagram describing the electronics and data acquisition (DAQ) system is shown in
figure 3.

The PMT in the liquid scintillator detector was powered by an Ortec 556 high voltage power
supply operating at 1.4kV and 0.4 mA. The coincidence detector PMTs were powered by a LeCroy
HV4032A multi-channel high voltage supply at 1.15-1.6kV.

The DAQ was setup to trigger on coincidences between the liquid scintillator detector and one
of the six coincidence detectors. Additionally, a periodic signal produced by the proton beam pulser
gave timing information that differs from the time at which a neutron is produced in the LiF target
by an approximately constant offset. This periodic signal was used to make time-of-flight cuts.
These cuts are useful for particle identification by differentiating between y-rays and neutrons by
their speed.

Signals produced by the pulser were read by a LeCroy 621AL quad discriminator set to a
423 mV threshold. Logic pulses produced by this discriminator were read by a CAEN V1720
digitizer (12 bit, 250 MS/s).

Signals from the liquid scintillator detector were amplified by a X 10 front-end amplifier module
developed at the Laboratori Nazionali del Gran Sasso, while signals from the coincidence detectors
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Figure 3. A schedmatic diagram of the electronics and data acquisition system.

were amplified by a Phillips 779 x 10 amplifier. These amplified signals were passed to a LeCroy
428F linear fan out module that sent one copy of each signal to the CAEN V1720 digitizer.
Another copy of the signal from the liquid scintillator detector was sent to the LeCroy 621AL
quad discriminator, and a second copy of the signals from the coincidence detectors was sent to
a Phillips 7116 discriminator with a 10 mV threshold. This threshold was set to the amplitude of
approximately 1.5 PE read out from each detector.

Logic pulses produced by the Phillips discriminator were passed to a fan-in/fan-out module
that was used as a logical OR gate, which produced a logic pulse whenever at least one coincidence
detector produced a signal above the discriminator threshold. This pulse was passed to a LeCroy
375L coincidence unit, which was used as an AND gate with a 400 ns coincidence window. The
pulse from the LeCroy 621 AL discriminator was also passed to this module, and the AND gate



produced a logic pulse when it received a pulse from both the OR gate and the liquid scintillator
detector discriminator.

The signal from the AND gate was passed to the trigger of the CAEN V1720 digitizer. When
this trigger signal was received by the digitizer, it recorded the waveforms from the proton beam
pulser, liquid scintillator detector, and the coincidence detectors to disk. The recorded waveform
started 2 us before the trigger signal was received and lasted for a total of 20 us.

Table 1. The diameter, scattering angle, distance from the liquid scintillator detector, and mean recoil
energy in the liquid scintillator detector corresponding to events with coincidences in each of the coincidence
detectors. The uncertainty in the recoil energy is dominated by the uncertainty in the scattering angle.

Detector Diameter 0 Distance ERr
[cm] [deg] [cm] [keV]

1 127 59.02%0%  150.3+2.4 467.2%%
2 127 41267108 148.8+2.4 274.9%)

0.76 5.3
3 127 24.88*07¢ 200.0+2.4 106.1%33
4 51 4804118 69.9+2.0 355.4%8

1.13 9.0
5 51 3237711 69.6+2.0 17277900

1.03 6.0
6 5.1 18137103 69.742.0  56.9*%9

3 Data analysis

Asdiscussed in section 2, data were taken at 6 different neutron scattering angles, each corresponding
to a different proton recoil energy in the primary liquid scintillator detector. Neutrons were selected
in the detectors based on their time-of-flight relative to the pulser; coincident y-rays travel faster and
therefore appear sooner than neutrons in the detectors. The mean proton recoil energies measured
are summarized in table 1, and cover nuclear recoil energies in the range of 56.9-467.2 keV.

While carbon, oxygen, and boron recoils were also present in the data, the higher masses of
the nuclei caused the recoil signals to be quenched below the detector’s sensitivity. However, since
neutrons will lose most of their energy to proton recoils as they slow down, describing proton recoil
quenching is sufficient for understanding the detector’s response to neutron scatters. We therefore
do not report the quenching factors of the other nuclei here.

Data were taken over the course of two days, for a total beam time of ~28 hours. Additional runs
were taken with an 2*! Am source before and after the beam runs for light yield calibration. 24! Am
a-decays and produces a 59.54 keV y-ray. Runs with this sources provided light yield calibration
and allowed us to check for changes in the detector light yield throughout the course of the runs.

In order to determine the light yield of the liquid scintillator detector, we placed a >*! Am source
just outside the detector. An 2*! Am source was chosen for the light yield calibration because the
y-ray produced by the source is low enough energy to produce a clean full energy peak in the detector,
with little probability of the y-ray escaping without depositing all of its energy. Additionally, since
we expect this source to produce a comparable number of photoelectrons to the proton recoils



we are considering, we were able to preserve the high gain settings in the electronics without
saturating the digitizers. Using this source for calibration assumes that the scintillator response
remains linear for electron recoils between ~60 keV and higher energies. The y-ray spectrum in
the detector was recorded, and a Gaussian peak corresponding to the full-energy absorption of the
v-ray was observed. Fitting a Gaussian distribution to this peak gave a mean of 81.47+0.10 PE,
corresponding to a light yield of 1.368+0.002 PE/keV. The light yield was measured before and
after these measurements, and no significant variation was observed.

The mean single photoelectron charge in each phototube was monitored through the course of
each run, as was the collected charge distribution of each event. No significant change in either
quantity was seen over time.

A method of trigger efficiency calibration is described in [27]. Due to the fast scintillation
decay time of this scintillator, with a dominant component around ~ 3 ns [2, 29], we found that the
loss in trigger efficiency above ~ 4 PE is negligible. We therefore did not include any corrections
for the trigger efficiency in this analysis.

3.1 Data processing

The data recorded to disk, as described in section 2.4, consists of waveforms for each of the six
coincidence detectors and the primary liquid scintillator detector, measured in ADC counts, and a
periodic waveform from the proton beam pulser. The software and algorithms used to process the
data are described in more detail in [27]; a summary is given here.

The baselines of the waveforms were subtracted using a drifting baseline-finding algorithm
that suppresses low-frequency electronic noise without removing scintillation pulses. Waveforms in
which a clear baseline could not be identified or the digitizers were satured were discarded. Single
photoelectrons were identified from the tails of scintillation pulses, and the mean single photoelec-
tron charge was determined by fitting a Gaussian plus an exponential to the single photoelectron
charge distribution. The single photoelectron charge was then used to normalize each waveform so
that integrals over the waveform can be measured in PE.

All pulses with an amplitude greater than ~ 0.2 PE were tagged, and the integrals of those
in the first 200ns were grouped together in order to include the total charge produced in each
scintillation event.

Time-of-flight cuts were used to identify events in which a neutron scattered in the liquid
scintillator detector and then in one of the coincidence detectors. Two time-of-flight variables were
defined for each coincidence: TOF1 is the time between the proton beam pulser and the signal in
the liquid scintillator detector, which corresponds to the time it takes a particle to travel from the
LiF to the detector up to a constant offset, and TOF2 is the time between the signal in the liquid
scintillator detector and the triggered coincidence detector.

Figure 4 shows how these two variables relate to each other for events with a coincidence in
detector 3, which corresponds to a mean proton recoil energy of 106.1keV. The vertical band on
the left of this plot corresponds to events where a y-ray from the LiF target scattered in the liquid
scintillator detector and coincidence detector 3 had a random background. Events in the band
on the right correspond to cases where a neutron from the LiF scattered in the liquid scintillator
detector; those in the cluster of points around TOF2 =~ 0.2 us correspond to cases where the neutron
then scattered in the liquid scintillator detector, while the rest correspond to cases where a random
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Figure 4. The time-of-flight between the pulser and the liquid scintillator detector (TOF1) versus the time-
of-flight between the liquid scintillator detector and coincidence detector number 3 (TOF2). The green box
on the left shows events where a y-ray from the LiF target scattered in the liquid scintillator detector and a
random coincidence background triggered the coincidence detector. The red box on the right shows events
where a neutron scattered in the liquid scintillator detector. Events in the blue box then had the neutron
scatter in the coincidence detector, while those in the red box had a random background trigger it.

coincidence was seen in this detector or the neutron scattered multiple times before reaching the
coincidence detector and therefore had a different time of flight.

We attribute events in the diagonal band (where TOF1+TOF2 is constant) to cases where
a y-ray left the collimator at an angle and hit the coincidence detector directly while a random
background triggered the liquid scintillator detector. The gap between the two parallel bands within
this band is likely due to the 4 ns sample width and the finite timing resolution of the DAQ.

We attribute events in the band with TOF2 between 0 and 0.05 us to random background y-rays
scattering in one detector and the other. Such y-rays may come from environmental radiation or
from earlier neutrons that have thermalized in the liquid scintillator and produce a 478 keV y-ray
after capturing on 'B.

Neutrons that scatter multiple times in the liquid scintillator detector may provide a background,
since their recoil energy and angle may not be correlated when they leave the detector. However,
neutrons that scatter multiple times before leaving in a certain direction will have lower kinetic
energy than those that only scattered once, and so a narrow TOF2 cut can be used to reduce the
effects of multiple scattering.

3.2 Quenching factor evaluations

When neutrons scatter in the scintillator, they predominantly lose energy by scattering off of
hydrogen. We therefore measure the signals produced by various proton recoil energies due to these
neutron scatters. In order to evaluate the quenching factor of proton recoils at each of the sampled



energies, we performed a GEANT4 simulation of this experiment, replicating the cuts in the data in
the simulation. We then produced an energy deposition spectrum in the liquid scintillator detector
for events with coincidences in each of the six coincidence detectors. The advantage of these
simulations over kinematic calculations is that they include whatever effects of multiple scattering
persist through the TOF2 cut, as well as effects from the spread in recoil energy due to the finite
sizes of the detectors, and interactions the neutrons may have with other present materials.

In order to determine what quenching factors are consistent with the data, we convolved each
of these simulated spectra with a Gaussian with mean y and variance o> given by

p = EX LY

0% = (1+02pp) X E X LY

where E is the energy deposited, LY, is the relative light yield of protons at this recoil energy, and
0'S2PE is the relative variance of the single photoelectron charge, determined to be ~ 10% from the
single photoelectron charge calibration.

The variance of the response function can be broken into two terms: E X LY. and O'SZPE X E X
LY. The first term is equal to the mean number of photoelectrons detected at a given energy and
represents the Poisson variance. The second term represents the variance of the charge measured
from these photoelectrons.
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Figure 5. (Black) The measured energy spectrum of events with neutrons scattering in the liquid scintillator
detector and then in coincidence detector 2, at 41.26° from the beamline, corresponding to a mean proton
recoil energy of 274.9 keV. (Red) The simulated spectrum fit to the data around the peak at 28.3 PE.

Allowing LY and an overall rate constant to be free parameters, we fit the simulated spectra
to the data (convolved with a Gaussian) and determined the quenching factor at each proton recoil
energy by dividing LY. by the measured detector electron recoil light yield. The quenching factor
QF is therefore given by QF = LY, /LY, where LY is the light yield measured by the 2*' Am
source. Figure 5 shows this fit performed for events in which coincidence detector 2 was triggered,
corresponding to a mean proton recoil energy of 274.9 keV. Since quenching introduces nonlinearity
to the scintillator response, the fit was limited to the area around the peak — in this case, the fit was
performed in the range 10-50 PE.

~-10-



Table 2. The expected mean recoil energy for neutron scatters with coincidences in each detector, the
observed peak location, and the corresponding quenching factor (QF) at that proton recoil energy for the
measurements reported here.

Detector Eg [keV] Peak [PE] QF
1 467.2 734 0.115 £0.002
2 274.9 283 0.075 £0.002
3 106.1 8.9 0.062 +0.003
4 355.4 43.7 0.090 0003
5 172.7 172 0.073 +0.003
6 56.9 6.1 0.078 +0.007

The results of these fits are summarized in table 2 and illustrated in figure 6.
The uncertainties in the quenching factor measurements are dominated by the uncertainty in
the mean neutron scattering angle for coincidences with each detector, as shown in table 1.

4 Models considered

One of the most widely used models describing scintillation and quenching due to ionizing radiation
is the one developed by Birks [22]. Models that have since been developed largely build upon this
framework.

Liquid Scintillator Quenching Factors

o
[y
»

Quenching Factor
o
[

o

o

(e
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Proton Recoil Energy [keV]

Figure 6. (Black) Proton recoil quenching factors measured in this experiment. (Blue) Model A and (Green)
Model B, fit to the data. Model C lines up exactly with Model A, and is therefore not visible here.

The scintillation models considered here are given below. These models describe the amount
of fluorescent photons produced per unit track length of the ionizing particle dF/dx as a function
of the stopping power dE /dx of the ionizing radiation in the scintillator.

A) dF _ _S-dE/dx
dx ~ 1+kB-dE/dx

—11 =



By ¢F — S-dE |dx
dx 1+kB-dE /dx+C-(dE [dx)?

C) 4E = Se(dE/dx),+Sn(dE/dx),
dx — 1+kB.-(dE/dx), kB, (dE]dx),

Model A is Birks’ model, where kB is the empirically determined Birks constant used to
parameterize the model as a function of the total stopping power dE/dx. The constant term S is
the scintillation yield of the scintillator, denoting the number of photons produced per unit energy
deposited. When we calculate quenching factors and divide by the light yield of the scintillator, this
S term is divided out, since it is the same for electron and nuclear recoils. The only fit parameter
in this model is kB. This model is discussed in [30] as a description of the creation of “damaged”
molecules and ions that may be produced in the track of the ionizing particle; these species may
non-radiatively dissipate energy, decreasing the amount of scintillation light produced.

Model B is an extension to Birks’ model discussed in [24] that adds a term proportional to
(dE /dx)* by the empirically determined constant C. Since S divides out when we normalize
by the detector light yield, this model has two fit parameters: kB and C. This model was first
theoretically proposed in [31], and postulates that scintillation quenching has a term quadratic in
the stopping power. Such a term may arise due to bi-excitonic interactions, as discussed in [32]
in the context of scintillation pulse shape, that allow two excited PC molecules to non-radiatively
de-excite. For example, two PC molecules excited into the triplet state 77 may undergo the reaction
Ty +T1 — T1 + Sy to produce a ground state molecule Sy at a rate proportional to the square of the
triplet density.

Model Cis discussed in [23] and allows energy lost to electron and nuclear recoils to scintillate
and be quenched separately. This model therefore distinguishes between the electronic stopping
power dE/dx|. and the nuclear stopping power dE/dx|,; S. and S,, are the scintillation yields
for energy lost to electrons and nuclei, respectively, due to these different mechanisms. Similarly,
kB, and kB, characterize quenching for electron and nuclear recoil energy loss terms. When we
calculate quenching factors by dividing by the electron recoil light yield, we are left with three fit
parameters: S, /S., kB., and kB,,.

5 Model fits and results

In order to compare these models to the measured quenching factors, we used SRIM [33] to calculate
the stopping powers in the scintillator and integrated over the track of the recoiling proton nucleus
as it slows down. Ziegler et al. report that proton stopping powers computed by SRIM, which show
a Bragg peak around ~ 70keV, tend to agree with measurements within 3.9%. This Bragg peak
explains the decrease in quenching below ~ 100 keV, as shown in figure 6.

Figure 6 shows the data presented in table 2. We show fit results for the three models to the
data. The results of these fits are summarized in table 3. We found that Model C converged to
Model A in this fit because dE /dx|. dominates dE /dx|,, for protons in the scintillator. Therefore,
distinguishing between electron and nuclear contributions to the stopping power cannot explain the
differences between Model A and the data.

As shown in figure 6 and table 3, Model B describes the data much better than the other two
models do. Furthermore, we have found that the best fit of Model B has kB = 0, showing that the
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Table 3. Summary of fits of scintillation quenching Models A, B, and C explored here.

kB [cm/MeV] C [cm?*/MeV?] x*/NDF
A | 0.0153 +0.0002 — 19.4
B 0 (2.19 £ 0.04)x1073 1.6

kB, [cm/MeV] kB, [cm/MeV] S./Se  x*/NDF
C | 0.0153 + 0.0002 0.06 + 0.06 0+0.8 323

term quadratic in the stopping power dominates the quenching factor. This model fit the data with
X*/NDF = 1.6, significantly better than the y>/NDF = 19.4 fit we obtained using Model A.

The quadratic dependence on the stopping power in Model B causes the model to predict
greater variation in the stopping power with the proton recoil energy, allowing it to better describe
our measurements. Since Models A and C vary linearly with the stopping power, they were not
able to adequately describe the variation we saw, despite the greater number of fit parameters in
Model C. We therefore conclude that the success of Model B over the other two models is due to the
quadratic dependence on the stopping power, which may result from interactions between excitons
in the scintillator that allow them to non-radiatively de-excite.

6 Conclusions

We have measured proton recoil quenching factors at six different energies ranging from 56.9—
467.2keV for a boron-loaded organic liquid scintillator, composed of an equal volume of PC and
TMB, with 3 g/L. of PPO. We found that Model B best describes the data. This agreement supports
the theory of scintillation quenching put forth in [31]. We find that a term quadratic in dE/dx,
as might arise due to bi-excitonic quenching processes, is needed to describe the quenching of the
scintillator.

These measurements and this model will allow experiments that use such scintillators to
accurately reconstruct the energy of nuclear recoils. This ability is important for fast neutron
spectrometry, where proton recoil energy can be used to determine neutron energies, and for thermal
neutron detection, which relies on detecting the nuclear recoil energy deposited by the '°B(n, a)’Li
reaction products. Furthermore, this model can be instrumental to simulating boron-loaded neutron
detectors to ensure that a design will have the desired sensitivity.

While these results will be instrumental in modeling the response of the DarkSide-50 neutron
veto, which uses a similar cocktail, they may also help model the gadolinium-loaded scintillator
that will be used in the neutron veto of the LZ dark matter experiment [34].
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