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1 Introduction

Highly energetic jets and their substructure play a central role at present day hadron

colliders like the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider

(RHIC). In the past years, the field of jet substructure has received a growing attention from

both the experimental and theoretical communities. Applications of techniques involving

jet substructure include precision tests of QCD, distinguishing quark and gluon jets, tagging

of boosted objects, and the search for physics beyond the standard model. To address these

various applications, a range of different observables have been constructed in the past to

describe and utilize the radiation pattern inside jets. See [1] for a review of recent advances

in applying jet substructure techniques to LHC physics.

In this paper, we study jet angularities τa measured on an inclusive jet sample. An-

gularities were first introduced as a global event shape for di-jet events in e+e− colli-

sions [2]. The parameter a is a continuous variable, where for example a = 0, 1 correspond

to thrust [3] and jet broadening [4], respectively. In [5], jet angularities were proposed as a

jet shape where the measurement is only performed on the constituents of a reconstructed

jet. Studying a continuous class of jet shape observables generally allows for interesting

insights into both the perturbative and non-perturbative structure of the jet dynamics [2, 6–

8]. The treatment within Soft Collinear Effective Theory (SCET) [9–13] for exclusive [14]
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n-jet events in e+e− collisions was developed in [15]. See also [16–18] for example. The

extension to exclusive di-jet events in pp collisions was performed in [19]. In general, jet

substructure measurements can be performed on different jet samples. These include for

example exclusive and inclusive di-jet production [20–22] as well as single-inclusive jet pro-

duction [23–25]. Exclusive jet production at pp colliders always involves a veto pcut
T on the

out-of-jet radiation within a given rapidity interval, see for example [26]. Instead, for inclu-

sive jet production all jets in given rapidity η and transverse momentum pT bins are taken

into account and no further constraints are imposed on the event. Both the experimental

and theoretical challenges can differ significantly when the jet substructure observable is

measured using different event samples and the different approaches have advantages de-

pending on the context. In this work, we focus on jet angularity measurements performed

on an inclusive jet sample. Inclusive jet substructure observables allow for a simple and

direct comparison between experimental data and first principle analytical results within

QCD. In addition, single-inclusive jet substructure observables can be measured with the

highest statistics and they allow for a direct extension to heavy-ion collisions [27–32]. In

this paper, we study specifically the ratio

F (τa; η, pT , R) =
dσpp→(jet τa)X

dηdpTdτa

/
dσpp→jetX

dηdpT
(1.1)

where the numerator and denominator are the differential jet cross section with and without

the additional measurement of the angularity τa. For the denominator of eq. (1.1), we follow

the formalism developed in [33] where a factorization formalism of the inclusive jet cross

section in terms of hard functions and semi-inclusive jet functions (siJFs) was developed.

This approach allows for the all order resummation of single logarithms in the jet size

parameter αns lnnR to next-to-leading logarithmic (NLL) accuracy. See also [34–36]. In

order to calculate the numerator, we introduce different jet functions that appear in the

factorization of the cross section. We will refer to this type of jet functions as semi-inclusive

angularity jet functions (siAJFs), to reflect the fact that the angularity of an inclusively

identified jet is measured. In pp collisions, the factorized form of the cross section in the

numerator of (1.1) is given by

dσpp→(jet τa)X

dηdpTdτa
=
∑
abc

fa(xa, µ)⊗ fb(xb, µ)⊗Hc
ab(xa, xb, η, pT /z, µ)⊗ Gc(z, pT , R, τa, µ) .

(1.2)

Here, fa,b denote the parton distribution functions (PDFs) in the proton with the corre-

sponding momentum fraction xa,b. The symbols ⊗ denote appropriate integrals over the

variables xa,b and z. The hard functions Hc
ab describe the production of an energetic par-

ton c in the hard-scattering event similar to inclusive hadron production [37, 38]. The new

ingredient here are the siAJFs denoted by Gc(z, pTR, τa, µ), which we are going to define

at the operator level in the section 2 below. Analogous to the siJFs [33], the variable z is

the longitudinal momentum fraction of the parton c initiating the jet that ends up inside

the reconstructed jet.
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In order to allow for a meaningful comparison to experimental data, we need to resum

two classes of logarithms to all orders. First, the resummation of small-R logarithms is

achieved by solving a DGLAP type evolution equation similar to the siJFs. Second, we

need to resum logarithms of the form αns ln2n(τ
1

2−a
a /R), in the region where τ

1
2−a
a � R. To

that extent, we further demonstrate that the siAJFs can be refactorized in terms of soft and

collinear functions Si(τa, pT , R, µ) and Ci(τa, pT , µ), respectively, that describe the in-jet

dynamics. This second step of the factorization is carried out at the jet scale pTR and it

requires us to introduce further matching coefficients Hc→i which describe the transition of

the energetic parton c coming from the hard-scattering event to the parton i that initiates

the jet. We obtain the following schematic structure

Gc(z, pT , R, τa, µ) =
∑
i

Hc→i(z, pTR,µ) Ci (τa, pT , µ)⊗ Si (τa, pT , R, µ) , (1.3)

where ⊗ represents a convolution over τa to be defined below. Note that upon integration of

the siAJFs over τa, we recover the siJFs at fixed order. Both steps of the outlined factoriza-

tion theorem hold in the limit where the observed jet is sufficiently collimated. Therefore,

we work with parametrically small values of the jet size parameter R � 1 even though

for most practical purposes this is also a good approximation for e.g. R ∼ 0.7 [39, 40] and

even above. For large values of R, power corrections of the form O(R2) can be systemati-

cally taken into account, see for example [41]. Note that the structure of the refactorized

semi-inclusive angularity jet function in eq. (1.3) is very similar to [42, 43] where (central)

subjets and the transverse momentum distribution of hadrons inside jets were considered.

However, here we are working within SCETI, whereas in [42, 43] the refactorized expression

gave rise to collinear and soft modes on the same mass hyperbola which corresponds to

SCETII [44, 45]. We would like to point out an important difference concerning the factor-

ized structure in eqs. (1.1) and (1.3) and factorization theorems for exclusive jet production.

In [17, 46], the authors introduced both a global soft and a soft-collinear (or ‘coft’) mode in

order to consistently separate all relevant modes and perform the all order resummation.

For the calculation considered in this work, the situation is conceptually different since

the out-of-jet radiation is not constrained to be small but instead it is unconstrained and

fully taken into account in the two-step factorization procedure outlined above. See also

for further inclusive jet substructure observables [47–50].

Note that we do not take into account grooming in this work. Therefore, the obtained

angularity is sensitive to non-global logarithms (NGLs) [51, 52] due to the presence of the

soft function obtained after the refactorization of the siAJFs in eq. (1.3). While the exten-

sion to angularities with grooming is a separate task that is beyond the scope of this work,

we would like to stress that ungroomed jet substructure observables play an important role

for example in the context of heavy-ion collisions where a reliable background subtraction

is necessary [28, 31, 53, 54].

The remainder of this paper is organized as follows. In section 2, we present the

factorized form of the cross section and we provide operator definitions for the siAJFs

Gc(z, pT , R, τa, µ). We calculate all relevant functions to next-to-leading order (NLO) and

derive their renormalization group (RG) equations. By solving the obtained RG equations,
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we resum the relevant large logarithms to all orders in QCD. In addition, we demonstrate

how the factorization for inclusive jet production is obtained upon integration of the siAJFs

over τa. In section 3, we provide first numerical results for jet angularities measured

on an inclusive jet sample for LHC kinematics. We include a shape function to model

non-perturbative effects. Numerical results are presented for the potential application of

jet angularities to quark-gluon discrimination. We summarize our work in section 4 and

provide an outlook.

2 The semi-inclusive angularity jet function

We start by reviewing jet algorithms and angularities at hadron colliders [5, 19]. We then

discuss the refactorized form of the siAJFs and we provide operator definitions for the

collinear and soft functions. We present the corresponding perturbative results and discuss

their renormalization and RG evolution. Finally, we show that the fixed order results for

the siAJFs can be integrated over τa to obtain the siJFs and we discuss how the joint

resummation of logarithms lnR and ln(τ
1

2−a
a /R) is achieved.

2.1 Jet algorithms and angularity measurements at hadron colliders

Here we briefly summarize the definition of jet angularity measurements at hadron colliders.

For a more detailed discussion see [5, 19]. At NLO in e+e− collisions, two final state

particles are clustered together into the same jet when they satisfy the constraints

cone jet : θiJ < R , (2.1)

kT -type jet : θij < R . (2.2)

Here R is the jet size parameter, θij is the angle between the particles i and j and θiJ is the

angle between the jet axis and the particle i that belongs to the jet. At hadron colliders,

jets are measured with a certain transverse momentum pT and rapidity η. Using the

approximation that the highly energetic jets are sufficiently collimated, the implementation

of the jet algorithm essentially amounts to replacing the jet parameter R with

R→ R ≡ R

cosh η
. (2.3)

The jet shape observables that we are interested in here are jet angularities which were

defined in [5, 15] as a jet shape for e+e− colliders

τ e
+e−
a =

1

2EJ

∑
i∈J
|~p iJT | exp(−|ηiJ |(1− a)) , (2.4)

where ηiJ is the pseudo-rapidity of the particles i inside the jet and ~p iJT denotes the trans-

verse momentum measured with respect to the (standard) jet axis. The sum i runs over

all particles inside the reconstructed jet and EJ is the jet energy. As mentioned in the

Introduction, the parameter a smoothly interpolates between different classic jet shape

observables. As it was pointed out in [5, 19], hadron colliders prefer observables that are
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invariant under boosts along the beam direction. Therefore, the jet angularity for hadron

colliders is defined as

τa ≡ τppa ≡
1

pT

∑
i∈J

piT (∆RiJ)2−a =

(
2EJ
pT

)2−a
τ e

+e−
a +O(τ2

a ) , (2.5)

where ∆RiJ =
√

(∆ηiJ)2 + (∆φiJ)2 with ∆ηiJ and ∆φiJ the rapidity and azimuthal angle

difference between the particle i and the jet J . Note that the definition of τa also has a

close relation to jet mass, mJ ,

τ0 =
m2
J

p2
T

+O(τ2
0 ) . (2.6)

2.2 Factorization theorem

Following [42], the siAJFs can be defined at the operator level for quark and gluon jets as

follows

Gq(z, pT , R, τa, µ) =
z

2Nc
Tr

[
n̄/

2
〈0|δ (ω − n̄ · P) δ(τa − τ̂a(J))χn(0)|JX〉〈JX|χ̄n(0)|0〉

]
,

(2.7)

Gg(z, pT , R, τa, µ) = − z ω

2(N2
c − 1)

〈0|δ (ω−n̄ · P) δ(τa − τ̂a(J))Bn⊥µ(0)|JX〉〈JX|Bµn⊥(0)|0〉 ,

(2.8)

where χn and Bµn⊥ are the gauge invariant collinear quark and gluon fields within SCET,

and P is the label momentum operator. Here we have two light-like vectors nµ = (1, n̂) and

n̄µ = (1,−n̂) where n̂ is aligned with the standard jet axis, and they satisfy n2 = n̄2 = 0

and n · n̄ = 2 as usual. In addition, Nc is the number of colors for quarks, and the operator

τ̂a(J) signifies the angularity measurement of the final observed jet, with the measured

value equal to τa. Moreover, ω and ωJ are the large light-cone momentum components of

the initial quark or gluon and the jet, with the ratio z = ωJ/ω. Note that summation over

the unobserved particles X in the final is implied.

We are now going to discuss the factorization formalism for the jet angularity ob-

servable defined in eq. (1.1) within SCET. The relevant effective field theory modes are

summarized in figure 1. The first step of the factorization in eq. (1.2) is purely a separation

of hard and collinear modes. The two relevant momentum scales are those associated with

Hc
ab and Gc, respectively. The hard functions Hc

ab have the characteristic momentum scale

µH ∼ pT , (2.9)

whereas the characteristic momentum scale for the jet dynamics with a jet radius R, is

given by

µJ ∼ ωJ tan (R/2)→ pTR . (2.10)

For the siAJFs Gc(z, pT , R, τa, µ) there are in fact two relevant characteristic momentum

scales, schematically pT τa and µJ ∼ pTR. To be more precise, the relevant scale associated
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hard

collinear-soft

hard-collinear

collinear

μH ∼ pT

μJ ∼ pTR

μC ∼ pT (τa)
1

2−a

μS ∼ pT τa
R1−a

Figure 1. Characteristic momentum scales for all the relevant effective field theory modes for the

factorization formalism in eqs. (1.2) and (2.12).

with τa should be given by pT τ
1

2−a
a , see below. We will focus on the region where these

two momentum scales are far separated, i.e. τ
1

2−a
a � R. In this case, an additional second

step of the factorization as in eq. (1.3) is required in order to resum double logarithms

of the form αn
s ln

2n(τ
1

2−a
a /R). In this region, since pT τ

1
2−a
a is parametrically small, only

collinear radiation within the jet with momentum scaling pc = (p−c , p+c , pc⊥) ∼ pT (1, λ
2, λ)

with λ ∼ τ
1

2−a
a , and the soft radiation of order pT τa are relevant to leading power.

An intuitive understanding of the collinear scaling pc can be obtained by realizing that

the transverse momentum component λ is roughly given by the typical angular separation

θiJ of the collinear particles inside the jet with respect to the jet axis. From the definition

of the jet angularity in eq. (2.5), one finds θiJ ∼ τ
1

2−a
a . Note that in the kinematic region

τ
1

2−a
a � R that we are considering, the collinear radiation is so collimated such that it is

insensitive to the jet boundary [19, 42]. Therefore, the collinear momentum scaling and

the collinear function do not depend on the jet size parameter R. On the other hand, the

precise momentum scaling for the soft radiation inside the jet is given by

ps =
(
p−s , p

+
s , ps⊥

) ∼ pT τa
R2−a

(
1, R2, R

)
, (2.11)

which can be derived through the jet algorithm constraint p+s /p
−
s � R2 and the definition

of the jet angularity [15]. Since soft radiation inside the jet only contributes to the observed

jet angularities, we note that the soft degrees of freedom identified here are the same as

the collinear-soft (c-soft) modes as in [17, 55]. Any harder emissions of the order pTR are

only allowed outside the jet as they would otherwise break the hierarchy τ
1

2−a
a � R. They

do not contribute to the angularity τa of the jet. We refer to modes taking into account

such out-of-jet radiation as hard-collinear modes [43], as labeled in figure 1. In summary,

in the limit τ
1

2−a
a � R we obtain the following factorization structure for the siAJFs

Gc(z, pT , R, τa, μ) =
∑
i

Hc→i(z, pTR,μ) (2.12)

×
∫

dτCi
a dτSi

a δ(τa − τCi
a − τSi

a )Ci

(
τCi
a , pT , μ

)
Si

(
τSi
a , pT , R, μ

)
,

– 6 –
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where Ci
(
τCia , pT , µ

)
and Si

(
τSia , pT , R, µ

)
denote collinear and soft functions that take into

account collinear and soft radiation inside the jet. They both contribute to the angularity

τa of the observed jet which is reflected by the convolution structure. For completeness,

we provide the operator definitions here for both the collinear and soft functions. For the

collinear functions, we have for quarks and gluons

Cq(τa, pT , µ) =
1

2Nc
Tr

[
n̄/

2
〈0|δ (τa − τ̂na )χn(0)|JX〉〈JX|χ̄n(0)|0〉

]
, (2.13)

Cg(τa, pT , µ) =− ω

2(N2
c − 1)

〈0|δ (τa − τ̂na )Bn⊥µ(0)|JX〉〈JX|Bµn⊥(0)|0〉 . (2.14)

Here the operator τ̂na is defined to count only the collinear radiation inside the jet. It is

instructive to point out that these collinear functions are identical to the so-called measured

jet functions in the context of exclusive jet production in [15, 17, 19]. For the quark soft

functions, we have

Sq(τa, pT , R, µ) =
1

Nc
〈0|Ȳn δ(τa − τ̂ sa)Yn̄|X〉〈X|Ȳn̄Yn|0〉, (2.15)

where Yn is a soft Wilson line along the light-like direction nµ of the jet, while Yn̄ is along

the conjugated direction n̄µ. Similar to the collinear function, the operator τ̂ sa is defined

to count only the soft radiation inside the jet. The corresponding gluon soft function is

obtained by replacing the soft Wilson line by its counterpart in the adjoint color repre-

sentation and Nc needs to be replaced with N2
c − 1 in the equation above. An important

point worth mentioning is that the soft functions here only depend on two back-to-back

directions, i.e. n and n̄. As pointed out in [56], this can be understood in the sense that

the collinear-soft modes obtained here are obtained from refactorizing jet functions, the

siAJFs, which are color singlets. This relatively simple structure of the soft function is an

important simplification compared to the more complex structure encountered for exclusive

jet production.

As we are going to show below by explicit calculations, the natural momentum scales

for the collinear and soft functions are given by

µC ∼ pT (τa)
1

2−a , µS ∼
pT τa
R1−a . (2.16)

On the other hand, Hc→i(z, pTR,µ) are hard matching functions related to the harder

radiation outside the jet, which have the natural momentum scale µJ ∼ pTR and do not

depend on τa as mentioned above.

2.3 Hard matching functions

The hard matching functions Hc→i(z, pTR,µ) are obtained by matching onto the refactor-

ized expression of the siAJFs in eq. (2.12). At NLO, they encode radiation that is of the

order of the jet scale O(pTR) which is only allowed outside of the jet in the kinematic region

that we consider. They describe how an energetic parton c coming from the hard-scattering

event produces a jet initiated by parton i with energy ωJ and radius R carrying an energy

fraction z of the initial parton c. The same hard matching functions were obtained in the

– 7 –
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context of other jet substructure observables for inclusive jet production [42, 43]. For both

kT -type and cone jets, the relevant expressions can be found in [43]. The O(αs) expres-

sions of the functions Hc→i(z, pTR,µ) contain single and double logarithms of the form

L = ln
(
µ2/p2

TR
2
)
. These large logarithms vanish for the scale choice µJ ∼ pTR which sets

the initial scale for the evolution of the hard matching functions. After carrying out the

renormalization, one finds the following RG equations

µ
d

dµ
Hi→j(z, pTR,µ) =

∑
k

∫ 1

z

dz′

z′
γik

( z
z′
, pTR,µ

)
Hk→j(z′, pTR,µ) . (2.17)

Note that the integro-differential structure of the evolution equations is similar to the

standard DGLAP equations. However, here we have four coupled evolution equations

i → j. Also, the anomalous dimensions differ from the usual DGLAP evolution kernels.

We have

γij(z, pTR,µ) = δijδ(1− z) i(pTR,µ) +
αs
π
Pji(z) , (2.18)

where the second term are the usual Altarelli-Parisi splitting functions which resum sin-

gle logarithms in the jet size parameter. The first (diagonal) term resums double loga-

rithms. The coefficients i(pTR,µ) contain a logarithmic term ∼ L = ln
(
µ2/p2

TR
2
)

and

are given by

q(pTR,µ) =
αs
π
CF

(
−L− 3

2

)
, (2.19)

g(pTR,µ) =
αs
π
CA

(
−L− β0

2CA

)
. (2.20)

To summarize, the RG equations encountered here resum single and double logarithms of

the jet size parameter and the natural scale for the hard matching coefficients is given by the

jet scale µJ ∼ pTR. Eventually, we are going to combine the hard matching functions at the

jet scale with the collinear and soft functions in order to obtain the siAJFs Gi(z, pT , R, τa, µ).

In section 2.7, we demonstrate that the RG equations of the thus obtained siAJFs are again

given by the usual DGLAP evolution equations associated with the resummation of single

logarithms in the jet size parameter. This is the expected typical RG equation for jet

substructure observables measured on an inclusive jet sample.

2.4 Collinear functions

The collinear functions Ci (τa, pT , µ) in the refactorized expression of the siAJFs in (2.12)

take into account collinear radiation inside the observed jet. The collinear functions are the

same as encountered for exclusive jet production in [15, 17, 19]. As we have emphasized in

section 2.2, to leading power, the collinear function is insensitive to the jet boundary and,

hence, the value of R [19, 42]. The jet algorithm constraint Θalg is only relevant for power

corrections of the form O(τa/R
2). The results for the collinear quark and gluon functions

– 8 –
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i = q, g at NLO in n = 4− 2ε space-time dimensions are given by [16, 19]

Cbare
i (τa, pT , µ) = δ(τa)−

αs
2π

[(
µ2

p2
T

)ε(
1

τa

)1+ 2ε
2−a
(

1

ε

2Ci
1− a +

γi
1− a/2

)
− δ(τa)fi(a)

]
+O

( τa
R2

)
=

{
1 +

αs
2π

[
fi(a) +

γi
ε

+
Ci
ε2

2− a
1− a

]}
δ(τa)

− αs
2π

{(
pT
µ

)2−a [( µ

pT

)2−a 1

τa

]
+

(
1

ε

2Ci
1− a +

γi
1− a/2

)

− 4Ci
(1− a)(2− a)

(
pT
µ

)2−a [( µ

pT

)2−a 1

τa
ln

(
τa

(
pT
µ

)2−a)]
+

}
+O

( τa
R2

)
. (2.21)

Here we write the color factors as Ci = CF,A for quarks and gluons respectively. The

functions fi(a) are given by

fq(a) =
2CF

1− a/2

[
7− 13a/2

4
− π2

12

3− 5a+ 9a2/4

1− a

−
∫ 1

0
dx

1− x+ x2/2

x
ln
[
x1−a + (1− x)1−a]] , (2.22)

fg(a) =
1

1− a/2

[
CA

(
(1− a)

(
67

18
− π2

3

)
− π2

6

(1− a/2)2

1− a

−
∫ 1

0
dx

(1− x(1− x))2

x(1− x)
ln
[
x1−a + (1− x)1−a])

−TRNf

(
20− 23a

18
−
∫ 1

0
dx(2x(1− x)− 1) ln

[
x1−a + (1− x)1−a])] , (2.23)

and the constants γi are

γq =
3CF

2
, γg =

β0

2
. (2.24)

The results including power corrections can be found in [15], which will be important in

order to make the connection between the siAJFs and the siJFs as discussed in section 2.6

below. Next, we consider the renormalization of the collinear functions. The bare and

renormalized quantities are related as

Cbare
i (τa, pT ) =

∫
dτ ′aZCi(τa − τ ′a, pT , µ)Ci(τa, µ) . (2.25)

The renormalization constants ZCi are given by

ZCi(τa, pT , µ) =

{
1 +

αs
2π

[γi
ε

+
Ci
ε2

2− a
1− a

]}
δ(τa)

− αsCi
(1− a)π

1

ε

(
pT
µ

)2−a [( µ

pT

)2−a 1

τa

]
+

, (2.26)
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and for the renormalized collinear functions we find

Ci(τa, pT , µ) =

(
1 +

αs
2π
fi(a)

)
δ(τa)−

αs
2π

{(
pT
µ

)2−a [( µ

pT

)2−a 1

τa

]
+

(
γi

1− a/2

)

− 4Ci
(1− a)(2− a)

(
pT
µ

)2−a [( µ

pT

)2−a 1

τa
ln

(
τa

(
pT
µ

)2−a)]
+

}
. (2.27)

From the renormalized expression, the natural scale of the collinear function can be ob-

tained which is given by

µC ∼ pT (τa)
1

2−a , (2.28)

where all large logarithms are eliminated at fixed order. The associated RG equation takes

the following form

µ
d

dµ
Ci(τa, pT , µ) =

∫
dτ ′a γCi(τa − τ ′a, pT , µ)Ci(τ

′
a, pT , µ) , (2.29)

with the anomalous dimensions

γCi(τa, pT , µ) =
αs
π

{(
Ci

2− a
1− a ln

µ2

p2
T

+ γi

)
δ(τa)−

2Ci
1− a

(
1

τa

)
+

}
. (2.30)

2.5 Soft functions

The soft functions Si (τa, pT , R, µ) in eq. (2.12) take into account soft radiation within the

identified inclusive jet. As mentioned above, the soft functions here correspond to the

collinear-soft modes obtained in the context of exclusive jet production [17]. The in-jet

soft radiation directly contributes to the measured jet angularity τa. Different than the

collinear functions, they depend on the jet radius parameter R. To NLO, the soft functions

for quarks and gluons [15] are given by

Sbare
i (τa, pT , R, µ) = δ(τa) +

αsCi
π

1

(1− ε)

(
1

1− a

)
1

ε

1

τ1+2ε
a

(
µ2eγER2(1−a)

p2
T

)ε

= δ(τa) +
αsCi

(1− a)π

{
δ(τa)

2

(
π2

12
− 1

ε2

)
+

1

ε

pT
µR1−a

[
µR1−a

pT τa

]
+

− 2
pT

µR1−a

[
µR1−a

pT τa
ln

(
pT τa
µR1−a

)]
+

}
, (2.31)

where we have omitted power corrections of the form O(R2). Analogous to the collinear

functions, the bare and renormalized soft functions are related in the following way

Sbare
i (τa, pT , R) =

∫
dτ ′a ZSi(τa − τ ′a, pT , R, µ)Si(τa, pT , R, µ) . (2.32)

For the renormalization constants we find

ZSi(τa, pT , R, µ) = δ(τa) +
αsCi

(1− a)π

(
− δ(τa)

2ε2
+

1

ε

pT
µR1−a

[
µR1−a

pT τa

]
+

)
, (2.33)
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and renormalized soft functions are given by

Si(τa, pT , R, µ) = δ(τa) +
αsCi

(1− a)π

(
π2

24
δ(τa)− 2

pT
µR1−a

[
µR1−a

pT τa
ln

(
pT τa
µR1−a

)]
+

)
.

(2.34)

From this expression we can read off the natural scale of the soft function which is given by

µS ∼
pT τa
R1−a . (2.35)

The scale µS sets the starting scale for the evolution of the soft function. The renormalized

soft functions follow the RG equation

µ
d

dµ
Si(τa, pT , R, µ) =

∫
dτ ′aγSi(τa − τ ′a, pT , R, µ)Si(τ

′
a, pT , R, µ) (2.36)

with the anomalous dimensions

γSi(τa, pT , R, µ) =
αsCi
π

1

1− a

[
2

(
1

τa

)
+

− ln

(
µ2R2(1−a)

p2
T

)
δ(τa)

]
. (2.37)

2.6 Integrating the semi-inclusive angularity jet function

In this section, we demonstrate that the different functions of the refactorized siAJFs

Gc(z, pT , R, τa, µ) in eq. (2.12) can be integrated over τa in order to get back the siJFs

Jc(z, pTR,µ) which appear in the factorization theorem for the inclusive jet cross section

(or the pT spectrum) [33, 35, 57]. Note that the factorization theorem for the jet angu-

larity differential distribution has a hard-collinear-soft structure in the kinematic regime

discussed above in eqs. (1.2) and (2.12). Upon integration over τa, we need to get back

to the inclusive jet cross section for which only a purely hard-collinear factorization is ap-

plicable. It is therefore interesting to study how this transition occurs when integrating

out the τa dependence. In particular, the lnR dependence of the different functions is of

interest and the obtained relation between the two cases may facilitate future higher order

calculations for the inclusive jet spectrum. For exclusive jet production, a similar relation

was obtained in [17, 58] between the “measured” and “unmeasured” jet functions. The

notion (un)measured jet function corresponds to jets where an additional measurement like

the jet angularity is or is not performed. For exclusive jet production, it was found that

soft and collinear pieces need to be combined correctly in order to obtain the “unmeasured”

jet function from the “measured” one upon integration. For the inclusive jet production,

the structure of the involved soft functions is much simpler as only in-jet soft radiation

contributes. The out-of-jet radiation is unconstrained and integrated over both for the

angularity differential case and inclusive jet production. As mentioned in the introduction,

the τa differential cross section is calculated within SCETI like the inclusive jet cross sec-

tion and a simple comparison of the singularity structure is thus possible. This is different

than for example the inclusive jet substructure observables discussed in [42, 43] where an

additional rapidity regulator needs to be introduced (thus subtleties could arise [59, 60])

which corresponds to SCETII.
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To simplify our discussion, we only consider the quark jet function and we choose

a = 0, to demonstrate ∫ ∞
0

dτ0 Gq(z, pTR, τ0, µ) = Jq(z, pTR,µ) . (2.38)

The refactorized form of the siAJFs Gc(z, pT , R, τ0, µ) in eq. (2.12) was derived in the limit

R� 1 and τ0 � R2. Since also the siJFs are only known in the limit R� 1, we generally

neglect power corrections of the form O(R2). However, the second power counting used for

our refactorization, τ0 � R2, requires that we include the first order power corrections of

the form O(τ0/R
2) when we perform the integration over τ0. This is because the maximally

allowed values for τ0 are given by [15, 17]

τmax
0 =


R2

4
for kT -type ,

R2 for cone algorithms .

(2.39)

Here we follow the procedure used in [17] for exclusive jet production and we include

the known one-loop power corrections when performing the integration. Alternatively,

in [58] the authors used a different power counting, τ0 ∼ R2, when deriving the angularity

measured cross section which can then be integrated up to the maximally allowed τ0. Note

that only the collinear and soft functions discussed in sections 2.4 and 2.5 above depend

on τ0, whereas the hard matching coefficients Hij of section 2.3 are τ0 independent. The

collinear function receives power corrections of the form O(τ0/R
2) whereas the soft function

only has power corrections of order O(R2). As an example, we consider the collinear quark

function for kT -type jets. Note that the same conclusions hold for cone jets. One has [15]

Cq(τ0, pT , R, µ) = C l.p.
q (τ0, pT , µ) + ∆Calg

q (τ0, R) , (2.40)

where the first term is the leading power contribution as indicated by the superscript.

For completeness, we present here the NLO result for a = 0 which can be obtained from

eq. (2.21) in section 2.4 above

C l.p.
q (τ0, pT , µ) = δ(τ0) +

αsCF
2π

{
δ(τ0)

(
3

2ε
+

2

ε2
+

7

2
− π2

2

)
− 2

ε

p2
T

µ2

[
µ2

τ0p2
T

]
+

−3

2

p2
T

µ2

[
µ2

τ0p2
T

]
+

+ 2
p2
T

µ2

[
µ2

τ0p2
T

ln

(
τ0p

2
T

µ2

)]
+

}
. (2.41)

For kT -type algorithms, the power suppressed and algorithm dependent part for quarks at

NLO is given by

∆CkTq (τ0, R) =
αsCF

2π

{
θ(τ0)θ(R

2

4 − τ0)

τ0

[
3x1 + 2 ln

(
1− x1

x1

τ0

R2

)]

+
θ(τ0 − R2

4 )

τ0

(
2 ln

τ0

R2
+

3

2

)}
, (2.42)
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where

x1 =
1

2

(
1−

√
1− τ0

τmax
0

)
. (2.43)

The quark soft function at NLO for a = 0 can be obtained from eq. (2.34) and it is given by

Si(τ0, pT , R, µ) = δ(τ0) +
αsCi
2π

{
δ(τ0)

(
π2

12
− 1

ε2

)
+

2

ε

pT
µR

[
µR

τ0pT

]
+

−4
pT
µR

[
µR

pT τ0
ln

(
pT τ0

µR

)]
+

}
. (2.44)

By explicit calculation, one finds∫ ∞
τmax
0

dτ0 Gq(z, pTR, τ0, µ) = 0 . (2.45)

The results for the remaining integrals up to τmax
0 for the NLO collinear and soft quark

functions for kT -type jets are given by∫ τmax
0

0
dτ0C

l.p.
q (τ0, pT , µ) = 1 +

αsCF
2π

{
2

ε2
+

3

2ε
− 2

ε
ln

(
τmax

0 p2
T

µ2

)
+ ln2

(
τmax

0 p2
T

µ2

)
−3

2
ln

(
τmax

0 p2
T

µ2

)
+

7

2
− π2

2

}
, (2.46)∫ τmax

0

0
dτ0 ∆CkTq (τ0, R) =

αsCF
2π

(
3− π2

3
− 3 ln 2 + 4 ln2 2

)
, (2.47)∫ τmax

0

0
dτ0 Sq(τ0, pT , R, µ) = 1 +

αsCF
2π

{
− 1

ε2
+

2

ε
ln

(
τmax

0 pT
µR

)
+
π2

12
− 2 ln2

(
τmax

0 pT
µR

)}
. (2.48)

When we sum over all contributions and use the maximally allowed value for τ0 for anti-kT
jets, τmax

0 = R2/4, we obtain the in-jet contribution of the quark siJFs [33, 35] which is

equivalent to the “unmeasured” jet function for exclusive jet production [15]. For com-

pleteness, we repeat the result here

Jq→qg(z, pTR,µ) = δ(1− z)

[
1 +

αs
2π

(
1

ε2
+

1

2ε
− 1

ε
ln

(
p2
TR

2

µ2

)
+

1

2
ln2

(
p2
TR

2

µ2

)
−3

2
ln

(
p2
TR

2

µ2

)
+

13

2
− 3π2

4

)]
. (2.49)

Note that here we have only one type of logarithm left that can be eliminated at fixed

order by choosing µJ ∼ pTR which is the jet scale. As a last step, we can now combine

this result with the expressions for the hard matching functions Hq→q and Hq→g which

correspond to out-of-jet radiation diagrams at NLO. See for example eqs. (5.11) and (5.12)

of [43]. We are then able to verify∫ τmax
0

0
dτ0 Gq(z, pT , R, τ0, µ) = Jq(z, pTR,µ) . (2.50)
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From eqs. (2.45) and (2.50), we thus confirm the expected relation in eq. (2.38). Note that

after the integration over τ0, the collinear and soft functions contain 1/ε2 poles in eqs. (2.46)

and (2.48) above. After combining them into a single function in eq. (2.49), only one 1/ε2

pole remains which is canceled by a corresponding term with opposite sign in the function

Hq→q. We are thus left with only single poles and as well as single logarithms for the

siJFs. By integrating over τ0 we have thus demonstrated explicitly how the hard-collinear-

soft factorization theorem for the jet angularity distribution simplifies to the hard-collinear

factorization of the inclusive jet cross section. Note that such a simplification does not

occur for exclusive jet production where a hard-collinear-soft factorization is still required

for the τ0 integrated result [15, 17].

2.7 Resummation

In this section, we perform the resummation of logarithms αns ln2n(τ
1

2−a
a /R) by solving

the respective evolution equations of the collinear and soft functions. In addition, we

demonstrate how the usual DGLAP equations are recovered for the evolution from the jet

scale µJ ∼ pTR to the hard scale µ ∼ pT , which is associated with the resummation of

single logarithms in the jet size parameter αns lnnR. First the collinear and soft functions

are evolved to the jet scale µJ starting from their respective natural scales. We then

combine them with the hard matching functions of section 2.3. The evolution equations of

the thus obtained siAJFs turn out to be the typical DGLAP equations where the anomalous

dimensions are given by the Altarelli-Parisi splitting functions. All non-DGLAP terms of

the anomalous dimensions cancel out between the different functions of the refactorized

siAJFs. For all the relevant momentum scales, we refer to figure 1.

Here we choose to solve the evolution equations for the collinear and soft functions in

Fourier transform space. See for example [61]. We define the Fourier transform or position

space expression of a generic function F depending on τa as

F (x) =

∫ ∞
0

dτa e
−ixτaF (τa) . (2.51)

From eqs. (2.21) and (2.31), we obtain the following position space expressions for the bare

collinear and soft functions at NLO

Cbare
i (x, pT , µ) =

{
1 +

αs
2π

[
fi(a) +

γi
ε

+
Ci
ε2

2− a
1− a

]}
+
αs
2π

{
ln

(
ix̄

(
µ

pT

)2−a)(1

ε

2Ci
1− a +

γi
1− a/2

)

+
2Ci

(1− a)(2− a)

(
ln2

(
ix̄

(
µ

pT

)2−a)
+
π2

6

)}
, (2.52)

Sbare
i (x, pT , R, µ) =

{
1 +

αsCi
2(1− a)π

(
π2

12
− 1

ε2

)}
+

αsCi
(1− a)π

{
− 1

ε
ln

(
ix̄
µR1−a

pT

)
− ln2

(
ix̄
µR1−a

pT

)
− π2

6

}
, (2.53)
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where we introduced the shorthand notation x̄ = xeγE . The convolution products as for

example in eqs. (2.29) and (2.36) turn into simple products in position space. We can thus

write the RG equations for the collinear and soft functions as

µ
d

dµ
Ci(x, pT , µ) = γCi(x, pT , µ)Ci(x, pT , µ) , (2.54)

µ
d

dµ
Si(x, pT , R, µ) = γSi(x, pT , R, µ)Si(x, pT , R, µ) . (2.55)

The solution of these RG equations can be written as

Ci(x, pT , µ) = exp

[∫ µ

µC

dµ′

µ′
γCi(x, pT , µ

′)
]
Ci(x, pT , µC) , (2.56)

Si(x, pT , R, µ) = exp

[∫ µ

µS

dµ′

µ′
γSi(x, pT , R, µ

′)
]
Si(x, pT , R, µS) , (2.57)

where we evolved both functions to a common scale µ starting from their characteristic

scales µC,S , see eqs. (2.28) and (2.35). The relevant anomalous dimensions are given by

γCi(x, pT , µ) =
αs
π

[
γi +

2Ci
1− a ln

(
ix̄

(
µ

pT

)2−a)]
, (2.58)

γSi(x, pT , R, µ) = −2αsCi
π

1

1− a

[
ln

(
ix̄
µR1−a

pT

)]
. (2.59)

Instead of evolving the collinear and soft functions separately to the hard scale µ ∼ pT ,

we instead evolve only to the jet scale µJ ∼ pTR where they are combined with the hard

matching coefficients. We can thus write the distribution space expression for the evolved

collinear and soft functions by taking the Fourier inverse transformation∫
dx

2π
eixτaCi(x, pT , µ)Si(x, pT , R, µ)

=

∫
dx

2π
eixτa exp

[∫ µ

µJ

dµ′

µ′
(γCi(x, pT , µ

′) + γSi(x, pT , R, µ
′))
]

× exp

[∫ µJ

µC

dµ′

µ′
γCi(x, pT , µ

′)
]

exp

[∫ µJ

µS

dµ′

µ′
γSi(x, pT , R, µ

′)
]

× Ci(x, pT , µC)Si(x, pT , R, µS) . (2.60)

Here we separated the evolution into two pieces. In the following, we demonstrate that

the exponential in the first line that takes into account the evolution between the scales

µJ → µ cancels with a corresponding part of the evolved hard matching functions. The

siAJFs then evolve according to the usual DGLAP evolution equations. Following [42], we

can write hard matching functions Hi→j(z, pTR,µ) as

Hi→j(z, pTR,µ) = Ei(pTR,µ) Ci→j(z, pTR,µ) . (2.61)

The functions Ci→j(z, pTR,µ) follow evolution equations where the anomalous dimensions

are given only by the Altarelli-Parisi splitting functions

µ
d

dµ
Ci→j(z, pTR,µ) =

αs
2π

∑
k

∫ 1

z

dz′

z′
Pki

( z
z′

)
Ck→j(z′, pTR,µ) , (2.62)
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and the functions Ei(pTR,µ) satisfy multiplicative RG equations

µ
d

dµ
ln Ei(pTR,µ) = i(pTR,µ) . (2.63)

Here the i represent the purely diagonal pieces of the anomalous dimensions of the func-

tions Hi→j as given in eq. (2.19). The fixed order results for both Ci→j(z, pTR,µ) and

Ei(pTR,µ) can be found in [42]. The solution of the multiplicative RG equation for Ei(pT , µ)

can be written as

Ei(pTR,µ) = Ei(pTR,µJ) exp

(∫ µ

µJ

dµ′

µ′ i(pTR,µ
′)
)
. (2.64)

Note that Ei(pTR,µJ) = 1 when evaluated at the jet scale which sets the initial condition for

the evolution. Moreover, we find that the remaining exponential factor from the evolution

cancels with the corresponding part of the evolution of the collinear and soft functions

between the scales µJ → µ in eq. (2.60), i.e. we have

exp

(∫ µ

µJ

dµ′

µ′
[

i(pTR,µ
′) + γCi(x, pT , µ

′) + γSi(x, pT , R, µ
′)
])

= 1 . (2.65)

To summarize, we can thus write the siAJFs Gc(z, pT , R, τa, µ) in terms of the evolved

functions as

Gc(z, pT , R, τa, µ) =
∑
i

Cc→i(z, pTR,µ)

∫
dx

2π
eixτa exp

[∫ µJ

µC

dµ′

µ′
γCi(x, pT , µ

′)
]

× exp

[∫ µJ

µS

dµ′

µ′
γSi(x, pT , R, µ

′)
]
Ci(x, pT , µC)Si(x, pT , R, µS) .

(2.66)

From eq. (2.62) we find that the siAJFs follow the standard DGLAP evolution equations

between the scales µJ → µ which is associated with the resummation of single logarithms

in the jet size parameter R.

3 Phenomenology for pp → (jet τa)X

In this section, we present numerical result for the ratio F (τa; η, pT , R) as defined in eq. (1.1)

and repeated here for convenience

F (τa; η, pT , R) =
dσpp→(jet τa)X

dηdpTdτa

/
dσpp→jetX

dηdpT
. (3.1)

The complete factorization theorem for the τa differential cross section can be found in

eq. (1.2) above and the final result for the resummed siAJFs is given in eq. (2.66). The

single-inclusive jet cross section that appears in the denominator is obtained by replacing

the siAJFs with the siJFs, i.e.

Gc(z, pTR, τa, µ)→ Jc(z, pTR,µ) . (3.2)
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Figure 2. The jet angularity measured on inclusive jets in the pT range 200− 250 GeV at central

rapidity |η| < 1.2 at
√
s = 7 TeV using the anti-kT clustering algorithm with R = 0.4. As repre-

sentative examples, we choose a = −0.5, 0, +0.5 from left to right. The scale uncertainty band is

obtained as discussed in the text.

Throughout this section, we work at NLL accuracy for the resummation of logarithms

αns lnnR and αns ln2n(τ
1

2−a
a /R). Note that in section 2.7 above, we derived the resummed

expressions in position space. For the numerical results presented in this section, we take

the inverse transformation of the position space expression. As a cross-check, we also

performed the numerical calculations using an expression of the resummed result derived

in momentum or distribution space and found full agreement. The lnR resummation is

performed with the help of the numerical codes developed in [62, 63].

3.1 Non-perturbative shape functions and profile functions

For small values of τa, the soft scale µS ∼ pT τaRa−1 runs into the non-perturbative regime.

We parametrize this non-perturbative contribution with a shape function SNP
i (τa). The

new soft function is then given by a convolution of the purely perturbative result with

SNP
i (τa), i.e.

Si(τa, pT , R, µS)→
∫
dτ ′a Si(τa − τ ′a, pT , R, µS)SNP

i (τ ′a) . (3.3)

We adopt the following parametrization for the non-perturbative shape function [64]

SNP
i (τa) =

N (A,B,Λ)

Λ

(
pT τaR

a−1

Λ

)A−1

exp

(
−
(
pT τaR

a−1 −B
Λ

)2
)
, (3.4)

where A,B, and Λ are parameters. The ratio of the soft scale µS = pT τaR
a−1 and Λ

determines where the non-perturbative effects start being important. The parameters B

and A determine the location of the peak and the rate how fast the non-perturbative

effects are turned off when the soft scale is in the perturbative regime, respectively. We

make the following choices Λ = 0.4, A = 2, and B = 0.1 for our numerical calculations as

presented below. In the limit that the soft scale is far from the non-perturbative regime,

or equivalently for large τa, the cross section needs to approach the purely perturbative

result. This is ensured by requiring that the non-perturbative shape function satisfy the
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Figure 3. Same as figure 2 but for jets with a transverse momentum of pT = 50− 100 GeV.

following normalization condition ∫ ∞
0

dτa S
NP
i (τa) = 1 , (3.5)

from which the normalization factor N (A,B,Λ) in eq. (3.4) is determined. Note that we

use the same shape functions for quarks and gluons. In order to ensure that αs(µS) does

not run into the Landau pole for small values of τa, we freeze the soft scale µS at some value

above the Landau pole. This can be accomplished by making use of profile functions [65].

We follow [64], by making the following choice to smoothly interpolate between regions I

and II where the running of µS is turned off

fprofile(x) =

{
x0[1 + (x/x0)2/4] x ≤ 2x0 region I ,

x x > 2x0 region II .
(3.6)

We then define our canonical scale choices for the soft and the collinear scale as

µcan
S = fprofile

(
pT τa
R1−a

)
, (3.7)

µcan
C = (µcan

S )
1

2−a (pTR)
1−a
2−a , (3.8)

where we make the choice

x0 = 0.25 GeV . (3.9)

By making use of these profile functions, the value of the soft scale µS smoothly approaches

the lower value x0 and does not run into the Landau pole even in the limit τa → 0. Note

that in eq. (3.7) we wrote the canonical collinear scale choice µcan
C in terms of the canonical

choice for the soft scale µcan
S . In the next section, we discuss scale variations for which we

always keep this relation between µC and µS .

3.2 Scale variations

We vary the soft, jet and hard scales by factors of 2 around their canonical choices

µS ∼ pT τaR
a−1, µJ ∼ pTR, and µH ∼ pT where we choose to keep the relation 1/2 ≤
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Figure 4. Soft and collinear scales µS and µC plotted as a function of τa. We use the profile

functions in eq. (3.6) and the scale variation is shown as discussed in section 3.2.

(µi/µ
can
i )/(µj/µ

can
j ) ≤ 2 between the different scales, where i, j = S, J,H . As men-

tioned above, the scale for the collinear function µC is varied together with soft scale

µS , see eq. (3.7). The variation of µS also must be turned off as µS approaches x0. To

freeze the variation of µS , we define

µS =
(
1 + rθε

(
pT τaR

a−1 − 2x0

))
µcan
S , (3.10)

where the values r = 0,−1/2, and 1 correspond no variation, 1/2, and 2 times the canonical

scale, respectively. The function θε is defined as [19]

θε
(
x− x′

)
=

1

1 + exp[−(x− x′)/ε] , (3.11)

which approaches the standard theta function θ(x−x′) in the limit ε→ 0. For our numerical

studies presented in the next section, we choose ε = 0.2 GeV. This way, the variation of

the soft scale µS ∼ pT τaR
a−1 is smoothly turned off when it is below the value of 2x0. In

figure 4, we show the soft and collinear scales µS and µC as a function of the jet angularity

variable τa using the profile functions in eq. (3.6). In addition, we illustrate how the scale

variations are smoothly turned off as µS approaches the non-perturbative regime using the

eq. (3.10).

3.3 Phenomenology at the LHC

We now present numerical results for the NLL resummed jet angularity distribution for

inclusive jet production at the LHC pp→ (jet τa)X. Throughout this section, we consider

jets that are reclustered using the anti-kT algorithm [66] and we use the CT14 PDF set

of [67]. As an example, we consider a center of mass energy of
√
s = 7 TeV and we require

the observed jets to be at central rapidity |η| < 1.2. In figure 2, we present numerical

results for inclusive jets in the transverse momentum range of 200 < pT < 250 GeV. In

the three panels from left to right, we show the jet angularity distribution for a = −0.5, 0,

and 0.5. Analogously, in figure 3 we show the results for jets with 50 < pT < 100 GeV. We
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to right. We use the canonical scale choices. The total cross section (blue) is separated into quark

(red) and gluon (green) contributions.

include non-perturbative effects as outlined in section 3.1 above and the scale uncertainty

bands are obtained following the discussion in section 3.2.

Jet angularity measurements capture different features of the radiation pattern inside

a jet. The jet angularity measurement with a higher value of the parameter a is more

sensitive to collinear radiation. The increased sensitivity to collinear physics as a → 1

causes the jet angularity to become sensitive to soft-recoil and the cross section cannot be

factorized anymore when a further increases to 2. For a ≥ 2, the jet angularity cross section

is infrared-collinear (IRC) unsafe. The growing sensitivity to collinear physics results in

a larger scale uncertainty band. In other words, the cross section becomes less and less

“factorizable”. We also find that the height of the peak is reduced as a increases. In

addition, one generally finds that the distribution is peaked at smaller values of τa at

higher jet transverse momenta. At smaller pT , the jets are more dominated by gluons and

they are broader.

Currently, there is no data available for jet angularity distributions from the LHC

that would allow us to determine the parameters of our model for the non-perturbative
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Figure 7. Perturbative results for the jet angularity distributions for a = −0.5, 0, +0.5 using the

same kinematics as in figure 2 at the canonical scale choices. The solid (dashed) lines show the

cross section with (without) lnR resummation.

shape function from data. However, we expect that the corresponding measurements are

feasible and that they can provide valuable information about non-perturbative dynamics

and more generally about QCD factorization at present day hadron colliders. In order

to gauge the relevance of non-perturbative effects, we show the result for the a = 0 jet

angularity distribution with (red) and without (blue-green) the non-perturbative shape

function in figure 5. As an example, we use the same jet kinematics as in figure 2 and the

details of the non-perturbative model were discussed in section 3.1 above. We observe a

shift of the peak toward higher values of τa. In addition, the height of the peak increases

by roughly ∼ 10% once the perturbative result is convolved with the non-perturbative

shape function. The residual scale uncertainty band gets widened in particular in the peak

region. In the tail region at large τa, the two results converge as they should.

Finally, we also study the importance of the lnR resummation by evaluating the hard

matching functions Hc→i at the hard scale and by evolving the collinear and soft functions

to the common scale µ ∼ pT . In figure 7 we show perturbative results for a = −0.5, 0 + 0.5

using the same kinematics as in figure 2 at the canonical scale choices. The solid (dashed)

lines show the cross section with (without) lnR resummation. We observe that the lnR

resummation leads to a suppression of about ∼ 2% and ∼ 17% for R = 0.8 and R = 0.4,

respectively. As expected the lnR resummation becomes more important for small values

of R and does not cancel completely in the ratio F in eq. (1.1).

3.4 Quark-gluon discrimination

The discrimination of quark and gluon jets is an important goal of jet substructure tech-

niques. One key motivation is that signatures of physics beyond the standard model at

hadron colliders are often expected to be quark-heavy. See [68, 69] for an overview of

quark-gluon tagging techniques. Modern classifiers include information from different IRC

safe discriminant variables, hadron multiplicities or more recently also machine learning.

See for example [70–80] and references therein. In this section, we study the potential

applications of jet angularity measurements for quark-gluon discrimination from first prin-
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Figure 8. As the sliding bar in the left figure moves through the values of some observable, here

τa, the amount of rejected background (gluon jets) and signal (quark jets) are recorded as points

on the ROC curve in the right figure. The point (1, 1) in the upper right corner of the ROC curve

plot corresponds to 100% background rejection while keeping 100% of the signal jets.

ciples analytical calculations in QCD. We start by separating the jet angularities into

quark and gluon contributions. We show the cross section for the canonical scale choices in

figure 6 where the total cross section (blue) is separated into quark (red) and gluon (green)

contributions. We observe that the gluon jet peaks at larger values of τa than the quark

jet. As an example, we use the same kinematics as in figure 2, i.e. 200 < pT < 250GeV

and |η| < 1.2. We consider a Receiver Operating Characteristic (ROC) curve as illustrated

in figure 8. ROC curves show how well an observable discriminates between signal and

background. Here we consider gluon jets as background and quark jets as signal. As the

sliding bar separating quark jet efficiency and gluon jet rejection changes as a function of

the observable, the resulting fractions are recorded on the ROC curve plot. As shown in

the figure, the closer the ROC curve approaches the point (1, 1), the better the discrimina-

tion is between signal and background. An interesting aspect of using the jet angularities

considered in this work is that we can study the quark-gluon discrimination efficiency as

a function of the continuous variable a. See also [70]. In addition, since in- and out-of-

jet radiation contributions are consistently taken into account in our framework, a direct

comparison of data and analytical calculations from first principles in QCD is possible.

The ROC curves for jet angularities are shown in figure 9. We show the result for four

different values of a = −0.5, 0, +0.5 and +0.8. We observe that the quark-gluon discrimi-

nation is improved for a → 1, where a = 1 corresponds to the limit where the established

factorization theorem breaks down. When a � 1, the jet angularity cross section is “less

under perturbative control” and non-perturbative effects start to dominate. In fact, we

find that the ROC curve for a = 0.8 significantly depends on the non-perturbative model

for the shape function as discussed in section 3.1. We thus observe a tradeoff between

having a better quark-gluon discriminant and the ability to perform (purely) perturbative

calculations. For jet angularities, the transition between the two regions can be studied as

a function of the continuous parameter a and eventually an ideal intermediate value may

be chosen.
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√
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4 Summary and outlook

In this work, we considered jet angularity measurements τa for inclusive jet production. We

presented a corresponding factorization theorem, where the jet angularities are measured

on an inclusive jet sample different than exclusive jet production considered earlier in the

literature. All necessary functions were calculated to NLO which allowed us to determine

the associated RG equations and anomalous dimensions. By solving the RG equations, we

were able to jointly resum logarithms in the jet size parameter R and the jet angularity

τa to NLL accuracy. The obtained structure for the inclusive jet angularity measured

cross section allowed for new insights also into the factorization theorem for inclusive jet

production for which the relevant semi-inclusive jet function was obtained upon integration

over τa. We presented first numerical results for LHC kinematics for which we used profile

functions and a shape function in order to systematically treat non-perturbative effects.

We estimated the potential impact of jet angularities for quark-gluon discrimination by

presenting ROC curves. We found that for larger values of a → 1, the discrimination

power between quark and gluon jets is improved while the sensitivity to non-perturbative

effects is increased. In the future, it will be worthwhile to study the impact of NGLs

on the jet angularity distribution. By including NGLs, it will be possible to obtain the

complete NLL resummed result. For example, in order to study the impact of NGLs, it

will be interesting to compare jet angularities measured on both inclusive and exclusive jet

sample. Another possible extension is to study groomed jet angularity distributions [81].

The inclusive jet angularity distribution allows for a wide range of applications at the LHC

including both proton-proton and heavy-ion collisions. We expect that the corresponding

experimental measurements are feasible with the current and future data sets taken at

the LHC. Finally, it will be interesting to explore applications of inclusive jet angularity

measurements at RHIC and a future EIC [82, 83].
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