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SUMMARY

Causal inference with observational studies often relies on the assumptions of unconfoundedness and

overlap of covariate distributions in different treatment groups. The overlap assumption is violated when

some units have propensity scores close to 0 or 1, so both practical and theoretical researchers suggest

dropping units with extreme estimated propensity scores. However, existing trimming methods often do

not incorporate the uncertainty in this design stage and restrict inference to only the trimmed sample,

due to the nonsmoothness of the trimming. We propose a smooth weighting, which approximates sample

trimming and has better asymptotic properties. An advantage of our estimator is its asymptotic linearity,

which ensures that the bootstrap can be used to make inference for the target population, incorporating

uncertainty arising from both design and analysis stages. We extend the theory to the average treatment

effect on the treated, suggesting trimming samples with estimated propensity scores close to 1.

Some key words: Bootstrap; Limited overlap; Nonsmooth estimator; Potential outcome; Unconfoundedness.

1. INTRODUCTION

In the potential outcomes framework, there is an extensive literature on estimating causal effects based

on the assumptions of unconfoundedness and overlap of the covariate distributions (Rosenbaum & Rubin,

1983; Angrist & Pischke, 2008; Imbens & Rubin, 2015). Unfortunately, it is common to have limited

overlap in covariates between the treatment and control groups, which affects the credibility of all methods

attempting to estimate causal effects for the population (King & Zeng, 2005; Imbens, 2015). Consequently,

extreme estimated propensity scores induce large weights, which can result in a large variance and poor

finite-sample properties (Kang & Schafer, 2007; Khan & Tamer, 2010). Therefore, it may seem desirable

to modify the estimand to averaging only over that part of the covariate space with treatment probabilities

bounded away from 0 and 1. For example, in a medical study of a particular chemotherapy for breast

cancer, because patients with stage I breast cancer have never been treated with chemotherapy, clinicians

then redefine the study population to be patients with stage II to stage IV breast cancer, omitting patients

with stage I breast cancer for whom the propensity scores are zero. This effectively alters the estimand by

changing the reference population to a different target population. Petersen et al. (2012) used a projection

function to define the target parameter within a marginal structural working model. Li et al. (2018) proposed

a general representation for the target population.
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Trimming observational studies based on estimated propensity scores was first used in medical applica-

tions (e.g., Vincent et al., 2002; Grzybowski et al., 2003; Kurth et al., 2005) and then formalized by Crump

et al. (2009), who suggested dropping units from the analysis which have estimated propensity scores

outside an interval [α1, α2], so that the average treatment effect for the target population can be estimated

with the smallest asymptotic variance. Other methods, e.g., those of Traskin & Small (2011) and Fogarty

et al. (2016), construct the study population based on covariates themselves. But with moderate- or high-

dimensional covariates, these rules for discarding units become complicated. In these cases, dimension

reduction, for example seeking a scalar summary of the covariates, seems important. This was the original

motivation of the propensity score (Rosenbaum & Rubin, 1983), which is arguably the most interpretable

scalar function of the covariates.

Existing methods rarely incorporate the uncertainty in this design stage and restrict inference to the

trimmed sample. We incorporate uncertainty in both the design and the analysis stages. The nonsmooth

nature of trimming renders the target causal estimand not root-n estimable (Crump et al., 2009), so, instead

of making a binary decision to include or exclude units from analysis, we propose to use a smooth weight

function to approximate the existing sample trimming. This allows us to derive the asymptotic properties of

the corresponding causal effect estimators using conventional linearization methods for two-step statistics.

We show that the new weighting estimators are asymptotically linear, so the bootstrap can be used to

construct confidence intervals.

2. POTENTIAL OUTCOMES, CAUSAL EFFECTS AND ASSUMPTIONS

For each unit i, the treatment is Ai ∈ {0, 1}, where 0 and 1 are labels for control and treatment. There

are two potential outcomes, one for treatment and the other for control, denoted by Yi(1) and Yi(0),

respectively. The observed outcome is Yi = Yi(Ai). Let Xi be the observed pre-treatment covariates. We

assume that {Ai, Xi, Yi(1), Yi(0)}N
i=1 are independent draws from the distribution of {A, X , Y (1), Y (0)}. Given

the observed covariates, the conditional average causal effect is τ(X ) = E{Y (1)− Y (0) | X }. The average

treatment effect is τ = E{Y (1)− Y (0)} = E{τ(X )}. The common assumptions to identify τ are as follows

(Rosenbaum & Rubin, 1983).

Assumption 1 (Unconfoundedness). For a = 0, 1, Y (a) is independent of A | X .

Assumption 2 (Overlap). There exist constants c1 and c2 such that with probability 1, 0 < c1 � e(X ) �

c2 < 1, where e(X ) = pr(A = 1 | X ) is the propensity score.

In observational studies, the propensity score is not known and therefore must be estimated from data.

Following Rosenbaum & Rubin (1983) and most of the empirical literature, we assume that the propensity

score is correctly specified by a generalized linear model e(X ) = e(X Tθ∗). We focus on θ̂ , the maximum

likelihood estimator of the true parameter θ∗, although our method is also applicable to other asymptotically

linear estimators of θ∗. Then, a simple weighting estimator of τ is N −1
∑N

i=1 τ̂ (Xi), where

τ̂ (Xi) =
AiYi

e(X T
i θ̂ )

−
(1 − Ai)Yi

1 − e(X T
i θ̂ )

.

If we further estimate µ(a, X ) = E(Y | A = a, X ) by µ̂(a, X ) and obtain the residual R̂i = Yi − µ̂(Ai, Xi),

then the augmented weighting estimator is N −1
∑N

i=1 τ̂ aug(Xi) (Lunceford & Davidian, 2004; Bang &

Robins, 2005), where

τ̂ aug(Xi) =

{

AiR̂i

e(X T
i θ̂ )

+ µ̂(1, Xi)

}

−

{

(1 − Ai)R̂i

1 − e(X T
i θ̂ )

+ µ̂(0, Xi)

}

.

The augmented weighting estimator features a double robustness property in the sense that under

Assumptions 1 and 2, it is consistent for τ if either e(X ) or µ(a, X ) is correctly specified.
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The weighting estimators may be variable when Assumption 2 is violated or nearly violated. When there

is limited overlap, define the set with adequate overlap to be O = {X : α1 � e(X ) � α2}, where α1 and

α2 are fixed cut-off values, e.g., α1 = 0·1 and α2 = 0·9 (Crump et al., 2009). The target population is then

represented by O, and the estimand of interest becomes τ(O) = E{τ(X ) | X ∈ O}. The trimmed sample

based on the estimated propensity score is Ô = {X : α1 � e(X Tθ̂ ) � α2}. Correspondingly, the inclusion

weight is

ω(X T
i θ̂ ) = 1{α1 � e(X T

i θ̂ ) � α2}, (1)

where 1(·) is the indicator function, and the weighting estimators of τ(O) become

τ̂ = τ̂ (θ̂ ) =

{

N
∑

i=1

ω(X T
i θ̂ )

}−1 N
∑

i=1

ω(X T
i θ̂ )τ̂ (Xi), (2)

τ̂ aug = τ̂ aug(θ̂) =

{

N
∑

i=1

ω(X T
i θ̂ )

}−1 N
∑

i=1

ω(X T
i θ̂ )τ̂ aug(Xi). (3)

The main question we address is how the estimated support affects the inference. To make inference for

τ(O), we need to take into account the sampling variability in θ̂ , which induces variability of the estimated

set Ô, and the sampling variability in τ̂ and τ̂ aug. We cannot directly apply conventional asymptotic

linearization methods because the weight function (1) is nonsmooth, so we consider a smooth weight

function

ωε(X
T
i θ̂ ) = �ε

{

e(X T
i θ̂ ) − α1

}

�ε

{

α2 − e(X T
i θ̂ )

}

, (4)

where �ε(z) is the normal cumulative distribution with mean zero and variance ε2. The normal distribution

can be changed to any differentiable distribution whose variance increases with ε. As ε → 0, (4) converges

to the indicator weight function (1). Both functions include units with nonextreme propensity scores

with probability 1. In contrast, another smooth weight function, the overlap weight function ω{e(X )} =

e(X ){1 − e(X )} recently proposed by Li et al. (2018), overweighs units with propensity scores close to 0·5

and thus does not target τ(O).

3. MAIN RESULTS FOR THE AVERAGE CAUSAL EFFECT

We derive the asymptotic results for the smooth weighting estimators. Based on data {(Ai, Xi)}
N
i=1, let

the score function and the Fisher information matrix of θ be

S(θ) =
1

N

N
∑

i=1

Xi

Ai − e(X T
i θ)

e(X T
i θ){1 − e(X T

i θ)}
f (X T

i θ), I(θ) = E

[

f (X Tθ)2

e(X Tθ){1 − e(X Tθ)}
XX T

]

,

where f (t) = de(t)/dt. Let σ 2(a, X ) = var(Y | A = a, X ) for a = 0, 1. Let τ̂ε and τ̂ aug
ε denote the weighting

estimators (2) and (3) with the smooth weight function (4), respectively. Let τε = E{ωε(X
Tθ∗)τ (X )} and

ωε(θ) = E{ωε(X
Tθ)}. We show that τ̂ε and τ̂ aug

ε are consistent for τε . Moreover, the discrepancy between

τε and the target estimand τ(O) can be made arbitrarily small by choosing a small ε.

THEOREM 1. Under Assumption 1, τ̂ε is asymptotically linear. Moreover,

N 1/2(τ̂ε − τε) → N
{

0, σ 2
ε + bT

1,εI(θ∗)−1b1,ε − bT
2,εI(θ∗)−1b2,ε

}
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in distribution as N → ∞, where

b1,ε = E

[

∂

∂θ

{

ωε(θ
∗)−1ωε(X

Tθ∗)
}

τ(X )

]

,

b2,ε = ωε(θ
∗)−1E

{

ωε(X
Tθ∗)f (X Tθ∗)

[

E{X µ(1, X ) | e(X )}

e(X )
+

E{X µ(0, X ) | e(X )}

1 − e(X )

]}

,

σ 2
ε = ωε(θ

∗)−2E[ωε(X
Tθ∗)2var{τ(X )}]

+ ωε(θ
∗)−2E

⎧

⎨

⎩

ωε(X
Tθ∗)2

[

{

1 − e(X )

e(X )

}1/2

µ(1, X ) +

{

e(X )

1 − e(X )

}1/2

µ(0, X )

]2
⎫

⎬

⎭

+ ωε(θ
∗)−2E

[

ωε(X
Tθ∗)2

{

σ 2(1, X )

e(X )
+

σ 2(0, X )

1 − e(X )

}]

.

Remark 1. We show in the Supplementary Material that b1,ε → 0 as ε → 0. Therefore, the increased

variability due to estimating the support, bT
1,εI(θ∗)−1b1,ε , is close to 0 with a small ε.

Remark 2. The term −bT
2,εI(θ∗)−1b2,ε implies that the estimated propensity score increases the precision

of the simple weighting estimator of τ based on the true propensity score, a phenomenon that has previously

appeared in the causal inference literature (e.g., Rubin & Thomas, 1992; Hahn, 1998; Abadie & Imbens,

2016).

THEOREM 2. Under Assumption 1, τ̂ aug
ε is asymptotically linear. Moreover,

N 1/2(τ̂ aug
ε − τε) → N

{

0, σ̃ 2
ε + bT

1εI(θ∗)−1b1ε + (C0 + C1)
T
I(θ∗)−1(C0 + C1) + B̃T(C0 − C1)

}

in distribution as N → ∞, where b1,ε is defined in Theorem 1,

σ̃ 2
ε = ωε(θ

∗)−2E[ωε(X
Tθ∗)2var{τ(X )}] + ωε(θ

∗)−2E

[

ωε(X
Tθ∗)2

{

σ 2(1, X )

e(X )
+

σ 2(0, X )

1 − e(X )

}]

,

Ca = E

{

X ωε(X
Tθ∗)f (X Tθ∗)

µ̃(a, X ) − µ(a, X )

pr(A = a | X )

}

(a = 0, 1),

with µ̂(a, X ) → µ̃(a, X ) in probability for a = 0, 1 and B̃ = b1,ε − C0 − C1.

Remark 3. If the outcome model is correctly specified, then µ̃(a, X ) = µ(a, X ) and thus C0 = C1 = 0.

Consequently, the asymptotic variance of τ̂ aug
ε reduces to σ̃ 2

ε + bT
1εI(θ∗)−1b1ε , which is smaller than the

asymptotic variance of τ̂ε . Intuitively, by regressing Y on X and A, we use the residual as the new outcome,

which in general has a smaller variance than Y .

Remark 4. Because τ̂ε and τ̂ aug
ε are asymptotically linear, the bootstrap can be used to estimate the

variances of τ̂ε and τ̂ aug
ε (Shao & Tu, 2012). We evaluate the finite-sample properties of the bootstrap

variance estimator by simulation in the Supplementary Material. Let S = {X : e(X Tθ∗) = α1 or α2}.

We also show that if pr(X ∈ S) = 0, the bootstrap works for the weighting estimator with the indicator

function, which is confirmed by simulation.

Remark 5. Although some robust nonparametric methods (Hirano et al., 2003; Lee et al., 2010, 2011)

can be used for propensity score estimation, the majority of the literature uses parametric generalized linear

models. When the propensity score model is misspecified, the weighting estimators are not consistent for

the causal effect defined on the target population O = {X : α1 � e(X ) � α2}. However, our estimators can

still be helpful to inform treatment effects for the population defined as O∗ = {X : α1 � e(X Tθ∗) � α2},
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Table 1. Estimate, standard error based on 100 bootstrap replicates, and 95%

confidence interval

ε Estimate s.e. 95% c.i. Estimate s.e. 95% c.i.

τ̂ (θ̂ ) – 0·646 0·135 (0·376, 0·916) τ̂ aug(θ̂) 0·765 0·107 (0·552, 0·978)

τ̂ε(θ̂) 10−4 0·661 0·124 (0·412, 0·909) τ̂
aug
ε (θ̂) 0·763 0·105 (0·554, 0·973)

τ̂ε(θ̂) 10−5 0·632 0·133 (0·366, 0·899) τ̂
aug
ε (θ̂) 0·754 0·105 (0·543, 0·964)

s.e., standard error; c.i., confidence interval.

where e(X Tθ∗) is the propensity score projected to the generalized linear model family. This new study

population is defined as being between two hyperplanes of the covariate space, which is slightly more

complicated than the study population defined by the trees in Traskin & Small (2011) or by the intervals

of covariates in Fogarty et al. (2016). Moreover, the smooth weighting estimators are still asymptotically

linear, and again the bootstrap can be used for constructing confidence intervals. See the Supplementary

Material for more details.

Remark 6. An important issue regarding the smooth weight function is the choice of ε, which involves

a bias-variance trade-off. On the one hand, the discrepancy between τε and the target parameter τ(O) is

E([ωε(X
Tθ∗) − 1{α1 � e(X Tθ∗) � α2}]τ(X )). Assuming that τ(X ) is integrable, by the dominated con-

vergence theorem, τε converges to τ(O) as ε → 0. This implies that based on τ̂ε or τ̂ aug
ε , we can draw

inference for τ(O) by choosing a small ε. On the other hand, as ε → 0, the smooth weight function (4)

becomes closer to the indicator weight function (1), which increases the variance of the weighting estima-

tors. In practice, we recommend a sensitivity analysis varying ε over a grid, for example, 10−4, 10−5, . . .,

as illustrated in the Supplementary Material and the application in the next section.

4. NATIONAL HEALTH AND NUTRITION EXAMINATION SURVEY DATA

We examine a dataset from the 2007–2008 U.S. National Health and Nutrition Examination Survey to

estimate the causal effect of smoking on blood lead levels (Hsu & Small, 2013). The dataset includes 3340

subjects consisting of 679 smokers, denoted by A = 1, and 2661 nonsmokers, denoted by A = 0. The

outcome variable Y is the measured level of lead in the subject’s blood, with the observed range being from

0·18 µg/dl to 33·10 µg/dl. The covariates are age, income-to-poverty level, gender, education and race.

The propensity score is estimated by a logistic regression model with linear predictors including all

covariates. To help address the lack of overlap, for the average smoking effect, because there is little

overlap for the propensity score less than 0·05 or greater than 0·6, we restrict our estimand to the target

population O = {X : 0·05 � e(X ) � 0·6}. The truncation of the propensity score at 0·6 is because there

are few subjects with propensity score above 0·6. This removes 794 subjects, including 111 smokers and

683 non-smokers. Thus, the final analysis sample includes 2546 subjects, with 568 smokers and 1978

non-smokers. In the Supplementary Material, we display the summary statistics of the covariates and give

a more detailed interpretation of the target population.

We consider the weighting estimators using both the indicator and the smooth weight functions with

ε = 10−4 and ε = 10−5. For the augmented weighting estimator, we use a linear outcome model adjusting

for all covariates, separately for A = 0, 1. Table 1 shows the results. The weighting estimators with the

smooth weight function are close to their counterparts with the indicator weight function, but have slightly

smaller estimated standard errors. The smooth weighting estimators are insensitive to the choice of ε. From

the results, on average, smoking increases the lead level in blood by at least 0·65 µg/dl over the target

population with 0·05 � e(X ) � 0·6.

5. EXTENSION TO THE AVERAGE TREATMENT EFFECT ON THE TREATED

Another estimand of interest is the average treatment effect for the treated, τATT = E{Y (1) − Y (0) |

A = 1} = E{τ(X ) | A = 1}. Similar to Crump et al. (2009), if σ 2(1, X ) = σ 2(0, X ), we can show that
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the optimal overlap for estimating τATT is of the form O = {X : 1 − e(X ) � α} for some α, for which

the estimators have the smallest asymptotic variance. Intuitively, for the treated units with e(X ) close to

1, there are few similar units in the control group that can provide information to infer their Y (0) values.

Therefore, it is reasonable to drop these units with e(X ) close to 1 when inferring τATT. We give a formal

discussion in the Supplementary Material.

By restricting to the subpopulation O = {X : 1 − e(X ) � α}, the estimand of interest becomes

τATT(O) = E{τ(X ) | A = 1, X ∈ O}. We propose two estimators with smooth inclusion weights

ωATT,ε(X
Tθ̂ ) = �ε{1 − α − e(X T

i θ̂ )}e(X T
i θ̂ ):

τ̂ATT,ε =

∑N

i=1 ωATT,ε(X
Tθ̂ )τ̂ (Xi)

∑N

i=1 ωATT,ε(X Tθ̂ )
, τ̂

aug

ATT,ε =

∑N

i=1 ωATT,ε(X
Tθ̂ )τ̂ aug(Xi)

∑N

i=1 ωATT,ε(X Tθ̂ )
,

which are (2) and (3) with ωε(X
Tθ̂ ) replaced by ωATT,ε(X

Tθ̂ ). Even without sample trimming, the augmented

weighting estimator is different from the existing estimators in the literature (e.g., Mercatanti & Li, 2014;

Shinozaki & Matsuyama, 2015; Zhao & Percival, 2017). We provide the motivation in the Supplementary

Material. The asymptotic properties of τ̂ATT,ε and τ̂
aug

ATT,ε can be derived similarly to the results in Theorems 1

and 2. In particular, the asymptotic linearity of these two estimators enables use of the bootstrap for

inference.

Define b̃1,ε and b̃2,ε as the analogues of b1,ε and b2,ε with weights ωATT,ε(X
Tθ̂ ). In contrast to Remark 1,

for τATT, the term b̃1,ε does not converge to 0 as ε → 0. The correction term in the asymptotic variance

formula due to the estimated propensity score instead of the true propensity score, b̃T
1,εI(θ∗)−1b̃1,ε −

b̃T
2,εI(θ∗)−1b̃2,ε , can be negative, zero, or positive. Ignoring the uncertainty in the estimated propensity

score, the inference can be either conservative or anticonservative for τATT, which differs from the inference

for τ . This fundamental difference also appeared for matching estimators (Abadie & Imbens, 2016), which

highlights the importance of incorporating the uncertainty in the design stage especially for τATT.
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