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ABSTRACT: We study jet angularity measurements for single-inclusive jet production at
the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth
interpolation between different traditional jet shape observables. We establish a factoriza-
tion theorem within Soft Collinear Effective Theory (SCET) where we consistently take
into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For
comparison, we elaborate on the differences to jet angularities measured on an exclusive jet
sample. All the necessary ingredients for the resummation at next-to-leading logarithmic
(NLL) accuracy are presented within the effective field theory framework. We expect semi-
inclusive jet angularity measurements to be feasible at the LHC and we present theoretical
predictions for the relevant kinematic range. In addition, we investigate the potential
impact of jet angularities for quark-gluon discrimination.
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1 Introduction

Highly energetic jets and their substructure play a central role at present day hadron
colliders like the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider
(RHIC). In the past years, the field of jet substructure has received a growing attention from
both the experimental and theoretical communities. Applications of techniques involving
jet substructure include precision tests of QCD, distinguishing quark and gluon jets, tagging
of boosted objects, and the search for physics beyond the standard model. To address these
various applications, a range of different observables have been constructed in the past to
describe and utilize the radiation pattern inside jets. See [1] for a review of recent advances
in applying jet substructure techniques to LHC physics.

In this paper, we study jet angularities 7, measured on an inclusive jet sample. An-
gularities were first introduced as a global event shape for di-jet events in eTe™ colli-
sions [2]. The parameter a is a continuous variable, where for example a = 0, 1 correspond
to thrust [3] and jet broadening [4], respectively. In [5], jet angularities were proposed as a
jet shape where the measurement is only performed on the constituents of a reconstructed
jet. Studying a continuous class of jet shape observables generally allows for interesting
insights into both the perturbative and non-perturbative structure of the jet dynamics [2, 6-
8]. The treatment within Soft Collinear Effective Theory (SCET) [9-13] for exclusive [14]



n-jet events in ete™ collisions was developed in [15]. See also [16-18] for example. The
extension to exclusive di-jet events in pp collisions was performed in [19]. In general, jet
substructure measurements can be performed on different jet samples. These include for
example exclusive and inclusive di-jet production [20-22] as well as single-inclusive jet pro-
duction [23-25]. Exclusive jet production at pp colliders always involves a veto p'* on the
out-of-jet radiation within a given rapidity interval, see for example [26]. Instead, for inclu-
sive jet production all jets in given rapidity n and transverse momentum pr bins are taken
into account and no further constraints are imposed on the event. Both the experimental
and theoretical challenges can differ significantly when the jet substructure observable is
measured using different event samples and the different approaches have advantages de-
pending on the context. In this work, we focus on jet angularity measurements performed
on an inclusive jet sample. Inclusive jet substructure observables allow for a simple and
direct comparison between experimental data and first principle analytical results within
QCD. In addition, single-inclusive jet substructure observables can be measured with the
highest statistics and they allow for a direct extension to heavy-ion collisions [27-32]. In
this paper, we study specifically the ratio
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(1.1)

where the numerator and denominator are the differential jet cross section with and without
the additional measurement of the angularity 7,. For the denominator of eq. (1.1), we follow
the formalism developed in [33] where a factorization formalism of the inclusive jet cross
section in terms of hard functions and semi-inclusive jet functions (siJFs) was developed.
This approach allows for the all order resummation of single logarithms in the jet size
parameter o In" R to next-to-leading logarithmic (NLL) accuracy. See also [34-36]. In
order to calculate the numerator, we introduce different jet functions that appear in the
factorization of the cross section. We will refer to this type of jet functions as semi-inclusive
angularity jet functions (siAJFs), to reflect the fact that the angularity of an inclusively
identified jet is measured. In pp collisions, the factorized form of the cross section in the
numerator of (1.1) is given by

doPp—(jet Ta) X
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(1.2)

Here, fqp denote the parton distribution functions (PDFs) in the proton with the corre-
sponding momentum fraction z,;. The symbols ® denote appropriate integrals over the
variables x4 and z. The hard functions HS, describe the production of an energetic par-
ton ¢ in the hard-scattering event similar to inclusive hadron production [37, 38]. The new
ingredient here are the siAJFs denoted by G.(z,prR, 74, i), which we are going to define
at the operator level in the section 2 below. Analogous to the siJFs [33], the variable z is
the longitudinal momentum fraction of the parton c initiating the jet that ends up inside
the reconstructed jet.



In order to allow for a meaningful comparison to experimental data, we need to resum
two classes of logarithms to all orders. First, the resummation of small-R logarithms is
achieved by solving a DGLAP type evolution equation similar to the siJFs. Second, we
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need to resum logarithms of the form o 1n2"(7-,f%a /R), in the region where 77 “ < R. To
that extent, we further demonstrate that the siAJF's can be refactorized in terms of soft and
collinear functions S;(74, pr, R, ) and C;(74, pr, i), respectively, that describe the in-jet
dynamics. This second step of the factorization is carried out at the jet scale prR and it
requires us to introduce further matching coefficients H._,; which describe the transition of
the energetic parton ¢ coming from the hard-scattering event to the parton ¢ that initiates
the jet. We obtain the following schematic structure

gc(zva7 R7 Ta, ,U’) = Z HC—>i(27pTR7 N) CZ (TaapT7 N) & SZ (Ta7pT7 RJ M) ) (13)

where ® represents a convolution over 7, to be defined below. Note that upon integration of
the siAJFs over 7,, we recover the siJFs at fixed order. Both steps of the outlined factoriza-
tion theorem hold in the limit where the observed jet is sufficiently collimated. Therefore,
we work with parametrically small values of the jet size parameter R < 1 even though
for most practical purposes this is also a good approximation for e.g. R ~ 0.7 [39, 40] and
even above. For large values of R, power corrections of the form O(R?) can be systemati-
cally taken into account, see for example [41]. Note that the structure of the refactorized
semi-inclusive angularity jet function in eq. (1.3) is very similar to [42, 43] where (central)
subjets and the transverse momentum distribution of hadrons inside jets were considered.
However, here we are working within SCET], whereas in [42, 43] the refactorized expression
gave rise to collinear and soft modes on the same mass hyperbola which corresponds to
SCET}; [44, 45]. We would like to point out an important difference concerning the factor-
ized structure in egs. (1.1) and (1.3) and factorization theorems for exclusive jet production.
In [17, 46], the authors introduced both a global soft and a soft-collinear (or ‘coft’) mode in
order to consistently separate all relevant modes and perform the all order resummation.
For the calculation considered in this work, the situation is conceptually different since
the out-of-jet radiation is not constrained to be small but instead it is unconstrained and
fully taken into account in the two-step factorization procedure outlined above. See also
for further inclusive jet substructure observables [47-50].

Note that we do not take into account grooming in this work. Therefore, the obtained
angularity is sensitive to non-global logarithms (NGLs) [51, 52] due to the presence of the
soft function obtained after the refactorization of the siAJFs in eq. (1.3). While the exten-
sion to angularities with grooming is a separate task that is beyond the scope of this work,
we would like to stress that ungroomed jet substructure observables play an important role
for example in the context of heavy-ion collisions where a reliable background subtraction
is necessary [28, 31, 53, 54].

The remainder of this paper is organized as follows. In section 2, we present the
factorized form of the cross section and we provide operator definitions for the siAJF's
Ge(z,pr, R, 7a, ). We calculate all relevant functions to next-to-leading order (NLO) and
derive their renormalization group (RG) equations. By solving the obtained RG equations,



we resum the relevant large logarithms to all orders in QCD. In addition, we demonstrate
how the factorization for inclusive jet production is obtained upon integration of the siAJFs
over 7,. In section 3, we provide first numerical results for jet angularities measured
on an inclusive jet sample for LHC kinematics. We include a shape function to model
non-perturbative effects. Numerical results are presented for the potential application of
jet angularities to quark-gluon discrimination. We summarize our work in section 4 and
provide an outlook.

2 The semi-inclusive angularity jet function

We start by reviewing jet algorithms and angularities at hadron colliders [5, 19]. We then
discuss the refactorized form of the siAJFs and we provide operator definitions for the
collinear and soft functions. We present the corresponding perturbative results and discuss
their renormalization and RG evolution. Finally, we show that the fixed order results for
the siAJFs can be integrated over 7, to ?btain the siJFs and we discuss how the joint

resummation of logarithms In R and In(72~° /R) is achieved.

2.1 Jet algorithms and angularity measurements at hadron colliders

Here we briefly summarize the definition of jet angularity measurements at hadron colliders.
For a more detailed discussion see [5, 19]. At NLO in eTe™ collisions, two final state
particles are clustered together into the same jet when they satisfy the constraints

cone jet : 0,5 < R, (2.1)
kr-type jet : 0;; < R. (2.2)

Here R is the jet size parameter, ¢;; is the angle between the particles ¢ and j and 6, is the
angle between the jet axis and the particle ¢ that belongs to the jet. At hadron colliders,
jets are measured with a certain transverse momentum pr and rapidity n. Using the
approximation that the highly energetic jets are sufficiently collimated, the implementation
of the jet algorithm essentially amounts to replacing the jet parameter R with

R

R = .
k= coshn

(2.3)

The jet shape observables that we are interested in here are jet angularities which were
defined in [5, 15] as a jet shape for ete™ colliders

e 1 i
=5 ; 57 | exp(~|nis|(1 - a)) (2.4)

where 7,7 is the pseudo-rapidity of the particles ¢ inside the jet and ﬁTU denotes the trans-
verse momentum measured with respect to the (standard) jet axis. The sum i runs over
all particles inside the reconstructed jet and FE; is the jet energy. As mentioned in the
Introduction, the parameter a smoothly interpolates between different classic jet shape
observables. As it was pointed out in [5, 19], hadron colliders prefer observables that are



invariant under boosts along the beam direction. Therefore, the jet angularity for hadron
colliders is defined as

— . PP — 1 7 \2—a __ 2EJ 2 ete™ 2
Ta=T = — ) ph (AR = (== T ¢ +0(1), (25)
Pr iz pr

where AR, = \/(Aniy)? + (Agiy)? with An;; and Ag;; the rapidity and azimuthal angle
difference between the particle ¢ and the jet J. Note that the definition of 7, also has a
close relation to jet mass, m,

2
_my

To = +0(78). (2.6)

iz
2.2 Factorization theorem

Following [42], the siAJF's can be defined at the operator level for quark and gluon jets as
follows

= o T sz (@ =7+ P) 8(7a = 7a()Xn(0)[TX) (T X [%n (0|0} | |

gq(Z,pTa Ra Tas :u)
(2.7)

=X (06 (W= P) (e — 7a(T)) B i, (0)|JX) (I X|BE | (0)]0),

Gy(z,p1, R, 7o, 1) = —m<

(2.8)

where x, and Bg | are the gauge invariant collinear quark and gluon fields within SCET,
and P is the label momentum operator. Here we have two light-like vectors n* = (1,7n) and
n* = (1, —n) where 7 is aligned with the standard jet axis, and they satisfy n? = a2 =0
and n-n = 2 as usual. In addition, IV, is the number of colors for quarks, and the operator
74(J) signifies the angularity measurement of the final observed jet, with the measured
value equal to 7,. Moreover, w and wj are the large light-cone momentum components of
the initial quark or gluon and the jet, with the ratio z = wj/w. Note that summation over
the unobserved particles X in the final is implied.

We are now going to discuss the factorization formalism for the jet angularity ob-
servable defined in eq. (1.1) within SCET. The relevant effective field theory modes are
summarized in figure 1. The first step of the factorization in eq. (1.2) is purely a separation
of hard and collinear modes. The two relevant momentum scales are those associated with
H?, and G, respectively. The hard functions H{, have the characteristic momentum scale

WH ~ PT, (2.9)

whereas the characteristic momentum scale for the jet dynamics with a jet radius R, is
given by

py ~wytan (R/2) = prR. (2.10)

For the siAJFs G.(z,pr, R, 7q, 1) there are in fact two relevant characteristic momentum
scales, schematically pr1, and py ~ prR. To be more precise, the relevant scale associated



hard — WUH ~ DT

— g ~prR

_1
nc ~ pr (Ta) 2-a

PTTa
Hs ~ Rl—a

Figure 1. Characteristic momentum scales for all the relevant effective field theory modes for the
factorization formalism in eqs. (1.2) and (2.12).

1
with 7, should be given by pr7s~“, see below. We will focus on the region where these
1

two momentum scales are far separated, i.e. 72 * < R. In this case, an additional second
step of the factorization as in eq. (1.3) is required in order to resum double logarithms
1 1

n

of the form af In?"(72=* /R). In this region, since ppr ® is parametrically small, only

collinear radiation within the jet with momentum scaling p. = (p;, pF, per) ~ pr(1,A%,N)
1

with A ~ 777%, and the soft radiation of order pr7, are relevant to leading power.

An intuitive understanding of the collinear scaling p. can be obtained by realizing that
the transverse momentum component A is roughly given by the typical angular separation
0;; of the collinear particles inside the jet with respelct to the jet axis. From the definition

of the jet angularity in eq. (2.5), one finds 6;; ~ 74 *. Note that in the kinematic region
1

72% < R that we are considering, the collinear radiation is so collimated such that it is
insensitive to the jet boundary [19, 42]. Therefore, the collinear momentum scaling and
the collinear function do not depend on the jet size parameter R. On the other hand, the
precise momentum scaling for the soft radiation inside the jet is given by

PTTa
RQfa

which can be derived through the jet algorithm constraint p! /p; < R? and the definition

ps = (5 P3 psL) ~ (1,R%,R), (2.11)

of the jet angularity [15]. Since soft radiation inside the jet only contributes to the observed

jet angularities, we note that the soft degrees of freedom identified here are the same as

the collinear-soft (c-soft) modes as in [17, 55|. Any harder emissions of the order prR are
1

only allowed outside the jet as they would otherwise break the hierarchy 7, * < R. They

do not contribute to the angularity 7, of the jet. We refer to modes taking into account

such out-of-jet radiation as hard-collinear modes [43], as labeled in figure 1. In summary,
1

in the limit 7, * < R we obtain the following factorization structure for the siAJFs

Qc(z,pT,R,Ta,,u) :ZHcﬁi(zapTRa ,u) (212)

x /dTaC"de" 8(1a — 78 =730 Cy (78 pry 1) Si (707, o1, Ry )



where C; (7'acz , DT, ,u) and S; (Tfi, pr, R, ,u) denote collinear and soft functions that take into
account collinear and soft radiation inside the jet. They both contribute to the angularity
T4 of the observed jet which is reflected by the convolution structure. For completeness,
we provide the operator definitions here for both the collinear and soft functions. For the
collinear functions, we have for quarks and gluons

Cyfras ) =3 Tr| 5106 (70 = 2 xa OLTXNIX 0 00| (2.13)
Colraspr 1) = = 53— (O (7 = 72) B O X) (IXIBLLO)0) . (214)

Here the operator 7' is defined to count only the collinear radiation inside the jet. It is
instructive to point out that these collinear functions are identical to the so-called measured
jet functions in the context of exclusive jet production in [15, 17, 19]. For the quark soft
functions, we have

1

A7 01V 8(7a — 7)Ya | X) (X [YaY3[0), (2.15)

Sq(Tas 1, Ry p) =
where Y,, is a soft Wilson line along the light-like direction n* of the jet, while Y is along
the conjugated direction n#. Similar to the collinear function, the operator 7; is defined
to count only the soft radiation inside the jet. The corresponding gluon soft function is
obtained by replacing the soft Wilson line by its counterpart in the adjoint color repre-
sentation and N, needs to be replaced with N2 — 1 in the equation above. An important
point worth mentioning is that the soft functions here only depend on two back-to-back
directions, i.e. n and 7. As pointed out in [56], this can be understood in the sense that
the collinear-soft modes obtained here are obtained from refactorizing jet functions, the
siAJFs, which are color singlets. This relatively simple structure of the soft function is an
important simplification compared to the more complex structure encountered for exclusive
jet production.

As we are going to show below by explicit calculations, the natural momentum scales
for the collinear and soft functions are given by

1 pPT T
pe ~pr(Ta)=e,  ps~ lez : (2.16)

On the other hand, H.;(z,prR, ) are hard matching functions related to the harder
radiation outside the jet, which have the natural momentum scale p; ~ prR and do not
depend on 7, as mentioned above.

2.3 Hard matching functions

The hard matching functions H.,;(z, pr R, u) are obtained by matching onto the refactor-
ized expression of the siAJFs in eq. (2.12). At NLO, they encode radiation that is of the
order of the jet scale O(prR) which is only allowed outside of the jet in the kinematic region
that we consider. They describe how an energetic parton ¢ coming from the hard-scattering
event produces a jet initiated by parton ¢ with energy w; and radius R carrying an energy
fraction z of the initial parton c¢. The same hard matching functions were obtained in the



context of other jet substructure observables for inclusive jet production [42, 43]. For both
kr-type and cone jets, the relevant expressions can be found in [43]. The O(as) expres-
sions of the functions H.—;(z, prR, u) contain single and double logarithms of the form
L=1In (;ﬂ / p%RQ). These large logarithms vanish for the scale choice p; ~ prR which sets
the initial scale for the evolution of the hard matching functions. After carrying out the
renormalization, one finds the following RG equations

d Lz z ,
M@Hi—)j(Z,pTRaH) => 7 Vik (;JDTRM) Hi—j (2, pr R, 1) - (2.17)
k z

Note that the integro-differential structure of the evolution equations is similar to the
standard DGLAP equations. However, here we have four coupled evolution equations
i — j. Also, the anomalous dimensions differ from the usual DGLAP evolution kernels.
We have

aS
Yij (2, pr R, ) = 8;56(1 — z) i(prR, 1) + ?Pji(z) , (2.18)

where the second term are the usual Altarelli-Parisi splitting functions which resum sin-
gle logarithms in the jet size parameter. The first (diagonal) term resums double loga-
rithms. The coefficients ;(prR, 1) contain a logarithmic term ~ L = In (,u2 /p%RQ) and
are given by

o(pT R, 1) = %CF <—L - 2) ; (2.19)
o(pTR, 1) = %CA (—L - 2@) : (2.20)

To summarize, the RG equations encountered here resum single and double logarithms of
the jet size parameter and the natural scale for the hard matching coefficients is given by the
jet scale py ~ prR. Eventually, we are going to combine the hard matching functions at the
jet scale with the collinear and soft functions in order to obtain the siAJFs G;(z, pr, R, Ta, jt)-
In section 2.7, we demonstrate that the RG equations of the thus obtained siAJFs are again
given by the usual DGLAP evolution equations associated with the resummation of single
logarithms in the jet size parameter. This is the expected typical RG equation for jet
substructure observables measured on an inclusive jet sample.

2.4 Collinear functions

The collinear functions C; (74, pr, i) in the refactorized expression of the siAJFs in (2.12)
take into account collinear radiation inside the observed jet. The collinear functions are the
same as encountered for exclusive jet production in [15, 17, 19]. As we have emphasized in
section 2.2, to leading power, the collinear function is insensitive to the jet boundary and,
hence, the value of R [19, 42]. The jet algorithm constraint ©,i, is only relevant for power
corrections of the form O(7,/R?). The results for the collinear quark and gluon functions



i =q,9 at NLO in n = 4 — 2¢ space-time dimensions are given by [16, 19]

CP 1y, pr. ) = () — [(%) (1)+ G+ ts) - 5<Ta>fi<a>]
+0 ()
~ {1 @+ 2+ G222 o)
e[ e
s () [(éﬁp)?_ai;m ( (7)2_a>] ) }

+0 (%) . (2.21)

Here we write the color factors as C; = Cg 4 for quarks and gluons respectively. The
functions f;(a) are given by

2Cr [7—13a/2 7°3 —5a+9a°/4
fqla) = 1_ _
a/2 4 12 l1—a
L - 2/2
0 X

- ! (1_$(1_$))2 n xl—a —r 1—-a
/Od:r 21— 1) In | +(1—u2) })

20 — 23 !
—TrN; (18a - / dr(2x(1—z) — 1) [z + (1 - x)l—“]ﬂ o (2.23)
0
and the constants ~; are

’yq = 72 s ’)/g = ? . (224)

The results including power corrections can be found in [15], which will be important in
order to make the connection between the siAJFs and the siJFs as discussed in section 2.6
below. Next, we consider the renormalization of the collinear functions. The bare and
renormalized quantities are related as

Czbare(Ta)pT) - /dTC/LZCi (Ta — T¢/17pT7 1)Ci(Ta, ) - (2.25)

The renormalization constants Z¢, are given by

Z,(as prs 1) = {1+%[%+Cf }}5()

- (1—(;7& (pu) [( )2 “TlaL ’ (2.26)




and for the renormalized collinear functions we find

i) = (14 52 )5(r) - ;;{ () [(]j;) 1] =
+
s (3G R () ) e

From the renormalized expression, the natural scale of the collinear function can be ob-

tained which is given by

1
o ~ pr(1e) 2o, (2.28)

where all large logarithms are eliminated at fixed order. The associated RG equation takes
the following form

d
/«L@Ci(Ta’pTa,U) = /dﬂ; Ye, (Ta — o, 01, 1) Ci(70, P15 1) (2.29)
with the anomalous dimensions
Qs 2—a, p? 2C; 1
. = — Ci—In— i 6 - — . 2.30
’)/C’L(TGJPT?#) T {( i1 _a np%“"yz) (Ta) 1—al\7, . ( )

2.5 Soft functions

The soft functions S; (74, pr, R, pt) in eq. (2.12) take into account soft radiation within the
identified inclusive jet. As mentioned above, the soft functions here correspond to the
collinear-soft modes obtained in the context of exclusive jet production [17]. The in-jet
soft radiation directly contributes to the measured jet angularity 7,. Different than the
collinear functions, they depend on the jet radius parameter R. To NLO, the soft functions
for quarks and gluons [15] are given by

bare asCy 1 1 1 1 MQQ’YERQ(l—a) €
; as ) 41, =0 a —
S22 (14, pr, Ry ) = 8(74) + e <1 _a> ¢ 71 2

aC 0(7a) (7r2 1> 1 pr [,uRl_“}
= 0(1a) + -3t
(1-— a)w{ 2 12 €2 € pR! PTTa |4

pr [pR'™® PTTa
-2 | 2.31
pR=a [ PTTa " <NR1Q>] + } 7 ( )

where we have omitted power corrections of the form O(R?). Analogous to the collinear

functions, the bare and renormalized soft functions are related in the following way

Spare(r, pr, R) = /dﬂi Zs,(1a — 74,07, R, 1t) Si(Ta, 07, R, 1) - (2.32)

For the renormalization constants we find

e 5(ra) 1 pr [pR
Zs (10 pp R t) = 6(74 _ - , 2.33
Si (T pr :U') (T ) + (1 _ CL)TF ( 2¢2 T € ,ulea |: PTTa + ( )

~10 -



and renormalized soft functions are given by

; 2 l1—-a
Si(Ta,pT,R, ,u,) = 5(771) + LC’Z <7T 5(7'(1) _9 pr |:MR n < PTTa >:| ) ‘
+

(1—a)r\ 24 pR=e | pr7, uR—e
(2.34)

From this expression we can read off the natural scale of the soft function which is given by

prT
s ~ Rl—i : (2.35)

The scale ug sets the starting scale for the evolution of the soft function. The renormalized
soft functions follow the RG equation

d
N@Si(Tavaa Ra M) = /dT(,z’YSl' (Ta - Tc,mpTv Rv M)Si(Tc,mpTa R, M) (236)

with the anomalous dimensions

G 1 1 2R2(1-a)
’YSi(TavaaRv ,U/) = 2 [2 <> —1In <'LL2 5(7_@) . (237)
+

™ l—a Ta j 2

2.6 Integrating the semi-inclusive angularity jet function

In this section, we demonstrate that the different functions of the refactorized siAJF's
Ge(z,pr, R, 7a, pt) in eq. (2.12) can be integrated over 7, in order to get back the siJFs
Je(z, pr R, 1) which appear in the factorization theorem for the inclusive jet cross section
(or the pr spectrum) [33, 35, 57]. Note that the factorization theorem for the jet angu-
larity differential distribution has a hard-collinear-soft structure in the kinematic regime
discussed above in egs. (1.2) and (2.12). Upon integration over 7,, we need to get back
to the inclusive jet cross section for which only a purely hard-collinear factorization is ap-
plicable. It is therefore interesting to study how this transition occurs when integrating
out the 7, dependence. In particular, the In R dependence of the different functions is of
interest and the obtained relation between the two cases may facilitate future higher order
calculations for the inclusive jet spectrum. For exclusive jet production, a similar relation
was obtained in [17, 58] between the “measured” and “unmeasured” jet functions. The
notion (un)measured jet function corresponds to jets where an additional measurement like
the jet angularity is or is not performed. For exclusive jet production, it was found that
soft and collinear pieces need to be combined correctly in order to obtain the “unmeasured”
jet function from the “measured” one upon integration. For the inclusive jet production,
the structure of the involved soft functions is much simpler as only in-jet soft radiation
contributes. The out-of-jet radiation is unconstrained and integrated over both for the
angularity differential case and inclusive jet production. As mentioned in the introduction,
the 7, differential cross section is calculated within SCET] like the inclusive jet cross sec-
tion and a simple comparison of the singularity structure is thus possible. This is different
than for example the inclusive jet substructure observables discussed in [42, 43] where an
additional rapidity regulator needs to be introduced (thus subtleties could arise [59, 60])
which corresponds to SCETY;.
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To simplify our discussion, we only consider the quark jet function and we choose
a = 0, to demonstrate

/ dro Gy(z, pr R, 70, 1) = J4(2, pr R, 1) . (2.38)
0

The refactorized form of the siAJFs G.(z, pr, R, 70, 1) in eq. (2.12) was derived in the limit
R < 1 and 1y < R?. Since also the siJFs are only known in the limit R < 1, we generally
neglect power corrections of the form O(R?). However, the second power counting used for
our refactorization, 79 < R?, requires that we include the first order power corrections of
the form O(7y/R?) when we perform the integration over 7g. This is because the maximally
allowed values for 7y are given by [15, 17]

R2
e for kp-type,

Ténax —

(2.39)

R? for cone algorithms .

Here we follow the procedure used in [17] for exclusive jet production and we include
the known one-loop power corrections when performing the integration. Alternatively,
in [58] the authors used a different power counting, 7o ~ R?, when deriving the angularity
measured cross section which can then be integrated up to the maximally allowed 75. Note
that only the collinear and soft functions discussed in sections 2.4 and 2.5 above depend
on 79, whereas the hard matching coefficients H;; of section 2.3 are 79 independent. The
collinear function receives power corrections of the form O(ry/R?) whereas the soft function
only has power corrections of order O(R?). As an example, we consider the collinear quark
function for kp-type jets. Note that the same conclusions hold for cone jets. One has [15]

Cq(TﬂapTy R7 ,U,) = Cé.p'(T(LpTa /’L) + Acz?lg(T()a R) ) (240)

where the first term is the leading power contribution as indicated by the superscript.
For completeness, we present here the NLO result for ¢ = 0 which can be obtained from
eq. (2.21) in section 2.4 above

a,Cp 3 2 7 2 2p2 /ﬂ
Cl.p. =4 d K} = = _ B/ A
" (10,pT, 1) = 6(70) + o { (10) <2€ TaTs ) e p? | mop%.]

3 p2 2 2 2 2
— L [“’2] +20T [“2 In (T‘”;Tﬂ . (241)
2p° Lopp) . m* LTopT 1 N
For kp-type algorithms, the power suppressed and algorithm dependent part for quarks at
NLO is given by

RE
- _ a,Cr | 0(10)0(7 — 10) 1—21 10
ACY" (10, R) = 5 { - 3z1 +21In P

+9(707_R72) (211170 + 3> } (2.42)

T0 R2 2
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where

1 70
T = 3 <1 — /1 - max) . (2.43)

7o

The quark soft function at NLO for @ = 0 can be obtained from eq. (2.34) and it is given by

aC; 2 1 2pr | pR
Si(10, pr, R, ) = 6(70) + o {5(70) (12 - 62> + < R [TOPT]+

4P ['uRln (m)} } (2.44)
pR [ prTo pRJ ]

By explicit calculation, one finds

/ dTO gq(Z7pTR> 70, /,L) =0. (245)

max
0

The results for the remaining integrals up to 73"** for the NLO collinear and soft quark
functions for kp-type jets are given by

T a.C 2 3 2 s max 2 7 max 2
/ dro CP (10, pr,p) =1+ — {2* - 1“( ; 2pT> + In? (Osz)
0

2 € 2¢ € W 7
3 7_maXpQ 7 71'2
| 0 T - — 2.46
2 “< 2 ) IR A (2.46)
Tanax 2
/ dro ACZ;T (10, R) = asCr <3 T 32+ 41n? 2> , (2.47)
0 271' 3
Ténax Q CF 1 2 TmaxpT
dro S Rou)=1+— —=4+ZIn(-2
A T0 q(7—07pT7 7“) + o { 62 + € H( MR
7T2 7_ma,xpT
— —2n? (2 . 2.4
+ 5 - (T 249

When we sum over all contributions and use the maximally allowed value for 7 for anti-kr
jets, 7% = R?/4, we obtain the in-jet contribution of the quark siJFs [33, 35] which is
equivalent to the “unmeasured” jet function for exclusive jet production [15]. For com-
pleteness, we repeat the result here

as (1 1 1 P+ R? 1. o (PaR?
Jq—>q9(27pTR7,u):6(1_Z) |:1+27T<62+26_61n< /1/2 +§ln 7#/2

3 PrR? 13 32
-Z1 — ). 2.4
5 n< 2 +5 1 (2.49)

Note that here we have only one type of logarithm left that can be eliminated at fixed

order by choosing u; ~ prR which is the jet scale. As a last step, we can now combine
this result with the expressions for the hard matching functions H,_,, and H,_,, which
correspond to out-of-jet radiation diagrams at NLO. See for example egs. (5.11) and (5.12)
of [43]. We are then able to verify

max

/ dTO gq(zva7R7 TO;/’L) = Jq(Z,pTR,,u) . (250)
0
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From egs. (2.45) and (2.50), we thus confirm the expected relation in eq. (2.38). Note that
after the integration over 7, the collinear and soft functions contain 1/€2 poles in eqs. (2.46)
and (2.48) above. After combining them into a single function in eq. (2.49), only one 1/¢
pole remains which is canceled by a corresponding term with opposite sign in the function
Hq—q- We are thus left with only single poles and as well as single logarithms for the
siJFs. By integrating over 179 we have thus demonstrated explicitly how the hard-collinear-
soft factorization theorem for the jet angularity distribution simplifies to the hard-collinear
factorization of the inclusive jet cross section. Note that such a simplification does not
occur for exclusive jet production where a hard-collinear-soft factorization is still required
for the 7y integrated result [15, 17].

2.7 Resummation

1

In this section, we perform the resummation of logarithms o? In?*(72=° /R) by solving
the respective evolution equations of the collinear and soft functions. In addition, we
demonstrate how the usual DGLAP equations are recovered for the evolution from the jet
scale uy ~ prR to the hard scale u ~ pp, which is associated with the resummation of
single logarithms in the jet size parameter o In™ R. First the collinear and soft functions
are evolved to the jet scale p; starting from their respective natural scales. We then
combine them with the hard matching functions of section 2.3. The evolution equations of
the thus obtained siAJF's turn out to be the typical DGLAP equations where the anomalous
dimensions are given by the Altarelli-Parisi splitting functions. All non-DGLAP terms of
the anomalous dimensions cancel out between the different functions of the refactorized
siAJFs. For all the relevant momentum scales, we refer to figure 1.

Here we choose to solve the evolution equations for the collinear and soft functions in
Fourier transform space. See for example [61]. We define the Fourier transform or position
space expression of a generic function F' depending on 7, as

F(z) = /OOO drae " F(1,). (2.51)

From eqgs. (2.21) and (2.31), we obtain the following position space expressions for the bare
collinear and soft functions at NLO

bare o Qs | o i g?—a
Cz (x>pTaM) - {1+ 2 |:f2((l)—|— c + 21 _a:|}

+ ;r{ ! ( Qﬁ;)) (o)
an ((+()) 1)) e
Spe(a,pr, R, ) = {1 + 2({1_CQ)7T (g - jz)}

osCi 1 ._MR1“> 9 (._uRl‘l) w2
4+ ——< ——In(ix —In“ ( iz —— 7, (2.53
(1-— a)Tr{ € ( pr pr 6 (2:53)
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where we introduced the shorthand notation = xe"®. The convolution products as for
example in egs. (2.29) and (2.36) turn into simple products in position space. We can thus
write the RG equations for the collinear and soft functions as

d
M@Ci<$7pT7 ,U’) = ’YCi (vaT7 :u’> Ci(x7pT7 /’L) ) (254)
d
IU’@S@'(mvaV R7 ,U,) =Ss; (x7pT7 R7 M) Si(x7pT7 R7 M) . (255)
The solution of these RG equations can be written as
iz dﬂl
Ci(z,pr, 1) = exp [/ 7 (z, pr, pb )] Ci(z,pr, pc) , (2.56)
po
B dy
Si(x7pT7 Rv#) = €xp |:/ Ml VS; (33’ pr, R y ):| Si(xvaa RHMS) ) (257)
us

where we evolved both functions to a common scale p starting from their characteristic
scales fic0, g, see eqgs. (2.28) and (2.35). The relevant anomalous dimensions are given by

( Yy PV 2CG i (2 o (2.58)
Ye,\ X, pT, 1) = Vi 1_a n\ r ) .
200,C; 1 _puR'e
s opr ) = =220 L (12 (2.59)
™ 1—a pT

Instead of evolving the collinear and soft functions separately to the hard scale yu ~ pr,
we instead evolve only to the jet scale uj ~ prR where they are combined with the hard
matching coefficients. We can thus write the distribution space expression for the evolved
collinear and soft functions by taking the Fourier inverse transformation

dx
/ %eleaCi(xva> M)Si(x’pTa R7 M)

dz iy "y
:/2 @ exp U lf(m(fcvm,u’)+vsi(f6»pT»R»M'))]
T “w 1%

J

KT ! KT !
X exp [/ lfm(w,pT,u’)} exp [/ s, (x,pr, Ry o )]
pe M us M

C S

X Ci(J:)pTaMC)Si(I)pTuRvMS) . (260)

Here we separated the evolution into two pieces. In the following, we demonstrate that
the exponential in the first line that takes into account the evolution between the scales
1y — p cancels with a corresponding part of the evolved hard matching functions. The
siAJFs then evolve according to the usual DGLAP evolution equations. Following [42], we
can write hard matching functions H;—,;(z, pr R, 1) as

Hi%j(z?pTRa ,u) =& (pTR7 ,u) Ci—>j(zv prR, :u) : (261)

The functions C;—,;(z, prR, 1) follow evolution equations where the anomalous dimensions
are given only by the Altarelli-Parisi splitting functions

d Qs dz'
d —Ci—j(2z,prR, 1) a Z/ : Ck%y( 2, prR, ), (2.62)
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and the functions &;(prR, 1) satisfy multiplicative RG equations

d
o In&(prR,p) = i(prR,p). (2.63)

Here the ; represent the purely diagonal pieces of the anomalous dimensions of the func-
tions H;,; as given in eq. (2.19). The fixed order results for both C;_,;(z,prR, ) and
Ei(prR, ) can be found in [42]. The solution of the multiplicative RG equation for & (pr, i)
can be written as

®dy
Ei(prR, 1) = E(prR, pug) exp (/ ij i(PTRM’)) : (2.64)
I

J

Note that & (prR, p1y) = 1 when evaluated at the jet scale which sets the initial condition for
the evolution. Moreover, we find that the remaining exponential factor from the evolution
cancels with the corresponding part of the evolution of the collinear and soft functions
between the scales pj; — p in eq. (2.60), i.e. we have

Hody!
exp </ 7:“/’ [ Z’(pTR,,U//) + YC; (.I',pT,,U/) + VS; (x7pT7 R7 M/)]) =1. (265)
i

J

To summarize, we can thus write the siAJFs G.(z,pr, R, Tq, 1) in terms of the evolved
functions as

dz . h dyl
Ge(z,p1: R, Ta, 1) ZZCHi(z,pTR,u)/Qe “ exp U lfVCi(%PTaH/)}
i & po M
g dl/ ,
X eXp |:/ ?’Ysi(xupTa R,M ):| Ci(x7pT7 MC)S’i(x7pT7 R7 MS) .
Hs
(2.66)

From eq. (2.62) we find that the siAJFs follow the standard DGLAP evolution equations
between the scales pjy — p which is associated with the resummation of single logarithms
in the jet size parameter R.

3 Phenomenology for pp — (jet 74) X

In this section, we present numerical result for the ratio F(74; 7, pr, R) as defined in eq. (1.1)
and repeated here for convenience

F(ta;n,p7, R) =

pp—(jet 74) X pp—jet X
do /da (3.1)

dndprdr, dndpr

The complete factorization theorem for the 7, differential cross section can be found in
eq. (1.2) above and the final result for the resummed siAJF's is given in eq. (2.66). The
single-inclusive jet cross section that appears in the denominator is obtained by replacing
the siAJFs with the siJFs, i.e.

gc(z,pTR7 Tas /L) — JC(zapTRa ,LL) . (32)
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Figure 2. The jet angularity measured on inclusive jets in the pr range 200 — 250 GeV at central
rapidity |n| < 1.2 at /s = 7TeV using the anti-kr clustering algorithm with R = 0.4. As repre-
sentative examples, we choose a = —0.5, 0, +0.5 from left to right. The scale uncertainty band is
obtained as discussed in the text.

Throughout this section, we work at NLL accuracy for the resummation of logarithms
1

a”In" R and a”In?"(727° /R). Note that in section 2.7 above, we derived the resummed
expressions in position space. For the numerical results presented in this section, we take
the inverse transformation of the position space expression. As a cross-check, we also
performed the numerical calculations using an expression of the resummed result derived
in momentum or distribution space and found full agreement. The In R resummation is
performed with the help of the numerical codes developed in [62, 63].

3.1 Non-perturbative shape functions and profile functions

For small values of 7,, the soft scale pg ~ pr7,R*~! runs into the non-perturbative regime.
We parametrize this non-perturbative contribution with a shape function SNF(7,). The
new soft function is then given by a convolution of the purely perturbative result with

SNP(7,), i.e.
Si(TaapTa Ra MS) — /d’r(/; Si(Ta - T(/zva7 R:,US) Sle(TcIL) . (33)

We adopt the following parametrization for the non-perturbative shape function [64]

a—1\ A-1 a1 _ 2
NP7y = N(A B, A) <me > o (_ <me B> ) 5.4)

A A A

where A, B, and A are parameters. The ratio of the soft scale ug = pr7,R* ' and A
determines where the non-perturbative effects start being important. The parameters B
and A determine the location of the peak and the rate how fast the non-perturbative
effects are turned off when the soft scale is in the perturbative regime, respectively. We
make the following choices A = 0.4, A = 2, and B = 0.1 for our numerical calculations as
presented below. In the limit that the soft scale is far from the non-perturbative regime,
or equivalently for large 7,, the cross section needs to approach the purely perturbative
result. This is ensured by requiring that the non-perturbative shape function satisfy the
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Figure 3. Same as figure 2 but for jets with a transverse momentum of pr = 50 — 100 GeV.

following normalization condition

/ dra SNP(7,) = 1, (3.5)
0

from which the normalization factor N (A, B, A) in eq. (3.4) is determined. Note that we
use the same shape functions for quarks and gluons. In order to ensure that as(ug) does
not run into the Landau pole for small values of 7,, we freeze the soft scale ug at some value
above the Landau pole. This can be accomplished by making use of profile functions [65].
We follow [64], by making the following choice to smoothly interpolate between regions I
and II where the running of ug is turned off

xo[1 + (x/20)? /4] x < 2z region I,
fproﬁle(x) = ) (3.6)
T T > 2x0 region IT.

We then define our canonical scale choices for the soft and the collinear scale as

can PTTa
Hg = fproﬁle(Rl_a> s (37)
can can # 177&
pd" = (ug™)>== (prR)>== (3.8)
where we make the choice
xzo = 0.25 GeV.. (3.9)

By making use of these profile functions, the value of the soft scale g smoothly approaches
the lower value xy and does not run into the Landau pole even in the limit 7, — 0. Note
that in eq. (3.7) we wrote the canonical collinear scale choice @™ in terms of the canonical
choice for the soft scale uG™". In the next section, we discuss scale variations for which we

always keep this relation between puc and pg.

3.2 Scale variations

We vary the soft, jet and hard scales by factors of 2 around their canonical choices
ws ~ pr7a RO, wy ~ prR, and pug ~ pr where we choose to keep the relation 1/2 <
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Figure 4. Soft and collinear scales ug and puc plotted as a function of 7,. We use the profile
functions in eq. (3.6) and the scale variation is shown as discussed in section 3.2.

(i /™) /(g /p5™) < 2 between the different scales, where 4,7 = S,J,H. As men-
tioned above, the scale for the collinear function ¢ is varied together with soft scale
is, see eq. (3.7). The variation of pg also must be turned off as ug approaches xy. To

freeze the variation of pug, we define
ps = (1+ 70 (prra R — 220)) g™, (3.10)

where the values r = 0, —1/2, and 1 correspond no variation, 1/2, and 2 times the canonical
scale, respectively. The function 6. is defined as [19]

_ 1
" Tvexpl—(e—a)jd’

e (v — ') (3.11)
which approaches the standard theta function §(z—z’) in the limit € — 0. For our numerical
studies presented in the next section, we choose € = 0.2 GeV. This way, the variation of
the soft scale g ~ pr7,R*! is smoothly turned off when it is below the value of 2z(. In
figure 4, we show the soft and collinear scales ug and pc as a function of the jet angularity
variable 7, using the profile functions in eq. (3.6). In addition, we illustrate how the scale

variations are smoothly turned off as g approaches the non-perturbative regime using the
eq. (3.10).

3.3 Phenomenology at the LHC

We now present numerical results for the NLL resummed jet angularity distribution for
inclusive jet production at the LHC pp — (jet 7,)X. Throughout this section, we consider
jets that are reclustered using the anti-kp algorithm [66] and we use the CT14 PDF set
of [67]. As an example, we consider a center of mass energy of /s = 7TeV and we require
the observed jets to be at central rapidity |n| < 1.2. In figure 2, we present numerical
results for inclusive jets in the transverse momentum range of 200 < pr < 250GeV. In
the three panels from left to right, we show the jet angularity distribution for a = —0.5, 0,
and 0.5. Analogously, in figure 3 we show the results for jets with 50 < pr < 100 GeV. We
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Figure 5. The jet angularity distribution for ¢ = 0 with (red) and without (blue-green) the non-
perturbative shape function. We use the same kinematical setup as in figure 2 as an example.
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Figure 6. Jet angularities for the same kinematics as in figure 2 and a = —0.5, 0, +0.5 from left

to right. We use the canonical scale choices. The total cross section (blue) is separated into quark
(red) and gluon (green) contributions.

include non-perturbative effects as outlined in section 3.1 above and the scale uncertainty
bands are obtained following the discussion in section 3.2.

Jet angularity measurements capture different features of the radiation pattern inside
a jet. The jet angularity measurement with a higher value of the parameter a is more
sensitive to collinear radiation. The increased sensitivity to collinear physics as a — 1
causes the jet angularity to become sensitive to soft-recoil and the cross section cannot be
factorized anymore when a further increases to 2. For a > 2, the jet angularity cross section
is infrared-collinear (IRC) unsafe. The growing sensitivity to collinear physics results in
a larger scale uncertainty band. In other words, the cross section becomes less and less
“factorizable”. We also find that the height of the peak is reduced as a increases. In
addition, one generally finds that the distribution is peaked at smaller values of 7, at
higher jet transverse momenta. At smaller pp, the jets are more dominated by gluons and
they are broader.

Currently, there is no data available for jet angularity distributions from the LHC
that would allow us to determine the parameters of our model for the non-perturbative
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Figure 7. Perturbative results for the jet angularity distributions for a = —0.5, 0, +0.5 using the
same kinematics as in figure 2 at the canonical scale choices. The solid (dashed) lines show the
cross section with (without) In R resummation.

shape function from data. However, we expect that the corresponding measurements are
feasible and that they can provide valuable information about non-perturbative dynamics
and more generally about QCD factorization at present day hadron colliders. In order
to gauge the relevance of non-perturbative effects, we show the result for the a = 0 jet
angularity distribution with (red) and without (blue-green) the non-perturbative shape
function in figure 5. As an example, we use the same jet kinematics as in figure 2 and the
details of the non-perturbative model were discussed in section 3.1 above. We observe a
shift of the peak toward higher values of 7,. In addition, the height of the peak increases
by roughly ~ 10% once the perturbative result is convolved with the non-perturbative
shape function. The residual scale uncertainty band gets widened in particular in the peak
region. In the tail region at large 7, the two results converge as they should.

Finally, we also study the importance of the In R resummation by evaluating the hard
matching functions H._,; at the hard scale and by evolving the collinear and soft functions
to the common scale o ~ pp. In figure 7 we show perturbative results for a = —0.5,040.5
using the same kinematics as in figure 2 at the canonical scale choices. The solid (dashed)
lines show the cross section with (without) In R resummation. We observe that the In R
resummation leads to a suppression of about ~ 2% and ~ 17% for R = 0.8 and R = 0.4,
respectively. As expected the In R resummation becomes more important for small values
of R and does not cancel completely in the ratio F' in eq. (1.1).

3.4 Quark-gluon discrimination

The discrimination of quark and gluon jets is an important goal of jet substructure tech-
niques. One key motivation is that signatures of physics beyond the standard model at
hadron colliders are often expected to be quark-heavy. See [68, 69] for an overview of
quark-gluon tagging techniques. Modern classifiers include information from different TRC
safe discriminant variables, hadron multiplicities or more recently also machine learning.
See for example [70-80] and references therein. In this section, we study the potential
applications of jet angularity measurements for quark-gluon discrimination from first prin-

- 21 —



ROC curve 100%
(1,1) = Quark Jet,

] [ 3 100%

Gluon
Bettty'

Quark Jet Efficiency Gluon Jet Rejection

Rejection

- >
+ >

Cross Section

Gluon Jet Rejection

=

1
Observable Quark Jet Efficiency

Figure 8. As the sliding bar in the left figure moves through the values of some observable, here
Ta, the amount of rejected background (gluon jets) and signal (quark jets) are recorded as points
on the ROC curve in the right figure. The point (1,1) in the upper right corner of the ROC curve
plot corresponds to 100% background rejection while keeping 100% of the signal jets.

ciples analytical calculations in QCD. We start by separating the jet angularities into
quark and gluon contributions. We show the cross section for the canonical scale choices in
figure 6 where the total cross section (blue) is separated into quark (red) and gluon (green)
contributions. We observe that the gluon jet peaks at larger values of 7, than the quark
jet. As an example, we use the same kinematics as in figure 2, i.e. 200 < pp < 250 GeV
and |n| < 1.2. We consider a Receiver Operating Characteristic (ROC) curve as illustrated
in figure 8. ROC curves show how well an observable discriminates between signal and
background. Here we consider gluon jets as background and quark jets as signal. As the
sliding bar separating quark jet efficiency and gluon jet rejection changes as a function of
the observable, the resulting fractions are recorded on the ROC curve plot. As shown in
the figure, the closer the ROC curve approaches the point (1, 1), the better the discrimina-
tion is between signal and background. An interesting aspect of using the jet angularities
considered in this work is that we can study the quark-gluon discrimination efficiency as
a function of the continuous variable a. See also [70]. In addition, since in- and out-of-
jet radiation contributions are consistently taken into account in our framework, a direct
comparison of data and analytical calculations from first principles in QCD is possible.
The ROC curves for jet angularities are shown in figure 9. We show the result for four
different values of a = —0.5, 0, +0.5 and +0.8. We observe that the quark-gluon discrimi-
nation is improved for a — 1, where a = 1 corresponds to the limit where the established
factorization theorem breaks down. When a < 1, the jet angularity cross section is “less
under perturbative control” and non-perturbative effects start to dominate. In fact, we
find that the ROC curve for a = 0.8 significantly depends on the non-perturbative model
for the shape function as discussed in section 3.1. We thus observe a tradeoff between
having a better quark-gluon discriminant and the ability to perform (purely) perturbative
calculations. For jet angularities, the transition between the two regions can be studied as
a function of the continuous parameter a and eventually an ideal intermediate value may
be chosen.
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Figure 9. The ROC curve for jet angularities based on analytical first principles calculations in
QCD for four different values of a = —0.5, 0, +0.5, +0.8. The jet angularities are measured on an
inclusive jet sample with 200 < pr < 250GeV and |n| < 1.2 at /s = 7TeV as shown in figures 2
and 8 above.

4 Summary and outlook

In this work, we considered jet angularity measurements 7, for inclusive jet production. We
presented a corresponding factorization theorem, where the jet angularities are measured
on an inclusive jet sample different than exclusive jet production considered earlier in the
literature. All necessary functions were calculated to NLO which allowed us to determine
the associated RG equations and anomalous dimensions. By solving the RG equations, we
were able to jointly resum logarithms in the jet size parameter R and the jet angularity
7o to NLL accuracy. The obtained structure for the inclusive jet angularity measured
cross section allowed for new insights also into the factorization theorem for inclusive jet
production for which the relevant semi-inclusive jet function was obtained upon integration
over 7,. We presented first numerical results for LHC kinematics for which we used profile
functions and a shape function in order to systematically treat non-perturbative effects.
We estimated the potential impact of jet angularities for quark-gluon discrimination by
presenting ROC curves. We found that for larger values of a — 1, the discrimination
power between quark and gluon jets is improved while the sensitivity to non-perturbative
effects is increased. In the future, it will be worthwhile to study the impact of NGLs
on the jet angularity distribution. By including NGLs, it will be possible to obtain the
complete NLL resummed result. For example, in order to study the impact of NGLs, it
will be interesting to compare jet angularities measured on both inclusive and exclusive jet
sample. Another possible extension is to study groomed jet angularity distributions [81].
The inclusive jet angularity distribution allows for a wide range of applications at the LHC
including both proton-proton and heavy-ion collisions. We expect that the corresponding
experimental measurements are feasible with the current and future data sets taken at
the LHC. Finally, it will be interesting to explore applications of inclusive jet angularity
measurements at RHIC and a future EIC [82, 83].
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