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Summary. In some randomized clinical trials, patients may die before the measurement time point of their outcomes. Even
though randomization generates comparable treatment and control groups, the remaining survivors often differ significantly in
background variables that are prognostic to the outcomes. This is called the truncation by death problem. Under the potential
outcomes framework, the only well-defined causal effect on the outcome is within the subgroup of patients who would always
survive under both treatment and control. Because the definition of the subgroup depends on the potential values of the
survival status that could not be observed jointly, without making strong parametric assumptions, we cannot identify the
causal effect of interest and consequently can only obtain bounds of it. Unfortunately, however, many bounds are too wide to
be useful. We propose to use detailed survival information before and after the measurement time point of the outcomes to
sharpen the bounds of the subgroup causal effect. Because survival times contain useful information about the final outcome,
carefully utilizing them could improve statistical inference without imposing strong parametric assumptions. Moreover, we
propose to use a copula model to relax the commonly-invoked but often doubtful monotonicity assumption that the treatment
extends the survival time for all patients.

Key words: Bounds; Causal inference; Principal stratification; Survivor average causal effect.

1. Introduction

In randomized clinical studies, evaluations of the effective-
ness of alternative treatments on a non-mortality outcome
such as the health related quality of life (HRQOL) outcome
are often complicated by truncation by death. The moti-
vation of our study comes from a prostate cancer research
(Petrylak et al., 2004), a Southwest Oncology Group (SWOG)
clinical trial, where an interest is to assess the effect on a
HRQOL outcome measured at six months after treatment
among advanced refractory prostate cancer patients being
treated with Docetaxel and Estramustine (DE) versus Mitox-
antrone and Prednisone (MP). But some patients died within
six months after treatment, and therefore their HRQOL out-
comes were not measured and were not even well-defined.
As it is well known, to estimate the treatment effect on a
HRQOL outcome truncated by death, a direct comparison
between survivors in two treatment arms could be biased.
This is because death serves as a mechanism of informa-
tive censoring given its strong correlation with the HRQOL.
Intuitively, those patients who died would usually have had
worse HRQOL outcomes than those who survived had they
somehow been kept alive (Cox et al., 1992). To formulate a
well-defined treatment effect on outcomes truncated by death,
we adopt the principal stratification framework (Frangakis
and Rubin, 2002). Based on whether each patient would sur-
vive to the HRQOL outcome measurement under treatment

and whether the patient would survive to the HRQOL out-
come measurement under control, subjects are classified into
four principal strata as will be discussed in Section 2.2. The
stratum of patients who would survive to the outcome mea-
surement under both treatment and control are called always
survivors. Following Frangakis and Rubin (2002) and Rubin
(2006), we focus on the treatment effect among the always sur-
vivors, also called the survivor average causal effect (SACE),
because they have well-defined HRQOL outcomes under both
treatment arms.

Unfortunately, the SACE is not pointly identified without
strong and untestable assumptions such as by imposing a
full parametric model (Zhang et al., 2009; Frumento et al.,
2012) or by utilizing a substitution variable for the latent
survival type (Ding et al., 2011; Jiang et al., 2016; Ding and
Lu, 2017; Wang et al., 2017). Although plausible for the set-
tings considered by the authors, those assumptions can be
too strong to be applied to many general cases where the
parametric constraint is questionable and where a valid sub-
stitution variable is not available. Under weaker assumptions
on the degree of selection bias, one can instead achieve partial
identification on the SACE. Zhang and Rubin (2003) derived
large sample bounds on the SACE under ranked average score
assumptions, which are the shortest bounds possible without
further assumptions. Long and Hudgens (2013) sharpened the
bounds by using covariates. Yang and Small (2016) extended
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the ranked average score assumptions to further utilize sur-
vival information at a time point after the measurement of
the HRQOL outcome.

In the previous literature on bounding the SACE, we are
aware of two limitations. First, to shorten the bounds on
the SACE without imposing a parametric model, the mono-
tonicity assumption on the survival status is often invoked
with a few exceptions (Zhang and Rubin, 2003; Ding et al.,
2011; Wang et al., 2017). The monotonicity assumption states
that the treatment does not cause death compared to the
control, meaning that if a subject would die before the mea-
surement of the HRQOL outcome therefore being truncated
under treatment, the subject would also die before the mea-
surement of the HRQOL outcome had the subject received
the control. This assumption cannot be directly validated,
and can be suspicious in many studies. Taking our motivat-
ing prostate cancer study SWOG as an example, although
DE results in longer survival on average (Petrylak et al.,
2004), from a clinical point of view, the monotonicity assump-
tion that no patients could benefit from MP in survival may
not be true because both DE and MP are active treatments.
Previous research (Ding et al., 2011) suggested that the mono-
tonicity assumption was likely to be violated in the SWOG
study. Second, survival tends to be positively correlated with
HRQOL and is informative about the health condition, but
the previous literature on bounding the SACE utilizes only
limited information of survival. Zhang and Rubin (2003),
by imposing the ranked average score assumptions, utilized
the survival information right before the measurement on
the HRQOL outcome, and showed that this information was
helpful to sharpen the bounds of the SACE. They derived
the bounds with and without imposing the monotonicity
assumption. Yang and Small (2016) showed that using a post
measurement time point survival information in addition to
the survival information right before the measurement could
further improve the bounds on the SACE. However, in prac-
tice, more detailed survival information is often available in
studies where patients were followed up for multiple times,
such as the SWOG clinical trial where patients were fol-
lowed up at three months, six months, and twelve months,
respectively. This more detailed survival information can pro-
vide additional information on the health condition of the
patients, and therefore, help further improve the inference on
the SACE. In addition, Yang and Small (2016) relied on the
monotonicity assumption, which limited the applicability of
their method.

Under the principal stratification framework, we propose
a set of ranked average score assumptions to incorporate
detailed survival information to sharpen the inference on
the SACE in the context of randomized trials, and mean-
while, remove the untestable and often violated monotonicity
assumption on survival. Because only one potential survival
status is observed for each patient, the stratum membership
is not observable in general. With detailed survival informa-
tion, the four principal strata can be further divided into
many finer ones given the potential values of the survival time,
thereby introducing additional complications to inference. To
address the issue of latent stratum membership, assumptions
on the joint distribution of potential survivals are necessary.
We model the joint distribution of the two potential survival

times under treatment and control through a copula (Nelsen,
2006). Copulas provide a flexible way for modeling dependen-
cies and have been used to model the joint distributions of
potential outcomes in various contexts (Bartolucci and Grilli,
2011; Ma et al., 2011; Conlon et al., 2017). Using a copula
model, we avoid the monotonicity assumption, and character-
ize the association between the two potential survival times
by a single copula parameter. For each fixed value of the cop-
ula parameter, deriving the bounds on the SACE under the
proposed ranked average score assumptions defines a linear
programming problem. The final bounds on the SACE can
then be obtained by varying the value of the copula param-
eter in a plausible range. We apply our proposed method to
the SWOG study. By utilizing detailed survival information,
we are able to substantially narrow the bounds on the SACE
for the effect of DE versus MP.

2. Notation and Assumptions

2.1. Notation: Potential and Observed Outcomes

We consider two-arm randomized experiments and adopt the
potential outcomes framework to define causal effects. We let
Di be the binary treatment for the i-th subject (i = 1, . . . , n);
we call level 1 “the treatment” and level 0 “the control.” Let
D denote the vector of treatment assignment indicators for all
subjects. We use Si(d) to represent the discretized potential
survival time of subject i from the initiation of the treat-
ment that would be observed under treatment assignment d

which could be measured, for instance, by month, by year,
etc. Assuming that there are K follow-ups at time points
s1, s2, . . . , sK, respectively, from the initiation of the treat-
ment, then the values that Si(d) can take are s0, s1, . . . , sK

where s0 = 0. Take the SWOG study as an example, sub-
jects were followed up three times, and therefore K = 3. Si(d)
will take a value 0 (s0 = 0) if under the treatment assignment
d patient i would die before the first follow-up time three
months, 3 (s1 = 3) if patient i would die between three months
and the second follow up time six months, 6 (s2 = 6) if patient
i would die between six months and the last follow up time
twelve months, and 12 (s3 = 12) if patient i would still be alive
at twelve months. We use Yi(d) to denote the binary potential
HRQOL outcome of subject i that would be observed under
treatment assignment d. We consider HRQOL outcome mea-
sured at a fixed time point, the T th follow-up (T < K), and
therefore for subjects who would die before time point sT with
Si(d) < sT , their potential HRQOL outcomes Yi(d)’s are not
defined. Throughout this article, we let level 1 of the HRQOL
outcome be worse than level 0. We use Si and Yi to denote
respectively subject i’s observed survival time and observed
HRQOL outcome.

2.2. Assumptions and the Parameter of Interest

Under the stable unit treatment value assumption (SUTVA),
there is only one version of each treatment level and there
is no interference between subjects. Therefore, we can write
Si(d) and Yi(d) as Si(di) and Yi(di), respectively. Moreover,
the subjects can be classified into four latent groups based on
the joint values of potential survival status at the HRQOL
outcome measurement time sT under treatment and under
control. Let Ui denote subject i’s latent group, which is defined



Using Survival Information in Truncation by Death Problems 3

as: Ui = “always survivor” if Si(1) ≥ sT and Si(0) ≥ sT , mean-
ing that the subject would survive at least to the time point
of measurement under both treatment and control; Ui = “pro-
tected” if Si(1) ≥ sT and Si(0) < sT , meaning that the subject
would survive at least to the time point of measurement only
under treatment; Ui = “harmed” if Si(1) < sT and Si(0) ≥ sT ,
meaning that the subject would survive at least to the time
point of measurement only under control; and Ui = “never
survivor” if Si(1) < sT and Si(0) < sT , meaning that the sub-
ject would die before the time point of measurement under
both treatment and control. Among those four groups, the
always survivors constitute the only group for which both
Yi(1) and Yi(0) are well defined at time sT . Thus, the treat-
ment effect on the HRQOL outcome is only well defined for
always survivors (Frangakis and Rubin, 2002; Rubin, 2006),
that is, the survivor average causal effect:

SACE = E{Yi(1) − Yi(0) | Si(1) ≥ sT , Si(0) ≥ sT }. (1)

Assumption 1. The treatment Di is independent of the
potential outcomes Si(1), Si(0), Yi(1) and Yi(0).

In randomized studies such as SWOG, the ignorable treat-
ment assignment assumption is guaranteed by design.

The following two assumptions compare two groups of sub-
jects: G1 = {i | Si(0) = st0 , Si(1) = st1} and G2 = {i | Si(0) =

st′
0
, Si(1) = st′

1
}, where t0, t1, t

′
0, t

′
1 ∈ {0, 1, 2, . . . , T, . . . , K}.

Assumption 2. (i) When both groups G1 and G2 have well
defined Yi(1) (i.e., t1 ≥ T and t′1 ≥ T ), if st1 ≥ st′

1
and st0 ≥

st′
0
, then P{Yi(1) = 1 | Si(0) = st0 , Si(1) = st1} ≤ P{Yi(1) = 1 |

Si(0) = st′
0
, Si(1) = st′

1
};

(ii) When both groups G1 and G2 have well defined Yi(0) (i.e.,
t0 ≥ T and t′0 ≥ T ), if st0 ≥ st′

0
and st1 ≥ st′

1
, then P{Yi(0) = 1 |

Si(0) = st0 , Si(1) = st1} ≤ P{Yi(0) = 1 | Si(0) = st′
0
, Si(1) = st′

1
}.

Assumption 2 compares the HRQOL outcomes between two
groups of subjects where one group’s survival times under
treatment and control are both longer than or equal to those
of the other group. The probability of a worse HRQOL out-
come for the group with longer survival times is not higher
than that for the other group, recalling that level 1 of the
HRQOL outcome is worse than level 0.

Assumption 3. (i) When both groups G1 and G2 have well
defined Yi(1) (i.e., t1 ≥ T and t′1 ≥ T ), if st1 ≥ st′

1
, st0 < st′

0
,

but st1 − st′
1

≥ st′
0

− st0 , then, P{Yi(1) = 1 | Si(0) = st0 , Si(1) =

st1} ≤ P{Yi(1) = 1 | Si(0) = st′
0
, Si(1) = st′

1
};

(ii) When both groups G1 and G2 have well defined Yi(0) (i.e.,
t0 ≥ T and t′0 ≥ T ), if st0 ≥ st′

0
, st1 < st′

1
, but st0 − st′

0
≥ st′

1
−

st1 , then P{Yi(0) = 1 | Si(0) = st0 , Si(1) = st1} ≤ P{Yi(0) = 1 |

Si(0) = st′
0
, Si(1) = st′

1
}.

Assumption 3(i) compares the HRQOL outcomes under
treatment between two groups of subjects where one group
has longer survival under treatment but shorter survival
under control than the other group. If one group’s additional
length of survival under treatment compared to the other
group is no less than their reduced length of survival under

control, Assumption 3(i) says that the probability of the worse
HRQOL outcome under treatment for the group with longer
survival under treatment is not higher than that for the other
group. Assumption 3(ii) is the analogous assumption on the
HRQOL outcome under control.

Assumptions 2 and 3 are our generalized ranked average
score assumptions which utilize the survival information on
multiple time points. They are plausibly satisfied in many
HRQOL studies because survival is often positively related
to the HRQOL. Therefore, it is reasonable to assume that
the potential survival time is positively associated with a bet-
ter potential HRQOL outcome, and is more predictive to the
potential HRQOL outcome under the same treatment condi-
tion than under a different treatment condition. In particular,
Assumption 2 says that the subjects with longer survivals
under both treatment and control tend to be healthier on
average, and therefore, are less likely to develop bad HRQOL
outcomes. Assumption 3(i) says that for subjects’ health con-
dition under treatment, survival under treatment is a better
predictor of the HRQOL than survival under control. There-
fore, even if one group of subjects live shorter than the
other group under control, as long as they live much longer
under treatment, they are healthier under treatment and are
less likely to develop bad HRQOL outcomes under treat-
ment. Similarly, for subjects’ health condition under control,
Assumption 3(ii) says that survival under control is a better
predictor of the HRQOL than survival under treatment.

Remark 1. Our generalized ranked average score assump-
tions on the HRQOL become intuitive if we consider the
following generalized linear models:

P{Yi(1) = 1 | Si(0) = st0 , Si(1) = st1} = g−1(β − β0st0 − β1st1),

P{Yi(0) = 1 | Si(0) = st0 , Si(1) = st1} = g−1(γ − γ0st0 − γ1st1).

If g(x) = log(x), then e−βd and e−γd are the conditional rel-
ative risks of Si(d) on the treatment and control potential
HRQOL for d = 0, 1. The models above imply that

log
P{Yi(1) = 1 | Si(0) = st0 , Si(1) = st1}

P{Yi(1) = 1 | Si(0) = st′
0
, Si(1) = st′

1
}

= −β0(st0 − st′
0
) − β1(st1 − st′

1
), (2)

log
P{Yi(0) = 1 | Si(0) = st0 , Si(1) = st1}

P{Yi(0) = 1 | Si(0) = st′
0
, Si(1) = st′

1
}

= −γ0(st0 − st′
0
) − γ1(st1 − st′

1
). (3)

If β0, β1, γ1, γ0 ≥ 0, then Assumption 2 holds. If β1 ≥ β0, that
is, the conditional relative risk of Si(1) on Yi(1) is larger than
Si(0), then Assumption 3(i) holds. If γ0 ≥ γ1, that is, the con-
ditional relative risk of Si(0) on Yi(0) is larger than Si(1), then
Assumption 3(ii) holds.

If g(x) = x, then −βd and −γd are the partial regression
coefficients of Si(d) on the treatment and control potential
HRQOL for d = 0, 1. Then the right-hand sides of (2) and (3)
are the corresponding comparisons of the conditional proba-
bilities on the risk difference scale. If β0, β1, γ1, γ0 ≥ 0, then
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Assumption 2 holds. If β1 ≥ β0, that is, the partial regres-
sion coefficient of Si(1) on Yi(1) is larger than Si(0), then
Assumption 3(i) holds. If γ0 ≥ γ1, that is, the partial regres-
sion coefficient of Si(0) on Yi(0) is larger than Si(1), then
Assumption 3(ii) holds.

Note that the models in this remark are used to aid inter-
pretations, and our method does not need to invoke them.

Zhang and Rubin (2003), hereafter ZR, proposed ranked
average score assumptions to utilize the survival information
on a single time point, that is, the survival status when the
HRQOL outcome was measured. Their assumptions say that
when assigned to treatment, the risk of a worse HRQOL out-
come for always survivors is not higher than that for the
protected; and when assigned to control, the risk of a worse
HRQOL outcome for always survivors is not higher than that
for the harmed. Mathematically, ZR assumed,

P{Yi(1) = 1 | Si(1) ≥ sT , Si(0) ≥ sT }

≤ P{Yi(1) = 1 | Si(1) ≥ sT , Si(0) < sT }, (4)

P{Yi(0) = 1 | Si(1) ≥ sT , Si(0) ≥ sT }

≤ P{Yi(0) = 1 | Si(1) < sT , Si(0) ≥ sT }. (5)

Different from our assumptions, ZR used only the survival
information at the time point of the measurement of the
HRQOL outcome. However, detailed survival information
contains additional information on the health condition of the
subjects, which can help further sharpen the inference on the
SACE. Moreover, detailed survival information creates strata
finer than the four principal strata, and the comparisons
among those finer strata result in more plausible assump-
tions than the coarse comparisons among the four principal
strata. For example, consider the SWOG study of the effect
of DE (treatment) versus MP (control) on the HRQOL at six
months described in the introduction, where patients were
followed up at three months, six months and twelve months.
Let us compare the following two groups’ HRQOL outcomes.
The first group consists of patients who would die shortly
after six months no matter being treated by DE or MP, that
is, Si(1) = Si(0) = 6. The second group consists of patients
who would survive more than twelve months no matter being
treated by DE or MP, that is, Si(1) = Si(0) = 12. The first
group subjects’ health conditions at six months are much
worse than those of the second group because the first group
would die shortly after six months no matter being treated by
DE or MP. Therefore, it’s reasonable to assume that the first
group’s risk of bad HRQOL outcome is not lower than that
of the second group as implied by our Assumption 2. How-
ever, ZR did not provide a comparison between two groups
like these. For another example, ZR assumed that the pro-
tected, on average, had worse HRQOL outcomes than always
survivors under treatment. In contrast, our Assumption 3
assumes that some particular subgroups of always survivors,
on average, have worse HRQOL outcomes than some partic-
ular subgroups of the protected under treatment, which are
more reasonable assumptions for many HRQOL studies given
more survival information. Let us still consider the SWOG
study and compare the following two groups’ HRQOL out-
comes under DE. The first group again consists of patients

who would die shortly after six months no matter being
treated by DE or MP, that is, Si(1) = Si(0) = 6. The second
group consists of patients who would survive more than twelve
months if being treated by DE and would die shortly after
three months if being treated by MP, that is, Si(1) = 12, and
Si(0) = 3. Patients respond differently to different treatments.
Although the patients in the second group do not respond to
MP as those patients in the first group, they respond to DE
much better than the patients in the first group. Thus, it is
reasonable to assume that when being treated by DE, the sec-
ond group of patients, a subgroup of the protected, are likely
to be less sick at six month, and therefore, their risks of bad
HRQOL outcome are not higher than those of the first group
of patients, a subgroup of always survivors.

Yang and Small (2016), hereafter YS, extended ZR’s ranked
average score assumptions by utilizing a post measurement
time point survival information. Their assumptions could be
viewed as a simple version of our generalized ranked average
score assumptions with two follow-up time points and with
monotonicity constraints on the survival. The authors con-
sidered a scenario where the subjects were followed up twice
(K = 2) and their HRQOL outcomes were measured at the
first follow up time point (T = 1). Besides Assumption 1, the
monotonicity assumption was imposed to restrict the possible
combinations of the values of Si(1) and Si(0). Mathemati-
cally, the monotonicity assumption states that Si(1) ≥ Si(0).
As we discussed in the introduction, this assumption is strong
and often suspicious. Assumptions 5 to 7 in YS are exactly
the same as our generalized ranked average score assump-
tions (i.e., Assumptions 2 and 3) in this special case of
K = 2, T = 1 and equal lengths of follow-up intervals (i.e.,
s2 − s1 = s1) or longer second follow-up interval than the first
(i.e., s2 − s1 > s1), without considering subjects whose sur-
vival would be harmed by the treatment. Compared with YS,
our assumptions are more conservative in the case of longer
first follow-up interval than the second (i.e., s2 − s1 < s1).
Consider two groups of patients where the first group con-
sists of patients who would survive to the first follow-up time
point s1 under both treatment and control (i.e., patients with
Si(1) = Si(0) = s1), and the second group consists of patients
who would survive at least to the second follow-up time point
s2 under treatment however would die even before the first
follow-up time point (i.e., patients with Si(1) = s2, Si(0) = 0).
YS always assume that the second group’s risk of bad HRQOL
outcome under treatment is not higher than that for the first
group; in contrast, we only make this assumption when the
second group’s additional length of survival under treatment
compared to the first group (i.e., s2 − s1) is no less than their
reduced length of survival under control (i.e., s1). In addition,
the derived bounds in YS rely on the monotonicity assump-
tion, which may or may not cover the true effect when the
monotonicity is violated. See the numerical examples in the
Supplementary Materials.

3. Derivation of Bounds Under a Copula Model

In this section, we derive large sample bounds for the SACE
under Assumptions 1–3 assuming that the observable joint
distribution of (Di, Si, Yi) is known.
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3.1. Bounds Given the Joint Distribution of Si(1) and
Si(0)

Define qt1t0d = P{Yi(d) = 1 | Si(1) = st1 , Si(0) = st0}. Define
pt1t0 = P{Si(1) = st1 , Si(0) = st0} as the proportion of the fine
stratum that consists of patients who would survive to time
st1 (i.e., t1-th follow-up) under treatment and st0 (i.e., t0-th
follow-up) under control. In this subsection, we assume that
the pt1t0 ’s are known. In terms of the fine strata, the SACE
is:

SACE = E{Yi(1) − Yi(0) | Si(1) ≥ sT , Si(0) ≥ sT }

= P{Yi(1) = 1 | Si(1) ≥ sT , Si(0) ≥ sT }

−P{Yi(0) = 1 | Si(1) ≥ sT , Si(0) ≥ sT }

=

∑K

t1=T

∑K

t0=T
(qt1t01 − qt1t00)pt1t0

∑K

t1=T

∑K

t0=T
pt1t0

. (6)

Meanwhile, under Assumption 1, P(Yi = 1, Si = st | Di = d) =

P{Yi(d) = 1, Si(d) = st}. Therefore, the observable distribution
P(Yi, Si | Di) is a mixture distribution of potential outcomes
of fine strata as shown in the following identities:

P(Yi = 1, Si = st0 | Di = 0) =

K
∑

t1=0

pt1t0qt1t00, for all t0 ≥ T,

(7)

P(Yi = 1, Si = st1 | Di = 1) =

K
∑

t0=0

pt1t0qt1t01, for all t1 ≥ T.

(8)

If we hypothetically know the proportions of each fine stratum
pt1t0 , then the bounds for the SACE could be obtained by
solving a linear programming problem with objective function
(6), subject to the linear equality constraints (7) and (8),
the linear inequality constraints (9) that all the probabilities
qt1t0d ’s are bounded between 0 and 1,

0 ≤ qt1t0d’s ≤ 1, (9)

and the linear inequality constraints (10) and (11) imposed
by Assumptions 2 and 3:

qt1t01 ≤ qt′
1
t′
0
1, for all t1 ≥ t′1 ≥ T, st1 + st0 ≥ st′

1
+ st′

0
,(10)

qt1t00 ≤ qt′
1
t′
0
0, for all t0 ≥ t′0 ≥ T, st1 + st0 ≥ st′

1
+ st′

0
. (11)

3.2. A Copula Model

Although the marginal distributions of the potential survival
times, P{Si(1) = st} and P{Si(0) = st} are observable, their
joint distribution is not. Therefore, the proportions of fine
strata pt1t0 ’s are not identified without further assumptions.
To capture the dependence between the two potential sur-
vival times, we propose to use the copula. We assume that
the joint distribution of these intermediate outcomes follows
a Plackett copula (Plackett, 1965), where the degree of asso-
ciation is measured by a single parameter. Let Fd(·) be the

marginal distribution function for the random variable Si(d)
with Fd(st) = P{Si(d) ≤ st} (d = 0, 1). The joint distribution
function F(st1 , st0) of Si(1) and Si(0) linked by a Plackett cop-
ula is given by Cφ(F1(st1), F0(st0)), where C1(u, v) = uv when

φ = 1, and Cφ(u, v) =
{1+(φ−1)(u+v)}−[{1+(φ−1)(u+v)}2−4φ(φ−1)uv]1/2

2(φ−1)

when φ > 0 and φ �= 1. The parameter φ measures the associ-
ation between Si(1) and Si(0), and the Spearman correlation
coefficient ρ is a monotonic function of φ: ρ =

φ+1
φ−1

−
2φ log φ

(φ−1)2
.

Therefore, Si(1) and Si(0) are independent for φ = 1, nega-
tively associated for φ < 1, and positively associated for φ > 1.
Since the survival times of patients under both treatment
arms are highly dependent on their underlying health sta-
tus, it is reasonable to assume that patients who live longer
under one treatment arm are more likely to live longer under
the other, implying that φ ≥ 1 (i.e., ρ ≥ 0).

For a fixed φ, the pt1t0 ’s could be calculated based on the
joint distribution function, F(st1 , st0) = Cφ(F1(st1), F0(st0)).
Then given the values of the pt1t0 ’s, the bounds for the SACE
can be obtained by solving the linear programming prob-
lem described in Section 3.1. The final bounds for the SACE
will be constructed by varying the value of φ on a suitable
grid and obtaining the bounds for each value of φ. The final
lower bound will then take the value of the smallest lower
bound among all the lower bounds, and the final upper bound
will take the value of the largest upper bound among all
the upper bounds. Alternatively, we can view φ as a sen-
sitivity parameter, and draw conclusions at different values
of φ.

We give two numerical examples in the Supplementary
Materials to show the improvement of our approach over ZR’s
and the potential bias of YS’s when monotonicity does not
hold. Although the intuition is overwhelming that our method
will lead to narrower bounds than ZR’s in many cases, it is
technically challenging to give a formal proof. Even under
monotonicity, YS did not give a formal proof of improve-
ment over ZR although in most cases the improvement is
apparent.

4. Statistical Inference Accounting for Sampling

Variability

The bounds derived in the previous section are large sample
bounds, where we assume that the joint distribution of (Yi, Si)
under each treatment arm is known. However, in practice, we
need to account for the sampling uncertainty in statistical
inference. Because our bounds are results of a linear program-
ming problem, they will be in the form of intersection (i.e.,
the lower/upper bound takes the maximum/minimum a col-
lection of functionals). The maximum and minimum operators
involved in the intersection bounds generate significant com-
plications for both estimation and inference from a frequentist
perspective. Most methods (e.g., Chernozhukov et al., 2013)
focusing on asymptotic properties may not have desirable
finite sample properties as investigated by Yang and Small
(2016). A recent method proposed by Jiang and Ding (2018)
requires explicit forms of the bounds. To avoid these difficul-
ties in frequentists’ inference, we adopt a Bayesian approach
to conduct inference by deriving the exact credible intervals
for the bounds. The Bayesian approaches are being increas-
ingly adopted in partially identified models (Gustafson and
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Greenland, 2009; Scharfstein et al., 2011; Mealli and Pacini,
2013; Gustafson, 2015).

Suppose that the subjects are followed up to time point
K. Let us define parameter vectors πd = (π0d, π1d, . . . , πKd)
for d = 0, 1 where πtd = P{Si(d) = st}. Given the value
of the copula parameter φ, the joint probability for
survival times under treatment and control is, pt1t0 =

Cφ(F1(st1), F0(st0)) − Cφ(F1(st1−1), F0(st0)) − Cφ(F1(st1), F0

(st0−1)) + Cφ(F1(st1−1), F0(st0−1)), where Fd(st) =
∑j=t

j=0
πjd ,

and Fd(s−1) is defined as 0 for d = 0, 1. We define
parameters αtd = P{Y(d) = 1 | S(d) = st} for d = 0, 1 and
t = T, T + 1, . . . , K. Given parameters πd ’s and αtd ’s, the
joint probability of survival and HRQOL outcomes under
each treatment arm is, P{Y = 1, S = st | D = d} = P{Y(d) =

1, S(d) = st} = πtdαtd , for d = 0, 1 and t = T, T + 1, . . . , K.
We further define the compatible region to be the region of
parameters constrained by Assumptions 1–3, that is,

Compatible Region=
{

π0, π1, αtd’s (d =0, 1, t=T, T +1, . . . , K)

| there are feasible solutions qt1t01’s

(T ≤ t1 ≤ K, 0 ≤ t0 ≤ K) and qt1t00’s

(0 ≤ t1 ≤ K, T ≤ t0 ≤ K) to the linear

constraints (7)−(11)defined in Section 3.1
}

(12)

Prior to observing any data, we assume that the πd ’s are inde-
pendent and follow truncated Dirichlet distributions with all
parameters being 1, that is, f (πd) ∝ I(Compatible Region) ·

Dirichlet(1, . . . , 1), where I(·) is the indicator function tak-
ing on the value 1 if the statement is true and 0 otherwise.
Similarly, we assume that the αtd ’s are independent and follow
truncated Beta distributions with all parameters being 1, that
is, f (αtd) ∝ I(Compatible Region) · Beta(1, 1). The posterior
distributions of the πd ’s and αtd ’s can be derived analytically
according to the priors and the likelihood. As an illustration,
details on the posterior distributions calculation are provided
for the SWOG study in Section 5.

To find the corresponding joint posteriors of the bounds
given the value of the copula parameter φ, we simulate from
the posterior distributions of the πd ’s and αtd ’s, and per-
form the linearly constrained optimizations to obtain the
lower and upper bounds on the SACE for each simula-
tion. Credible intervals for the bounds are not unique. A
100(1 − α)% credible interval for the bounds on the SACE
would be any interval where there is a 100(1 − α)% poste-
rior probability that the bounds (i.e., both the lower and
upper bounds) fall within. Among all the 100(1 − α)% credi-
ble intervals for the bounds on the SACE given the value of
φ, we choose the one with the shortest length by a numerical
search.

5. Application to the Southwest Oncology Group

Study

The data previously analyzed by Ding et al. (2011) contain
487 androgen-independent prostate cancer patients enrolled
in the SWOG trial between 1999 and 2003, who were ran-
domized to receive either DE or MP. We view the patients

who received DE as the treatment group (Di = 1), and the
patients who received MP as the control group (Di = 0). Let
Yi = 1 if there was a reduction in patient i’s HRQOL six
months after treatment compared to his HRQOL at baseline
(i.e., a worse HRQOL outcome), and Yi = 0 otherwise. If the
patient died before six months after treatment, the HRQOL
level would not be measured and Yi will be undefined. Note
that we dichotomize the continuous HRQOL measurement to
be a binary outcome indicating its reduction compared to its
baseline. Although it might cause loss of information, this
dichotomized outcome is a meaningful measure of the effi-
cacy of the treatment. Moreover, for statistical inference of
this binary outcome, we do not need to impose any modeling
assumptions in contrast to the original continuous outcome.

As described in Section 2, Si takes values s0 = 0, s1 =

3, s2 = 6 or s3 = 12 for death before three months, between
three months and six months, between six months and
twelve months, or after twelve months, respectively. The
corresponding T for the SWOG study equals 2, and the cor-
responding K equals 3. Among the patients, there are 135 of
them have missing measurements for their HRQOL although
survived beyond six months. In our analysis, we assume that
Yi is missing at random given survival Si and the treatment
assignment Di, and therefore, we can ignore the missing
data model in the Bayesian analysis. We set the priors to be
independent and non-informative as described in Section 4,
f (π1, π0, α21, α31, α20, α31) ∝ I(Compatible Region). Let
Nytd =

∑n

i=1
I(Yi = y, Si = st, Di = d) for y = 0, 1, t = 2, 3

and d = 0, 1, Utd =
∑n

i=1
I(Yi undefined, Si = st, Di = d) for

t = 0, 1 and d = 0, 1, and let Mtd =
∑n

i=1
I(Yi missing, Si =

st, Di = d) for t = 2, 3 and d = 0, 1. Under the missing at
random assumption, the posterior density is

f (π1, π0, α21, α31, α20, α30 | Y , S, D)

∝ I(Compatible Region) · π
U01

01 · π
U11

11 · π
M21+N121+N021

21

·π
M31+N131+N031

31 · π
U00

00 · π
U10

10 · π
M20+N120+N020

20 · π
M30+N130+N030

30

·α
N121

21 ·(1−α21)
N021 ·α

N131

31 · (1−α31)
N031 · α

N120

20 · (1−α20)
N020

·α
N130

30 · (1 − α30)
N030 ,

where Y , S, and D are the observed vectors of the
HRQOL outcomes, survival times and treatment assign-
ment indicators for all subjects. Therefore, the pos-
terior distributions of π1 and π0 are Dirichlet with
parameters (U01 + 1, U11 + 1, M21 + N121 + N021 + 1, M31 +

N131 + N031 + 1) and (U00 + 1, U10 + 1, M20 + N120 + N020 +

1, M30 + N130 + N030 + 1), respectively, and the posterior dis-
tributions of α21, α31, α20, α30 are Beta with parameters
(N121 + 1, N021 + 1), (N131 + 1, N031 + 1), (N120 + 1, N020 +

1), (N130 + 1, N030 + 1), respectively, all truncated within
the compatible region defined in (12). Truncation could be
done by simulating from the un-truncated distributions and
rejecting the draws without feasible solutions to the linear
constrained optimization problem. The details of the opti-
mization problem we solve for the SWOG study are presented
in the Supplementary Materials.

Table 1 compares the estimated bounds and the 95% cred-
ible intervals under the following two sets of assumptions: (i)
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Table 1

Results for the SWOG study comparing our general ranked average score assumptions with ZR’s ranked average score
assumptions

ρ log(φ) Estimated bounds Relative length 95% Credible interval Relative length

0.0000 0.000 [−0.110, 0.005] 0.764 [−0.226, 0.128] 0.889
0.1000 0.301 [−0.105, −0.002] 0.684 [−0.222, 0.116] 0.850
0.2000 0.607 [−0.099, −0.008] 0.602 [−0.216, 0.106] 0.811
0.3000 0.926 [−0.092, −0.015] 0.515 [−0.204, 0.103] 0.770
0.4000 1.264 [−0.085, −0.020] 0.428 [−0.194, 0.095] 0.727
0.5000 1.632 [−0.077, −0.025] 0.346 [−0.187, 0.086] 0.685
0.6000 2.049 [−0.070, −0.029] 0.274 [−0.180, 0.080] 0.654
0.7000 2.545 [−0.065, −0.031] 0.224 [−0.174, 0.078] 0.633
0.8000 3.189 [−0.062, −0.033] 0.191 [−0.167, 0.079] 0.620
0.9000 4.191 [−0.059, −0.037] 0.148 [−0.168, 0.073] 0.606
0.9900 7.110 [−0.053, −0.042] 0.072 [−0.162, 0.069] 0.582
0.9990 9.773 [−0.052, −0.043] 0.056 [−0.161, 0.069] 0.578
0.9999 12.331 [−0.052, −0.043] 0.056 [−0.161, 0.069] 0.578
ZR [−0.130, 0.020] 1.000 [−0.241, 0.157] 1.000

Assumptions 1–3, and (ii) Assumptions 1 with ZR’s ranked
average score assumptions (4) and (5). The point estimates of
the lower and upper bounds are reported based on their pos-
terior medians, and the posterior distributions of the bounds
under (ii) are obtained similarly with non-informative Beta
priors on parameters P{Si(d) ≥ 6}’s and P{Yi(d) = 1 | Si(d) ≥

6}’s for d = 0, 1. According to the results under the set of
assumptions (i), with a moderately small correlation between
the two potential survival times under DE and MP, (e.g., ρ ≥

0.2), among the patients with androgen-independent prostate
cancer who would survive to at least six months under both
DE and MP, DE would help reduce the risk of bad HRQOL
by 0.8 percent to 9.9 percent. Given the facts that the two
potential survival times and two potential HRQOL outcomes
are highly dependent on subjects’ underlying health status,
and that the correlation between the potential HRQOL out-
come and potential survival time under DE is 0.22, ρ ≥ 0.2
is probably a plausible and conservative assumption on the
correlation between the two potential survival times under
DE and MP. These bounds are about 40% shorter and are
also more informative than the bounds obtained by utilizing
only the survival information at the time point of measure-
ment, which estimates that the effect of DE is somewhere
between reducing the risk of bad HRQOL outcome by 13.0
percent and increasing the risk by 2 percent compared to
MP. Unfortunately, due to the small sample size and missing
data, all the 95% credible intervals cover 0, indicating that
there is not enough evidence to conclude that DE improves
the HRQOL outcome among androgen-independent prostate
cancer patients who would be able to survive to at least six
months under both treatments.

To evaluate the sensitivity of the proposed approach to the
choice of the type of copula, we also conducted the analy-
sis using the Gaussian copula. The results are very close. For
instance, with a correlation ρ ≥ 0.2 between the two poten-
tial survival times under DE and MP, under the Gaussian
copula, the estimated bounds are [−0.098, −0.008] (compared
to [−0.099, −0.008] under the Plackett copula) with a 95%
credible interval [−0.216, 0.107] (compared to [−0.216, 0.106]
under the Plackett copula). To save space, the description of

the Gaussian copula and the detailed results are presented in
the Supplementary Materials.

6. Discussion

Our approach can also be applied to stratified randomized
trials where strata are created based on prognostic factors
and randomization is conducted within each stratum. In these
settings, we can weaken our assumptions by requiring them
to hold in each stratum. Each stratum specific SACE can be
bounded, and the overall bounds on the SACE will then be
obtained as a weighted average of stratum specific SACE’s
with weights proportional to the sizes of strata measured by
the numbers of always survivors (Freiman and Small, 2014).

We focused on binary outcomes which allow for obtaining
nonparametric bounds of the SACE. If the original outcome
Y ∗ is continuous and dichotomization will lose information, we
can consider applying our method to estimate SACE on Y =

I(Y ∗ > y) at each point of y, or imposing additional modeling
assumptions on Y ∗. We leave this to future research.

In our analysis of the SWOG data, we focus on the patients’
HRQOL outcome measured at six months after initiation of
the treatment. However, patients’ HRQOL outcomes were
measured repeatedly in this study at each follow-up time
point, namely, three months, six months and twelve months.
Using the current approach, one would conduct separate anal-
yses on the SACE’s for the HRQOL outcomes measured at
different time points, which is not ideal to study the change
in the SACE over time. How to incorporate the informa-
tion from repeated measurements of the HRQOL outcomes
requires further research.

Subject matter knowledge is necessary to judge the plausi-
bility of our assumptions because they could not be validated
by the observable data. We expect that our approach could be
widely applied to HRQOL outcomes because patients surviv-
ing longer tend to be healthier, and patients’ health conditions
under one arm tend to be better predicted by their survival
lengths under the same arm than that under a different arm.
However, in studies where the relationship between the time
to truncation and the outcome of interest is not clear, our
assumptions could be suspicious. Consider the causal effect
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of a job-training program on participants’ wages that are
potentially truncated by unemployment (Zhang et al. 2009;
Frumento et al. 2012) . For some subjects, longer time to get
employed may indicate their being less competitive in the
job market, and therefore, is associated with lower wages.
However, for some subjects that are very competitive and
can afford longer unemployment, they may decline some job
opportunities with low wages, and therefore, longer time to
get employed is associated with higher wages. In such a case,
our assumptions may not apply, and alternative assumptions
should be invoked to sharpen the inference.

7. Supplementary Materials

Numerical examples referenced in Section 3.2, details on the
optimization problem and sensitivity analysis for the SWOG
study referenced in Section 5, original data and source code
can be found at the Biometrics website on Wiley Online
Library.
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