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Abstract We investigate the use of artificially increased ion and electron kinetic scales in global plasma

simulations. We argue that as long as the global and ion inertial scales remain well separated, (1) the overall

global solution is not strongly sensitive to the value of the ion inertial scale, while (2) the ion inertial scale

dynamics will also be similar to the original system, but it occurs at a larger spatial scale, and (3) structures at

intermediate scales, such as magnetic islands, grow in a self-similar manner. To investigate the validity and

limitations of our scaling hypotheses, we carry out many simulations of a two-dimensional magnetosphere

with the magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) model. The PIC model covers

the dayside reconnection site. The simulation results confirm that the hypotheses are true as long as

the increased ion inertial length remains less than about 5% of the magnetopause standoff distance.

Since the theoretical arguments are general, we expect these results to carry over to three dimensions.

The computational cost is reduced by the third and fourth powers of the scaling factor in two- and

three-dimensional simulations, respectively, which can be many orders of magnitude. The present results

suggest that global simulations that resolve kinetic scales for reconnection are feasible. This is a crucial step

for applications to the magnetospheres of Earth, Saturn, and Jupiter and to the solar corona.

1. Introduction

Plasma systems are often characterized by large separation of spatial and temporal scales. In the magneto-
spheres of Earth, Saturn, and Jupiter, or in the solar corona, the ion kinetic scales characterized by the ion
inertial length di are orders of magnitude smaller than the global scales of the system dg characterized by
themagnetopause standoff distance or some fraction of the solar radius. Electron scales characterized by the
electron skin depth de are even smaller. Systems with a broad range of temporal and spatial dynamical scales
present observational, theoretical, and computational challenges.

In some special cases, for example, shock waves in an ideal neutral gas, the global behavior does not depend
on the details of the small-scale physics, because the jump conditions across a hydrodynamic shock are
fully determined by the conservation of mass, momentum, and energy. For more complicated systems, such
as magnetohydrodynamics with anisotropic ion pressure, the conservation laws constrain the jump condi-
tions, but the pressure anisotropy behind the shock cannot be determined without knowledge of small-scale
processes.

Magnetic reconnection is evenmore complex and challenging. In general, the global dynamics roughly deter-
mines the possible locations where reconnection can occur, but reconnection is a dynamic process with
complex behavior. Even for the simplest magnetohydrodynamic description of plasma, the energy conserva-
tion law only tells us that the magnetic energy will be converted into other forms of energy, but it does not
predict, in general, how fast the energy conversionwill occur, or how the converted energywill be distributed
between bulk kinetic and thermal energies. If we allow for pressure anisotropy and separate electron and ion
temperatures, the outcome of the reconnection process is even less determined by simple conservation laws,
and more dependent on the small-scale processes.

While magnetic reconnection occurs on the kinetic scales, it is well known that reconnection can globally
affect systems of much larger size. Some typical examples are the magnetospheres of planets or the solar
corona, where reconnection plays a crucial role in global phenomena, such as magnetic storms and coronal
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mass ejections. If we are interested in the interplay between the global plasma system and the reconnection

process, it is a natural question to ask how the behavior of the system depends on the ratio dg∕di . Clearly, if

dg∕di is a relatively small number (order of 10 or less), the kinetic effectswill have a direct impact on the global

solution, even if no reconnection occurs. For example, in Ganymede’s magnetosphere dg∕di ≈ 10 and indeed

the ideal or resistiveMHDsolutions that neglect theHall effect areglobally different from theHallMHD (Dorelli

et al., 2015) or the magnetohydrodynamics with embedded particle-in-cell (MHD-EPIC) solution (Tóth et al.,

2016). On the other hand, if dg∕di is a very large number, then the kinetic effects will be mostly limited to the

reconnection region. There can be other kinetic effects that may act on a larger scale (for example, foreshock

waves andenergeticparticles), but in thisworkweconcentrateon systems,where thekinetic effects of interest

are limited to the reconnection process.

Themain question we are going to address in this work is how the coupled global-kinetic system depends on

the value of dg∕di when it is large versus extremely large, and howwe can change this scale separation. Let us

examine the various kinetic length scales and see if there is a way to change them. The smallest plasma scale,

where significant charge separation may occur, is given by the Debye length (in SI units) as

𝜆D =

√√√√ 𝜖0v
2
th,e

q2
e
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me
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whereme is the electron mass, qe > 0 is the elementary charge, ne and 𝜌e are the electron number and mass

densities, respectively, 𝜖0 is the permittivity of vacuum, vth,e =
√
pe∕𝜌e is the electron thermal velocity, and pe

is the electron pressure.

The change ofmagnetic topology during collisionlessmagnetic reconnection occurs in the electron diffusion

region (Vasyliunas, 1975). For antiparallel reconnection the characteristic size is the electron skin depth
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where 𝜇0 = 1∕(c2𝜖0) is the magnetic permeability of vacuum and c is the speed of light, so 𝜆D = (vth,e∕c)de.

If the electron thermal velocity is much less than the speed of light, the Debye length is much smaller

than the electron skin depth. A standard trick to reduce this separation of scales is to artificially reduce the

speed of light to a value that is still larger than the thermal and bulk velocities, but not many orders of

magnitude larger.

When there is a significant guide field, the electron scales are determined by the electron gyroradius

re =
vth,eme

qeB
=

me

qe

√
pe∕𝜌e

B
(3)

where B is the magnetic field strength. When the electron thermal velocity vth,e equals the electron Alfvén

speed vA,e = B∕
√
𝜇0𝜌e, then the electron gyroradius re equals the electron skin depth de, so in the vicinity of

reconnection sites, re and de are typically comparable.

The characteristic scales for kinetic ion physics are given by the ion inertial length

di =

√
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niq
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and the ion gyroradius

ri =
vth,imi

qiB
=
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qi

√
pi∕𝜌i

B
(5)

These are
√
mi∕me times larger than the corresponding electron length scales de and re, respectively, assum-

ing that ni = ne (which implies 𝜌i∕𝜌e = mi∕me), qi = qe and pi = pe. For a proton-electron plasma

di∕de =
√
1, 836 ≈ 43. This ratio already presents a daunting challenge to computational models, especially

in three dimensions (3-D), since one needs to model hundreds of di in each spatial dimension. A standard

trick is to artificially reduce the mass ratio to a smaller value, anywhere from 25 and higher. Such a technique

is only allowable if using an unrealistic ion to electron mass ratio does not greatly change the reconnection
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process. There have been numerous studies (Hesse et al., 1999; Lapenta et al., 2010; Ricci et al., 2004; Shay &

Drake, 1998; Shay et al., 2007) that found only a relatively weak dependence of the reconnection process on

themass ratio. In practice almost all numerical studies, especially in 3-D, use a reduced ion-electronmass ratio.

Here we propose to use a similar trick to change the ion and electron scales relative to the global scale dg.

The kinetic length scales defined in equations (1)–(5) are all proportional to the mass to charge ratiosme∕qe
and mi∕qi . We will therefore increase the ion and electron mass to charge ratios by a kinetic scaling factor f

while keeping the MHD quantities, the mass densities 𝜌e and 𝜌i , the pressures pe and pi , the bulk velocities ue

and ui , the magnetic field B, and the various constants 𝜖0, 𝜇0, and c unchanged. Note that the characteristic

speeds (bulk velocity, thermal velocity, Alfvén speed) are not affected by the scaling. In fact, the proposed

kinetic scaling has no effect on ideal or resistive MHD.

As long as the scaled dg∕di ratio remains large enough, it is plausible that the global solution might not be

sensitive to the actual value of di due to the separation of scales. We hypothesize that

1. the solution on the global scales does not depend sensitively on f ;

2. the solution on the kinetic scales is similar for different values of f , but the spatial and temporal scales are

proportional to f ; and

3. structures forming at the kinetic scales and growing to the global scales follow a self-similar growth at the

intermediate scales.

In this paper we will conduct numerical experiments to see whether these statements hold true or not and

what their limitations are. These numerical experiments require that the model captures both the global

and the kinetic scales. With a pure kinetic code the simulations would be computationally extremely expen-

sive, even in two spatial dimensions (2-D). Fortunately, the simulations can be performed with the MHD-EPIC

method (Daldorff et al., 2014; Tóth et al., 2016): the MHD model provides the global solution while the

embedded PIC model simulates the reconnection region. The MHD model BATS-R-US (Powell et al., 1999;

Tóth et al., 2012) employs a block-adaptive mesh refinement (AMR) for the sake of efficiency, while the PIC

model is the implicit particle-in-cell code iPIC3D (Markidis et al., 2010) that uses a semi-implicit scheme

(Brackbill & Forslund, 1982) to allow larger grid cell sizes and time steps than the explicit PIC algorithms.

The MHD and PIC models are efficiently coupled through the Space Weather Modeling Framework (SWMF)

(Tóth et al., 2005, 2012, 2016).

Independent of the numerical method employed, the ratio of the global and kinetic scales has a tremendous

impact on the computational cost of global simulations that account for kinetic effects. The required grid cell

size is proportional to f , so the number of grid cells and macroparticles is proportional to f−D, where D is the

number of spatial dimensions. In addition, the time step limited by stability and/or accuracy constraints is also

proportional to f , so the computational cost of advancing the simulation to a given simulation time is reduced

by a factor of f 3 in 2-D and a factor of f 4 in 3-D. In addition to the theoretical interest in the scaling properties of

the reconnection process, these computational benefits are amajor motivation of our work. Using the kinetic

scaling makes it possible to perform 3-D global simulations of Earth’s magnetosphere, while using a kinetic

model to capture the reconnection process, as demonstrated in our companion paper by Chen et al. (2017).

In the following sectionswewill briefly describe the theoretical arguments behind our scaling hypothesis, the

numerical models, the simulation setup and then discuss the results of the numerical experiments.

2. Theoretical Arguments

Here we present some theoretical arguments in support of our hypothesis. This is not intended to be a proof,

rather, we argue that the scaling is plausible.

2.1. Global Scales: Insensitivity

The main role of magnetic reconnection in the global dynamics of Earth’s magnetosphere is to drive magne-

tospheric convection. The aspect of reconnection that determines the global response is the reconnection

rate. In particular, if reconnection is slow or nonexistent, such as for due northward interplanetary magnetic

field (IMF) in the absence of a dipole tilt, the magnetospheric response is minimal. If reconnection is present

and efficient (such as when the interplanetary magnetic field has a southward component), then the Dungey

cycle ofmagnetospheric convection occurs. Thus, the bareminimum requirement to capture the global-scale

response is an accurate representation of the reconnection rate. Similar arguments apply to other global

systems that involve reconnecting magnetic fields.
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A significant amount of research has gone into determining the reconnection rate for collisionless plasmas.

It has been established by several kinetic modeling studies of symmetric antiparallel reconnection in a rect-

angular two-dimensional domain (Birn et al., 2001; Huba & Rudakov, 2004; Schoeffler et al., 2012; Shay et al.,

1999) that the steady state reconnection rate, quantified as the reconnection electric field E, is about 0.1

times the reconnecting magnetic field strength Br times the Alfvén speed vAr = Br∕
√
𝜇0𝜌 outside the current

sheet. Insight on why the normalized reconnection rate E∕(BrvAr) ≈ 0.1 seems to be independent of system

parameters has only been achieved recently (Liu et al., 2017).

At the dayside magnetopause, the reconnection is asymmetric with different magnetic field strengths, den-

sities, and temperatures on the two sides of the reconnection region. It was shown that the asymmetric

reconnection rate, in 2-D antiparallel reconnection in a rectangular domain, is also 0.1 when normalized to

a suitably defined hybrid Alfvén speed and magnetic field (Cassak & Shay, 2007). There is also observational

support for this prediction (Mozer & Hull, 2010).

Thus, both for symmetric and asymmetric reconnection, the reconnection rate is expected to be of the form

E ∼ 0.1vArBr . This is important for the present study, because both Br and the Alfvén speed vAr are purely

MHD-scale quantities that are not affectedby the kinetic scale governedby f . In otherwords, the reconnection

rate is not sensitive to f , and therefore the overall global-scale solution will be insensitive to f .

The other important product of reconnection that can affect global dynamics is the production of magnetic

islands. This process starts with the tearing instability. The growth rate of the individual islands depends on

the reconnection rate. In addition, the islands may coalesce and merge. The interaction of magnetic islands

is a complex and somewhat chaotic process for an infinite (e.g., Harris type) current sheet, because in that

system there is no global scale along the current sheet (other than the size of the simulation box) that would

organize the dynamics. The situation is different when the current sheet has a finite length, because it is part

of a global system and there is significant plasma flow along the current sheet.

In the dayside magnetosphere, for example, the curvature of the magnetopause and the magnetosheath

flows has a strong influence on the motion of the magnetic islands, or in magnetospheric terms, the flux

transfer events (FTEs). The FTEs are swept either northward or southward by the bulk flow, and their growth

stops when they reach the end of the current sheet at the cusps. Similarly, in the magnetotail, the overall

plasma convection will push the magnetic islands, often called plasmoids, either tailward or planetward, and

their time to grow is limited by the extent of the tail current sheet.

The reconnection rate governing the growth rate, and the plasma flow speed and the extent of the cur-

rent sheet determining the lifetime of the magnetic islands are independent of the kinetic scaling factor f ;

therefore, we expect the global dynamics to be insensitive to the value of f .

2.2. Kinetic Scales: Proportionality

If weplace ions and electrons into abox, the spatial scale of the various structures formedby themwill depend

on the electron and ion scales (𝜆D, de, re, di , and ri) and the initial and boundary conditions.

Kinetic simulations often employ periodic boundary conditions. If the computational domain is large enough

and the initial conditions do not have any scales, for example, the plasma has uniform density, pressure, and

velocity and the magnetic field is also constant, then the solution will scale purely with the electron and ion

length scales that are all proportional to the mass per charge ratios me∕qe and mi∕qi . The same holds if the

initial conditions are not uniform but contain a discontinuity, such as a sharp current sheet, because a discon-

tinuity does not introduce any length scale. In fact, most kinetic simulation results are presented in length

units normalized to di and time normalized to the inverse of the ion cyclotron frequency. Of course, one may

introduce a global scale into the system through the initial conditions, but herewe are interested in structures

formed spontaneously by the reconnection process, and the size of those structures will scale with the kinetic

length scales.

When the box is part of a global system, the boundary conditions applied to the box will have an influence.

We assume that the boundary conditions are well described by MHD quantities, so the deviations from a

Maxwellian distribution are relatively small at the boundaries. In the simplest case the boundary conditions

are homogeneous (constant density, velocity, pressure, andmagnetic field), so noglobal scales are introduced

into the system. A slightly more complicated example is when there is a discontinuity in the boundary con-

ditions, for example, a current sheet. Again, no global length scale is introduced. In the most general case, of

course, the boundary and initial conditions will have gradients and higher derivatives that introduce a global

TÓTH ET AL. SCALING THE ION INERTIAL LENGTH 10,339



Journal of Geophysical Research: Space Physics 10.1002/2017JA024189

scale dg. Our hypothesis states that as long as 𝜀 = di∕dg is much smaller than 1, the spatial scales of the

reconnection dynamics will be predominantly determined by di and de and will not be sensitive to dg.

2.3. Intermediate Scales: Self-Similarity

We argued in the previous two subsections that the global dynamics are determined by MHD quantities,

while the kinetic scales are proportional to f . What about structures that start at the kinetic scales and grow

to the global scales? For example, magnetic islands (flux transfer events, plasmoids) are initiated at the kinetic

scale that is proportional to f , and they grow in size to the global scales. Depending on f , the FTEs will be at

different stages of their evolution (characterized by their size s relative to di) when they reach the global scale

(s ∝ dg). The only way these structures will look similar at the global scale is if their evolution is self-similar at

the intermediate scales.

Self-similar solutions arise naturally for PDEs that have no inherent length and time scales. If the initial condi-

tions do not define a length scale, for example, it consists of two uniform states separated by a discontinuity

(shock tube problems), the solution will be self-similar. The Euler equations and the ideal MHD equations are

twoexamples for PDEswithout any inherent length or time scales. TheNavier-Stokes equations have an inher-

ent length scale due to viscosity, and similarly, the Hall MHD equations have an inherent length scale of the

ion inertial length. As long as these are very small, we may expect that the evolution will become self-similar

once the size s is much larger than the kinetic scale di but still small relative to the global scales dg. For the

Vlasov equations there are two inherent length scales, the ion scales characterized by di and the electron

scales given by de, but the above argument still applies as long as the ratio di∕de =
√
mi∕me is kept constant

while changing f , or if they are also well separated: di ≫ de.

In the collisionless reconnection process multiple magnetic islands of different sizes form near each other,

they interactwith each other and oftenmerge to form larger islands. This is amuchmore complicated process

than the growth of an individual island. Still, it is plausible to assume that the end result of these interactions

at a fixed intermediate scale will look similar independent of the scaling of the much smaller kinetic scales.

Similar ideas of self-similar plasmoid-driven reconnection have been suggested and numerically studied by

Nitta et al. (2002), Schoeffler et al. (2012), Shibata & Tanuma (2001), and Tenerani et al. (2015).

3. MHD-EPIC Model

The magnetohydrodynamics with embedded PIC algorithm (MHD-EPIC) (Daldorff et al., 2014) couples an

MHD and a PICmodel both ways. First, the MHDmodel produces a solution in the full computational domain

that covers the global system. Next, one or more PIC regions are selected based on the sites of interest, such

as reconnection sites. The PIC model is initialized with the MHD solution in the PIC regions by generating

macro-particles with the proper mass density, velocity, and pressure assuming Maxwellian distribution func-

tions. From this point on, the PIC model solves the Vlasov-Maxwell equations as usual, and the MHD solution

is completely overwritten inside the PIC regions based on themoments of the distribution functions obtained

by the PIC model. The boundary conditions of the PIC model are provided by the MHD model at the bound-

aries of the PIC regions that are placed far enough from the reconnection sites so that theMHDapproximation

is valid. TheMHD and PICmodels exchange information periodically until the simulation is stopped. The cou-

pling is performed in an efficient manner using parallel message passing through the SWMF. The BATS-R-US

grid blocks that interact with the PIC region(s) are distributed evenly among the processors to improve the

load balance. Typically, the coupling uses only a few percent of the total computational time.

The original MHD-EPIC algorithm (Daldorff et al., 2014) has been extended in several ways:

1. The MHD and PIC grids do not need to be aligned or have the same resolution.

2. The MHD grid can be non-Cartesian.

3. The MHD and PIC models may take different time steps.

4. Multispecies and multi-ion (Hall) MHD can be coupled with the PIC model.

The first two improvements allow more flexibility in the choice of the spatial discretization for the MHD

model and also in the placement of the PIC region in the global domain. The third improvement makes the

model more robust as it allows both models to adjust their time steps based on their respective stability

and/or accuracy conditions. In fact, the iPIC3D code now has the option to adjust its time step based on the

electron particle velocities and the cell size asΔtPIC = Cmin(ΔsPIC ∕ve,rms)whereΔsPIC is the smallest dimen-

sion of the PIC grid cells and ve,rms is the root-mean-square of themacroparticle electron velocities calculated
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in each PIC grid cell. Theminimum is taken over all the PIC grid cells. The C coefficient should be less than one

to maintain accuracy. We set C = 0.4 in all simulations. The BATS-R-US code also sets the time step based on

the stability conditions. The coupling frequency is usually set to be close to the typical value of the larger of

the MHD and PIC time steps.

The last improvement means that the MHD-EPIC model now allows the MHD code to solve the multispecies,

multi-ion and two-fluidMHDequations. In this work BATS-R-US solves the two-fluid equations, that is, the Hall

MHD equations together with a separate electron pressure equation:

𝜕𝜌

𝜕t
+ ∇ ⋅ (𝜌u) = 0 (6)

𝜕𝜌u

𝜕t
+ ∇ ⋅

[
𝜌uu + I

(
p + pe +

B2

2𝜇0
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−
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]
= 0 (7)
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𝜕t
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+ uepe +
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𝜕pe

𝜕t
+ ∇ ⋅ (peue) = −(𝛾 − 1)pe∇ ⋅ ue (10)

where I is the identity matrix, 𝛾 = 5∕3 is the adiabatic index both for ions and electrons, 𝜌, u, and p are the

mass density, bulk velocity, and pressure of ions,

ue = u −
J

qene
= u −

mi

qi

J

𝜌
(11)

is the electron velocity, J = ∇ × B∕𝜇0 is the current density,

E = −ue × B −
∇pe

neqe
+ 𝜂J = −u × B +

mi

qi

J × B − ∇pe

𝜌
+ 𝜂J (12)

is the electric field, 𝜂 is the resistivity, and

e =
p

𝛾 − 1
+

𝜌u2

2
+

B2

2𝜇0

(13)

is the total ion plus magnetic energy density. Note that the electron thermal energy is not included, which

explains the source term on the right-hand side of equation (9). This choice does not affect the energy con-

servation properties, since the sum of the energy equation (9) and 1∕(𝛾 − 1) times the electron pressure

equation (10) gives the total energy conservation law with no source terms both analytically and in the dis-

cretized form. Note that the electron-ion energy exchange term is ignored for this collisionless plasma. In fact,

collisional resistivity is also zero in reality, and we only use it for setting up the initial conditions as discussed

in the next section.

4. Numerical Schemes

In the simulations presented here, BATS-R-US uses the second-order total variation diminishing scheme (van

Leer, 1979) with Rusanov flux function (Rusanov, 1962) and Koren’s limiter (Koren, 1993) with the parameter

𝛽 = 1.2. The initial conditions are obtained with BATS-R-US only by solving the resistive MHD equations with

a constant magnetic diffusivity 𝜂∕𝜇0 = 1010 m2/s applied in the induction equation. The only goal of using

resistivity is to make the current sheets smooth and stable (no islands); therefore, the Joule heating and the

heat exchange terms between the electrons and ions are switched off to avoid unwanted heating of the elec-

trons and thermal equilibration between the ions and electrons. We run BATS-R-US in local time stepping

mode (Tóth et al., 2012) for 10,000 iterations to reach the steady state.
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The time-dependent simulations start from this initial steady state solution. BATS-R-US solves the two-fluid

MHDequationswith theHall andelectronpressuregradient terms in the inductionequation, butno resistivity.

To avoid the time step limitation due to the whistler waves, a semi-implicit time discretization is used for the

Hall term. Thenumerical diffusiondue to thewhistler speed is reducedbya factor of 10 similar to the reduction

used in the fully implicit Hall MHD scheme (Tóth et al., 2008).

We use the eight-wave scheme (Powell, 1994) in combination with hyperbolic/parabolic cleaning (Dedner

et al., 2003) to control the numerical divergence of the magnetic field. Usually, the eight-wave scheme is suf-

ficient in pure MHD and Hall-MHD simulations, but for MHD-EPIC there is a problem: the divergence error

(that is advected by the eight-wave scheme together with the plasma) cannot propagate through the PIC

region, since iPIC3D does not use the eight-wave scheme. As a result, the divergence errors can accumulate

at the boundary of the PIC region. Using the hyperbolic/parabolic cleaning helps, because it can dissipate

the divergence error in all directions, not only along stream lines. We set the hyperbolic speed parameter to

ch = 400 km/s and the parabolic decay parameter to cp = 0.1 (see Dedner et al., 2003 and Tóth et al., 2012).

The iPIC3Dcode solves theMaxwell equations for theelectric andmagnetic fields and theequationsofmotion

for the particles as usual (Markidis et al., 2010). It uses an implicit scheme (Brackbill & Forslund, 1982) to solve

for the electric field to avoid the numerical stability issues that restrict the cell size Δx to be less than the

Debye length 𝜆D and the time stepΔt to be smaller thanΔx∕c (the time it takes for light wave to cross a grid

cell) in explicit PIC codes. Even for a semi-implicit PIC code, using the true speed of light, while possible, is

computationally expensive, because itmakes the linear problem tobe solved stiffer, requiringmore iterations.

It is therefore standard practice to artificially lower the speed of light c to a reduced value c′ that is still large

relative to the flow speeds. This trick, also used in MHD codes (named the semirelativistic or Boris correction,

Boris, 1970; Gombosi et al., 2002) exploits the separation of scales between the speed of light and the speed

of the plasma flow speeds. In these simulationwe used c′ = 3, 000 km/s. To reduce the scale separation of the

electron skin depth and ion inertial length, the ion-electronmass ratio is set tomi∕me = 100. In all simulations

each PIC grid cell is initializedwith 225 ion and 225 electronmacroparticles, and the same number of particles

are generated in the PIC grid ghost cells during the MHD-EPIC coupling.

We also find it useful to suppress some short wavelength oscillations that are generated in the PIC region.

These oscillations appear to be related to Langmuir waves, and they reach significant amplitudes in 2-D sim-

ulations (the issue seems to be less significant in 3-D simulations). A relatively simple way to suppress these

waves is the smoothing of the electric field at short wavelengths. After the electric field is obtained by the

implicit solver, we apply the following smoothing operator for each grid node indexed by i, j:

E′
i,j
= 𝛼Ei,j +

1 − 𝛼

4

∑

4 neighbors

Ei′ ,j′ (14)

where the averaging is done over the four immediate neighbors of the cell, while in 3-D the averaging is done

for six neighbors. In most of the presented simulations we use 𝛼 = 1∕2 and apply five smoothing iterations.

In one particular simulation we found that the smoothing caused an instability at the boundary of the PIC

domain. To avoid this issue, we have implemented the option to set 𝛼 = 1 at the few cells near the boundary

of the PIC region (no smoothing) and only apply the smoothing in the inside:

𝛼 = min(1, 𝛼0 + (A − 𝛼0)max(0, 1 − d∕D)) (15)

where 𝛼0 is the internal smoothing parameter, d is the distance of the cell from the boundary, and A andD are

two constants (we use A = 2 and D = 8Δx). For the sake of consistency, we also smooth the current densities

used in the Maxwell solver. We carefully checked that the overall solution is not affected significantly by the

smoothing operation other than eliminating the Langmuir patterns.

5. Two-Dimensional Magnetosphere Problem

Our goal is to study the interaction of global and micro scales in a relatively simple system. The

two-dimensional (2-D) magnetosphere problem (Daldorff et al., 2014) is well suited: the global scale is set by

the interactionof the intrinsic linedipole field and the incomingplasmaflow (thatwewill call the solarwind). A

2-D simulation can be runmuch faster than a 3-D problem, sowe can do amore extended parameter study. In

addition, visualization of the 2-D results is much simpler and comprehensive. Of course, the 3-D reconnection

dynamics is somewhat different from the 2-D case, but the scaling arguments apply to both. For the sake
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Figure 1. Overview of the initial state after the first 10,000 iterations. Only
a part of the computational domain is shown. The colors show density in
units of amu/cm3 . The white lines are magnetic field lines, while the black
lines represent the grid resolution changes. The red box shows the
boundaries of the PIC region.

of easier interpretation, the values are set to be similar to those typical for

Earth’s magnetosphere. Note, however, that the 2-D simulations are in the

magneticmeridional plane, so the Y axis is alignedwith the dipole and the

Z direction is normal to the plane of the simulation, which is the opposite

of the usual 3-D case.

The 2-D domain extends from x = −480 RE to x = 32 RE and from

y = −128 RE to y = 128 RE (where RE = 6, 380 km is the radius of the Earth)

with the magnetized planet at the origin. The inner boundary condition is

set at a circle of radius 2.5 RE withafixedplasmadensity of 10 amu/cm3 and

zero velocity. The radial component of the magnetic field is set to the line

dipole value. The tangential components of themagnetic field and the ion

and electron pressures have zero gradient boundary conditions. The line

dipole is aligned with the Y axis and its strength is set to −3,110 nT at the

magnetic equator. This is 10 times weaker than the 3-D dipole strength of

the Earth, but the line dipole field decays with r−2 instead of the r−3 of the

3-Ddipole, so themagnetopause endsup tobe at about the samedistance

(10 RE) as for Earth’s magnetosphere.

The solar wind enters from the +X direction with mass density 5 amu/cm3, speed −400 km/s, and total pres-

sure 0.031 nPa, of which the electrons have 0.0248 nPa. The electron pressure dominates the pressure of the

incoming plasma, but behind the bow shock the ion pressure becomes dominant (by about a factor of 2),

because the bow shock ismodeledwith theMHD code, so the heating of the electrons and ions is determined

by the MHD conservation laws. The shock predominantly heats the ions as the bulk kinetic energy is trans-

formed into ion thermal energy (see equations (9) and (13), while the electrons only heat up adiabatically

according to equation (10).

The boundary conditions at y = ±128 are also set to the fixed solar wind parameters. At this distance the solar

wind is only slightly perturbedby the interactionwith themagnetosphere, so fixedboundary conditionswork

well. Finally, a zero gradient outflow boundary condition is applied at x = −480 RE . The outflow boundary

has to be placed far away to avoid numerical problems due to the subfast magnetosonic flow behind the

bow shock.

The interplanetary magnetic field (IMF) carried by the solar wind is either set to B = (−0.1,−0.5, 0) nT or

B = (−0.1,−0.5,−3) nT. The Y component is the most important, as it reconnects with the dipole field of the

body, which is alignedwith the Y axis. In 2-D the IMF cannot slip around themagnetosphere, so themagnetic

field has to reconnect at the same average rate as it enters into the system. The By = −0.5 nT value is selected

to yield (a slowly decreasing) magnetopause distance at around 10 RE . The Bx component is small, but it is set

to a nonzero value to break the “north-south” symmetry. If it is set to zero, the Hall MHD simulations produce
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Figure 2. The base 10 logarithm of the inertial length measured in RE for
protons.

very large islands at the subsolar point of themagnetopause that cangrow

to unreasonable size before finally starting to move to the ±Y direction.

Finally, the Bz component controls the amount of guide field at the recon-

nection site. The Bz = 0 choice produces pure antiparallel reconnection

with no guide field, while the Bz = −3 nT value creates a moderate guide

field. Although the IMF magnitude of |Bz| = 3 nT is much larger than the

IMFmagnitude of |By|=0.5nT, near themagnetopause they become com-

parable. This happensbecauseof the2-Dgeometry. At thebowshockboth

components get amplified by the shock compression ratio, which is close

to 4 for this strong shock, so |By| and |Bz| become about 2 nT and 12 nT,

respectively. In the magnetosheath, however, |By| gets further amplified

to about 15 nT due the deceleration in the X direction, while Bz is simply

advected around the obstacle. The reason is that the flowdeflects from the

−X to the±Y direction in an approximately incompressiblemanner, which

enhances By but not Bz . In the end, the guide field Bz becomes comparable

to the reconnecting field By on the sheath side of the reconnection.
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Figure 3. Time series of the (top) standoff distance and the (bottom) volume fraction of the magnetosphere inside the
PIC region for several MHD-EPIC and Hall MHD simulations. The kinetic scaling factors (f ) and the grid resolutions (Dx)
are indicated in the figure legend. All simulations used IMF BZ = −3 nT.

With these parameters, the dayside reconnection site is at the nose of the magnetopause centered at around

x = 10 RE and y = 0 as shown in Figure 1. In BATS-R-US we solve for the Hall term in the “Hall region” placed

at 5 RE < x < 20 RE and −15 RE < y < +15 REwith a smooth tapering at the edges. Limiting the region where

the Hall term is used improves computational efficiency without any significant effect on the results around

the reconnection site.

In the MHD-EPIC simulations, the PIC region (indicated by the red rectangle in Figure 1) is positioned

at 6 RE < x < 12 RE and −6 RE < y < +6 RE , which covers the reconnection site but avoids getting very close

either to the body where the plasma beta is very low, or to the bow shock. Note that the PIC region is fully

covered by the Hall region, so the Hall effect is taken into account on both sides of the boundaries of the

PIC region.

To assess the required grid resolution, we plot the base 10 logarithm of the proton ion inertial length di,p in

units of RE in Figure 2 for the initial conditions. Near the dayside reconnection site di,p ≈ 0.01 RE , whichmeans

that de ≈ 0.001 RE for the mi∕me = 100 mass ratio. Resolving the electron scales at least marginally would

requireΔx ≈ de, whichwouldmake the PIC region resolved by 6, 000×12, 000 = 72million grid cells and 450

times thatmanymacroparticles, or about 32billion in total.While this is still doable in 2-D, it is a very expensive

calculation and in fact the electron scales are still only marginally resolved. In three spatial dimensions things

get clearly unfeasible.
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Figure 4. Time series of the (top) standoff distance and the (bottom) volume fraction of the PIC region occupied by
magnetospheric plasma for several MHD-EPIC and Hall MHD simulations smoothed with a 30 min boxcar averaging. The
simulations used IMF BZ = −3 nT.

Our numerical experiments require that di∕dg be a small number, but it is not necessary to start from di = di,p
corresponding to f = 1. To make the computations affordable, the smallest scaling factor will be set to f = 8,

which makes di∕dg = f ∗ di,p∕dg ≈ 0.008, clearly still much less than unity. Correspondingly, the finest grid

resolution in the PIC regionwill be set toΔx = 1∕128 RE . The corresponding PIC grid is 768×1, 536with about

530 million macroparticles.

6. Simulations

We perform two-fluid and MHD-EPIC simulations with grid resolutions Δx varied from 1∕128 RE to 1∕16 RE
and scaling factors f varied between 8 and 128. For the two-fluid simulations Δx refers to the MHD grid res-

olution around the reconnection site, and f is the ion mass per charge mi∕qi in the Hall term in Ohm’s law

(equation (12). In the MHD-EPIC simulations Δx is the grid resolution of the PIC model and f is the scaling

factor applied to the ion and electron mass per charge ratios. The only other quantity that is varied is the

out-of-plane Bz component of the solar wind that is either 0 (no guide field) or −3 nT (guide field). We will

present results from the simulations with the guide field unless otherwise noted.

All simulations are initializedwith a steady state solution obtainedwith the resistiveMHDequations; however,

thegrid resolution around thedayside reconnection site varies fromΔx = 1∕16 to1∕128 RE , whichmeans that

the initial conditions are similar but not necessarily identical. All simulations are run for 2 h, which is sufficient

to reach the quasiperiodic formation of magnetic islands, also called flux transfer events (FTEs).
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Figure 5. Time series of the standoff distance and the volume fraction of the PIC region occupied by magnetospheric
plasma for several MHD-EPIC and Hall MHD simulations. There is no guide field: IMF BZ = 0.

6.1. Global Scales

One of the most characteristic length scales of a magnetosphere is the standoff distance. This is usually esti-

mated to be a position along the +X axis, where the magnetic pressure of the (compressed) dipole field

balances the rampressure of the solar wind. The issue ismore complicated in two spatial dimensions, because

the Y component of themagnetic field entering with the solar wind has no other way to get to the other side

of the planet than magnetic reconnection. If the reconnection rate is too slow, the field will pile up outside

the magnetopause. If the reconnection rate is too fast, it will erode the magnetopause too quickly.

We selected the line dipole strength and BY to form a magnetopause with about the same standoff dis-

tance as found in Earth’s 3-D magnetosphere. During the time-dependent simulation the standoff distance

is slowly decreasing on average. In addition, there are oscillations related to the large-scale dynamics of the

reconnection process. Comparing the time variation of the standoff distance for the simulations using differ-

ent kinetic scaling factors provides a simple quantitative assessment of their similarities and differences. We

use the following simple formula to calculate the standoff distance automatically from the solution on the

discrete grid:

S = max
{i,j∶BY,ij > 3 nT}

xij (16)

where i, j are the indexes of the grid cells. This works well, since BY < 0 in the solar wind and behind the bow

shock, and it is positive inside the magnetopause near the subsolar point. The threshold value of 3 nT was

selected so that small BY perturbations upstream of the magnetopause are ignored.
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Figure 6. Time series of the standoff distance and the volume fraction of the PIC region occupied by magnetospheric
plasma for several MHD-EPIC and Hall MHD simulations smoothed with a 30 min boxcar averaging. There is no guide
field: IMF BZ = 0.

Another simple measure for the size of the dayside magnetosphere is the fraction of volume where BY is pos-

itive around the dayside magnetopause. For the sake of simplicity we use the grid cells inside the PIC region

(6 RE < x < 12 REand −6 RE < y < 6 RE) and define

F =
1
A

∑

{i,j∶BY,ij > 3 nT}

ΔAij (17)

whereΔA is the size of the grid cell and A = 72 R2
E
is the total area of the region. This measure is less sensitive

to the local variations than the standoff distance, but for the sake of simplicity we use the same threshold

value 3 nT.

Figures 3 and 4 show the time series of the standoff distance S and the volume fraction of the magne-

tosphere inside the PIC region F. Figure 3 provides the values with a 1 min cadence between t = 0.3

and t = 2 h. Figure 4 shows the same quantities smoothed with a 30 min wide boxcar averaging. Both

quantities get smaller with time, which means that the reconnection is eroding the magnetopause and

the magnetosphere slowly shrinks. Simulations with f = 128 are clearly different from the others in both

figures. This is expected, since in this case the separation of kinetic and global scales is not large anymore:

𝜀 = fdi,p∕dg ≈ 128 × 0.01∕10 = 0.128.

At first glance, the rest of the simulations with f ≤ 64 look similar when the unsmoothed curves are com-

pared. The smoothedmagnetosphere fraction curves (Figure 4, bottom), however, clearly reveal that the Hall

MHD simulations (dashed lines) and the MHD-EPIC simulation with f = 64 (orange line) significantly deviate
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Figure 7. Time series of flux transfer events for two runs: (left column) For kinetic scaling factor f = 8 and grid resolution
Δx = 1∕128 RE ; (right column) with f = 32 and Δx = 1∕32 RE . The simulation times are shown in minutes above each
plot with a 3 min cadence. The colors show the Y component of the velocity in km/s units. The white lines are magnetic
field line traces.

from the three MHD-EPIC simulations with f = 8, 16, and 32 (black, cyan, and green solid lines) which are

quite similar to each other overall.

The standoff distance varies more, even with smoothing (Figure 4, top), but the trends are the same:

the MHD-EPIC simulations with kinetic scaling factor f ≤ 32 are closer to each other than the rest of the

simulations.

Figures 5 and 6 show results from several simulations with no guide field, that is, the IMF BZ = 0. In these sim-

ulations the grid resolution is kept constant atΔx = 1∕64 RE , while the kinetic scaling factor is varied between

8 and32, so all simulations start from the same initial condition. The standoffdistance and themagnetosphere

fraction without smoothing and with 30 min boxcar smoothing are shown in the figures, respectively.
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Figure 8. The Y and Z components of the electron velocity and the Z component of the ion velocity in km/s from the iPIC3D output. Three simulations with
different f factors and grid resolutions are compared. Note that the spatial scale of the panels in the top row with f = 8 is 4 times smaller (3∕4 × 3∕4 RE ) than that
in the middle and bottom rows with f = 32, where the panels are 3 × 3 RE .

Overall, the decay rates of the standoff distances are similar, but the Hall MHD simulations show some sharp

spikes corresponding to By > 3 nT spots produced by very large FTEs. In contrast the MHD-EPIC simulations

show less variation. The volume fraction of the magnetosphere shows smoother variation, as expected. Still,

it is clear that the Hall MHD simulations show larger oscillations than the MHD-EPIC solutions. The smoothed

curves on Figure 6 show similar trends for all six simulations, although both the standoff distance and the

magnetosphere fraction is somewhat larger for the Hall MHD simulations (dashed curves) than for MHD-EPIC

(solid curves).

We now focus on the phenomena causing the fluctuations: the large-scale magnetic islands, or FTEs. Figure 7

compares FTEs produced by two MHD-EPIC runs. The simulation shown on the left uses f = 8 for the kinetic

scaling factor with aΔx = 1∕128 RE grid resolution in the PIC domain, while the one on the right uses f = 32

and Δx = 1∕32 RE . The three rows correspond to times separated by 3 min. The initial times (29 and 55 min,

respectively) are selected so that the FTEs moving toward the +Y direction are roughly at the same stage of

evolution. In Figure 7 (top row) the center of the FTEs are roughly at Y = 3 RE , then 3 min later (Figure 7,

middle row) they get to about Y = 5 RE and another 3 min later (Figure 7, bottom row) the centers move to

about Y = 8 RE . Overall the size and shape of these flux ropes are very similar. The propagation speed in the

Y direction is about 2 RE∕3min≈ 71 km/s between the initial andmidpoint times, and 3 RE∕3min≈ 106 km/s

between the midpoint and final times. These velocities are close to the Y component of the plasma velocity

shown by the colors in the figure.

The flux ropes moving in the−Y direction also show similar sizes and shapes, although at this particular time

there are multiple flux ropes on the left, and only one dominant flux rope on the right, so their evolution
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Figure 9. Comparison of the small-scale solutions for two Hall MHD simulations with identical kinetic scaling factors
f = 8 but different grid resolutions (top row) Δx = 1∕128 RE and (bottom row) 1∕32 RE , respectively. The Y component
of the ion velocity is in km/s, the Z component of the current in 𝜇A, and magnetic field line traces are shown for the
same simulation time and same location with similar reconnection events.

is different. The total number and size distribution of flux ropes is also very similar. Looking at animations of

multiple simulations side by side indicates that the large-scale FTE dynamics is quite insensitive to the value

of the scaling factor f .

6.2. Kinetic Scales

Figure 8 shows the simulation result near the dayside reconnection sites in three simulations with different

scaling factors and grid resolutions. The times shown are selected so that the reconnection sites are near

the subsolar point of the magnetopause. The Y component of the electron velocity (Figure 8, left column)

shows the reconnection jets, while theZ (out-of-plane) component of the electron and ion velocities (Figure 8,

middle column and Figure 8, right column) show the current carried by the electrons and ions, respectively.

Although the three reconnection sites are from different simulations at different times, the similarities are

quite clear. The two simulations with f = 32 (Figure 8, middle row and Figure 8, bottom row) are on the

same spatial scale, but the grid resolutions are a factor of 4 different. Still, the width of the current sheet near

the reconnection site, as indicated by the maxima (red color) of the Z component of the electron velocity

are quite similar, around 0.1 RE or about 3 to 4 de, where the electron skin depth is measured on the sheath

side of the reconnection site. The width of the ion diffusion regions (shown by the blue regions in Figure 8,

right column) is about 1 RE wide in both cases, which is 10 times wider than the electron diffusion region as

expected for themi∕me = 100mass ratio. The electron exhaust jets (Figure 8, left column), although different

in detail, also show similar spatial structures and the exhaust velocities have similar values. This suggests that

the reconnection dynamics is not dominated by grid resolution effects.

The spatial scales shown for f = 8 (Figure 8, top row) are 4 times smaller than the spatial scales shown for the

two simulations with f = 32. After this visual rescaling the solutions look remarkably similar. The width of

the current sheet near the reconnection site (red area in Figure 8, top middle) is about 0.025 RE that is indeed
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Figure 10. Evolution of an FTE in an MHD-EPIC simulation with scaling factor f =8 and grid resolution Δx=1∕128 RE .
The electron pressure, the out-of-plane component of the electron velocity, and the Y component of the magnetic field
are shown for time (top row) 16min and (bottom row) 20min. The spatial scales are a factor of 2 larger for the later time:
the sizes of the panels are 0.7 × 1.5 RE and 1.5 × 3 RE in Figures 10 (top row) and 10 (bottom row), respectively.

4 times thinner than the current sheets obtainedwith f = 32. Thewidthof the iondiffusion region (blue region

in Figure 8, top right) also scales approximately with f . The overall structure and velocity of the reconnection

jets is also similar (Figure 8, left column) after the spatial rescaling. These results support the argumentsmade

in section 2.2: the kinetic scales are proportional to f .

In contrast to the PIC solution, in Hall MHD there is no electron scale, so the solution depends, to some extent,

on the grid resolution, which determines the numerical dissipation. Figure 9 demonstrates this by compar-

ing two Hall MHD simulations that used the same kinetic scaling factor but grid resolutions differing by

a factor of 4. The snapshots are selected to capture magnetic islands of similar sizes and shapes at the same

location and time (t = 76 min) in the two simulations. While the qualitative pictures are similar, and in fact

the magnetic fields are very comparable, there are significant quantitative differences. In Hall MHD the width
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of the current sheet is determined by the grid resolution, so it is much thinner on theΔx = 1∕128 RE grid than

on theΔx = 1∕32 RE grid. Consequently, the out-of-plane component of the current (determined from∇×B)

is much stronger for the higher-resolution run.

6.3. Intermediate Scales

We argued in section 2.3 that the solution should be self-similar at the intermediate scales. Indeed,

Figure 10 demonstrates that the growth of an FTE is approximately self-similar. Figure 10 (top row) and

Figure 10 (bottom row) show the same FTE at two different times. The panel sizes are 0.7 × 1.5 RE for time

t = 16m and 1.4 × 3 RE for t = 20m. The simulation uses f = 8 for the scaling factor, so the kinetic scales are

quite small (di ≈ 0.08 RE). The grid resolution isΔx = 1∕128 RE , so the intermediate and global scales are very

well resolved. The FTE was selected based on its formation near the subsolar point, so it stayed roughly at the

same placewhile growing in size. The quantities shown are electron pressure, the out-of-plane component of

the electron velocity and the Y component of the magnetic field. We checked that all other quantities show

the same behavior.

Comparing the solution at these two times demonstrates that the evolution of an isolated FTE is approx-

imately self-similar at the intermediate scales, which supports our theoretical arguments presented in

section 2.3.

7. Conclusions

In many space plasma systems global and kinetic scales are separated by many orders of magnitude; never-

theless, the global systemhas amajor influence on the kinetic processes, and vice versa, the kinetic processes,

especially magnetic reconnection, has a major impact on the global dynamics. This scale separation presents

a challenge to theoretical, observational, and modeling investigations. The kinetic scales, such as the Debye

length, electron skin depth, electron gyroradius, ion inertial length, and ion gyroradius are all proportional to

themass to charge ratio of electrons and ions.We showed that one can artificially change the kinetic scales by

changing the ion and electron mass to charge ratios by a scaling factor f while keeping the MHD quantities,

such as mass density, pressure, bulk velocity, and magnetic field the same.

We presented a number of theoretical arguments suggesting that as long as the separation between global

and kinetic scales remains large enough,

1. the solution of the equations is insensitive to the scaling at global scales, and

2. the solution at kinetic scales will look the same but spatially proportional to the scaling factor.

Our numerical experiments conducted with the MHD-EPIC code show not only that these theoretical expec-

tations are fulfilled but also that the required separation of scales is relatively modest. For the dayside

reconnection process the global scale can be characterized by the magnetopause standoff distance, that is,

dg ≈ 10 RE . We found that scaling factors f ≤ 32 corresponding to the scaled inertial length di ≤ 0.32 RE and

𝜀 = di∕dg ≤ 0.032 give very comparable solutions. Further increasing the ion inertial length to di ≥ 0.64 RE
and 𝜀 ≥ 0.064, however, produces significantly different results. The simulations also confirmed that the

scaled MHD-EPIC simulations provide very similar solutions at the kinetic scales when distance is measured

in the ion inertial length di that is proportional to the scaling factor f .

In principle, the scaling arguments apply to Hall MHD as well, but in this case the electron scale processes

are replaced by numerical and/or some ad hoc resistivity. Assuming that these resistive effects are kept pro-

portional to the grid resolution Δx in a Hall MHD simulation, one would expect that keeping the ratio di∕Δx

constant and/or very large is analogous to keeping di∕de =
√
mi∕me constant and/or large in the PIC simu-

lations. Our results suggest that this is approximately true, so Hall MHD simulations can also benefit from the

kinetic scaling. We expect that the same is true for hybrid simulations that include the Hall effect.

The scaling of kinetic effects is interesting from a theoretical point of view. The scaling reduces the number

of free parameters that enter the system; therefore, results obtained for a given inertial length will have more

general applicability. In addition, the scaling and self-similaritymayprovide insight into thegeneric properties

of collisionless reconnection: distribution of magnetic island sizes, for example, is likely to follow some power

laws. Investigating these theoretical consequences is left for future work.

The scaling also has a very practical application, which in factmotivated our research in the first place: increas-

ing the ion inertial length makes kinetic simulations embedded into a global system possible. Resolving
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the real ion inertial length in three-dimensional simulations of Earth’s magnetosphere is extremely diffi-

cult even on the largest available computers. Doing the same in the solar corona is essentially hopeless. To

put some numbers behind these statements, let us consider a 3-D global magnetosphere simulation box of

100 × 100 × 100 R3
E
. An explicit kinetic simulation has to resolve the Debye length that is about 100 m or

Δx = 1∕64000 RE . The required number of grid cells would be order 3 × 1020, the number of macroparticles

would be about 1023 and the time step would be limited to Δx∕c = 0.3 μs. Doing 1 h of simulation would

require 1033 particle pushes. Each particle push requires the order of 100 floating point operations (including

the interpolation of the fields to the particle positions), so even on a future exascale computer which can do

1018 operations per second, this single simulation would take 1017 s wall clock time or about 3 billion years.

Clearly, waiting for faster computers will not make such a simulation possible. One can switch to an implicit

PIC code that requires resolving the electron skin depth (instead of the Debye length) that is about 1.5 km

and the time step is restricted by the cell crossing time at the electron thermal speed instead of the speed of

light. Reducing the ion-electron mass ratio from 1,836 to 100 results in another factor of ≈4 increase in the

cell size to Δx = 6 km ≈ 1∕1, 000 RE , while the time step increases by a factor of about 6,000 relative to the

explicit PIC code with realistic electron mass to Δt ≈ 2ms, which in turn reduces the computational cost by

a factor of 109 to 3 years on the future exascale machine. The MHD-EPIC algorithm allows restricting the PIC

code to the vicinity of the reconnection region(s), while one can use an adaptive grid for the globalMHD code.

The speedup is approximately the ratio of the volume of the PIC region relative to the whole domain, which

is about 103. This reduces the computational cost to 1 day on a future exascale computer, which is promising,

or about 3 years on a current petascale machine, still out of reach for now. With the kinetic scaling presented

in this paper, however, the simulation becomes feasible. Using a scaling factor f = 32 allows 32 times coarser

grid size of aboutΔx = 200 km= 1∕32 RE and 32 times larger time stepΔt ≈ 0.06 s. This saves f 4 ≈ 106, which

makes the simulation doable in a few days using a few thousand cores (instead of a full petascale machine)

with a code that in practice can only achieve a fraction of the peak performance. Our companion paper by

Chen et al. (2017) does in fact present a 1 h long 3-D magnetosphere simulation using the MHD-EPIC model

with kinetic scaling that was obtained with 6,400 cores of the Blue Waters computer running for a week.

In general, with proper kinetic scaling, the cost of the computation depends on the smallest global scales

rather than on the true kinetic scales. Our simulations suggested that one can get reasonably accurate results

with a scaled up inertial length di that is about 3% of the global scale dg. Resolving the increased ion inertial

length scale requires a grid resolution Δx ≈ di∕10 ≈ dg∕300. This is much finer than the typical grids used

in global MHD simulations that typically resolve the global scale with order 20 to 50 cells, but still achievable

on current computers. Roughly speaking, kinetic simulations will require a grid resolution that is about 10

times finer than the grids used in MHD simulations, and the time step will also be about 10 times smaller.

The computational cost of a 3-D simulation is proportional to Δx−3Δt−1, so this a factor of 10,000 increase.

In two spatial dimensions the cost is proportional to the third power, or about a factor of 1,000. In addition,

kinetic simulations are more expensive than MHD simulations on the same grid. The use of adaptive mesh

refinement can reduce this cost substantially, because the high resolution is only needed in a relatively small

region. Further efficiency gain can be achieved by using the MHD-EPIC algorithm, so that the PIC model is

limited to the vicinity of the reconnection site. In summary, evenwith the scaling, kinetic simulations aremuch

more expensive than ideal or resistive MHD simulations, but muchmore affordable than trying to resolve the

true kinetic scales that may be many orders of magnitude smaller.

In contrast with pure MHD or pure PIC models, the MHD-EPIC approach combined with the kinetic scaling

allows studying

1. kinetic dynamics embedded into a realistic and possibly time-dependent global environment, and

2. the self-consistent feedback of the kinetic solution on the global dynamics.

Studying collisionless reconnection in global systems allows, for example, direct comparison of full electron

and ion distribution functions with observations, such as those provided by theMMSmission. Self-consistent

MHD-EPIC simulations can get correct collisionless reconnection rates andglobal dynamics based on electron

physics instead of numerical resistivity. Thismay lead to a better understanding of themechanisms producing

magnetospheric substorms and solar eruptions, for example.

This paper focused on the kinetic scaling and demonstrated it with 2-D simulations. We have already

performed 3-D MHD-EPIC simulations for Earth’s magnetosphere using scaling factors f = 16 and f = 32.
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The results of these simulations are discussed in an accompanying paper by Chen et al. (2017) showing

several kinetic effects predicted and observed in the dayside magnetosphere including flux transfer events,

Larmor electric field, the lower hybrid drift instability, and crescent shape velocity distribution functions. Our

2-Dand3-D simulations focusedonvarious aspects of the reconnectionprocess at thedaysidemagnetopause

and found that the kinetic scaling works for these. It will require further research to examine if these results

generalize to other aspects (like particle acceleration), other parameter regimes (reconnection in solar flares),

and other type of kinetic processes (for example, kinetic instabilities at parallel shocks).
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