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The first excited state of the nucleus 229Th has an exceptionally small excitation energy of
7.8 eV, which is expected to be very sensitive to changes in the fine structure constant α.
A small difference in the Coulomb energies of the two states, which both are of the order
109 eV, would amplify variations in α into large variations of the transition frequency.
Hartree-Fock and Hartree-Fock-Bogoliubov calculations are performed to compute the
Coulomb energies of the two states. The kinetic energies are also calculated which reflect
a possible variation in the nucleon or quark masses or local Lorentz invariance violation.
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1. Introduction

The nucleus 229Th with 90 protons and 139 neutrons occurs in nature as the daugh-

ter of the α-decaying 233U and decays itself with a half life of 7880 years, again by

α emission. This nucleus has attracted lot of interest as it has the lowest lying

excited nuclear state known. Low lying rotational bands with Kπ = 5/2+ and 3/2+

can be identified, with band heads that according to recent measurements differ in

energy by only about 7.8(5) eV1. After discussing the Hellmann–Feynman theorem

for energy density functional theory two successful functionals with and without

pairing are used to study 229Th. For more information and details see Ref. 2 on

which this contribution is based.

2. Hellmann–Feynman Theorem Revisited

As the models used are based on density-matrix functionals this section shows

that the Hellmann–Feynman theorem3 holds also for all stationary solutions in

approximate schemes, provided they are variational.

Let E(c,x) be the energy of a physical system that depends on external param-

eters c and on a set of variational parameters x = {x1, x2, · · · } which characterize
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the state of the system. x may also represent a set of functions in which case partial

derivatives are replaced by functional derivatives.

For example, in the Hartree–Fock approximation x would be the set of occupied

single-particle states that form a Slater determinant. In an energy density functional

x could be the local density ρ(�r), and so on.

Steady state solutions x(n)(c), n = 0, 1, 2, . . . are obtained by the condition

0 =
∂E

∂xk

(c,x) . (1)

At the stationary points the energy assumes the values

En(c) = E(c,x(n)(c)), n = 0, 1, 2, . . . . (2)

Both, the energies and the parameters x(n)(c) characterizing the stationary states

depend on the constants c. In the ground state given by x(0) the energy E(c,x) is

in an absolute minimum with respect to variations in x, while the other possible

solutions x(n), n �= 0, represent saddle points.

The derivative w.r.t. an external parameter ci at the stationary points leads to

∂

∂ci
En(c) =

∂E

∂ci

(
c,x(n)(c)

)
+

∑

k

∂E

∂xk

(
c,x(n)(c)

) ∂x
(n)
k

∂ci
(c) . (3)

Due to the stationarity condition (1) the second part on the r.h.s. vanishes so that

one obtains for stationary solutions the generalized Hellmann–Feynman theorem:

∂

∂ci
En(c) =

∂E

∂ci

(
c,x(n)(c)

)
. (4)

The derivative of the energy at the stationary solutions is just the partial derivative

of the energy functional with respect to the external parameter, calculated at the

solution x(n)(c) for the stationary states.

3. Models

This section discusses briefly the models underlying the numerical calculations:

Hartee–Fock with energy density functionals and inclusion of pairing correlations.

3.1. Hartree–Fock with density-matrix functionals

It has turned out that an ansatz for the energy as functional of the one-body density-

matrix ρ̂, as originally proposed by Skyrme for the non-relativistic nuclear physics

or by Kohn and Sham4 for the atomic case, is very successful in describing ground

state properties. However, not all of the information residing in the one-body

density-matrix ρ̂ is used. Usually one uses the local proton and neutron density

ρp(�r), ρn(�r), kinetic energy densities τp(�r), τn(�r), current densities �j(�r), etc.

EDF[c, ρ̂] = EDF(c, ρp(�r), ρn(�r), τp(�r), τn(�r),�j(�r), . . . ) (5)
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The energy functional EDF[ c, ρ̂ ] contains parameters, c, which are adjusted by

fitting observables to nuclear data. In order to keep densities and currents of the

fermions consistent they are expressed in terms of the single-particle states
∣∣φν

〉
=

a†ν
∣∣ ∅

〉
that represent the occupied states of a single Slater determinant and are

eigenstates of the mean field Hamiltonian ĥMF[ρ̂].

The stationarity conditions (1) lead to the self-consistent mean-field equations

ĥMF[ρ̂] ρ̂ = ρ̂ ĥMF[ρ̂] with ĥMF[ ρ̂ ] =
δ

δρ̂
EDF[ c, ρ̂ ] (6)

and ρ̂ =
∑

occupied

∣∣φν

〉〈
φν

∣∣.
Because the self-consistent solution is obtained by searching for solutions of the

stationarity conditions (1) the Hellmann–Feynman theorem (4) is fulfilled, even if

one cannot refer to a microscopic Hamiltonian and a many-body state anymore.

One should note that it is not mandatory that the single-particle states
∣∣φν

〉

with lowest single-particle energies are occupied. Any combination of occupied

states leads to a stationary solution fulfilling Eq. (6).

3.2. Hartree–Fock–Bogoliubov

Pairing correlations in the many-body state can be incorporated by fermonic

Bogoliubov quasi-particles created by α†
ν = vνa

†
ν − uνaν̄ and α†

ν̄ = vνa
†
ν̄ + uνaν

as linear combinations of the creation and annihilation operators, a†ν , aν̄ , of the

eigenstates of the mean-field Hamiltonian (uν , vν are real and u2
ν + v2ν = 1). The

pairing partner states ν and ν̄ are usually mutually time-reversed states.

In terms of the canonical single-particle states the many-body trial state is ex-

pressed as

∣∣ΨHFB

〉
= a†µ

∏

ν

(√
1− v2ν + vν a†νa

†
ν̄

) ∣∣ ∅
〉
, (7)

where μ denotes the unpaired (blocked) state and ν runs over all other paired states.

Besides the variational parameters residing in the operators a†ν that create eigen-

states of the mean-field Hamiltonian the energy depends now also on the variational

parameters vν .

As the trial state (7) has no sharp particle number the energy functional has to

be augmented by a constraint on the mean proton number Z and the mean neutron

number N .

EHFB = E − λpZ − λnN . (8)

The proton and neutron chemical potentials, λp and λn, which determine the mean

proton and neutron number, have to be regarded as members of the set c of external

parameters. The additional constraints do not alter the arguments leading to the

Hellmann–Feynman theorem, thus it is also valid in the HFB case.
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Introducing a generalized density matrix R̂, which contains the normal one-body

density, ρ̂, and the abnormal one, κ̂, the stationarity condition leads to

ĤMF

[
R̂
]
R̂ = R̂ ĤMF

[
R̂
]

with ĤMF

[
R̂
]
=

δ

δR̂
EHFB

[
c, R̂

]
(9)

quite in analogy to the mean-field equations (6) without pairing correlations. The

pseudo-Hamiltonian ĤMF

[
R̂
]
results again from a variation of the HFB energy

functional given in Eq.(8). It contains the mean-field Hamiltonian ĥMF and a pairing

part ∆̂. For details and further reading see Refs. 2, 5, 6.

4. Amplification

According to the Hellmann–Feynman theorem a small variation δα of the fine struc-

ture constant results in a variation of the energy given by

∂En

∂α
δα =

(〈
VC

〉
−
〈
Tp

〉αdmp

dα

mp

−
〈
Tn

〉αdmn

dα

mn

)
δα

α
(10)

with Vc, Tp, Tn denoting the Coulomb, proton kinetic, and neutron kinetic energy,

respectively. The possible dependence of the nuclear interaction, e.g. through meson

masses, on α is neglected here.

As the temporal variation of the fundamental constant α is at most tiny, it has

been proposed to consider transition frequencies ω = E1(α) − E0(α) that can be

measured with high precision. The relative variation δω/ω is given as

δω

ω
=

1

ω

(
∂E1

∂α
−

∂E0

∂α

)
δα =

1

ω

(
∆VC−∆Tp

α
dmp

dα

mp

−∆Tn

αdmn

dα

mn

)
δα

α
= A

δα

α
, (11)

where ∆X =
〈
X

〉
1
−
〈
X

〉
0
denotes the difference of the expectation values of the

operators X = {VC , Tp, Tn} calculated with the two stationary states.

The results discussed in Sec. 5 show that ∆Tn and ∆Tp are of the same order as

∆VC so that the terms with the proton and neutron mass variations (see Meissner

et al.7) can be neglected.

Instead of measuring the nuclear transition frequency Berengut et al.8 proposed

to look at atomic transitions that feel the isomeric field shift, which depends on the

charge radii and quadruple moments of the two nuclear states.

The theoretical task is to investigate these states carefully in order to get a

reliable estimate for their Coulomb and kinetic energies. For the calculation of these

quantities in the following section state-of-the-art mean-field models are employed

and also the effects of pairing correlations are included.

5. Results for 229Th

Flambaum9 proposed the transition 3/2+ → 5/2+ in the nucleus 229Th for a mea-

surement of δα/α because the resulting amplification A = ∆VC/ω with ω = 7.8 eV

and a possible difference between the Coulomb energies of the two states of order
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Table 1. Total, Coulomb, neutron and proton kinetic energies of the 229Th
5/2+ ground state calculated with different energy functionals. Differences of
these energies between 3/2+ first excited state and 5/2+ ground state.

Exp. SkM∗ SIII

5/2+ Ref.10 HF HFB HF HFB

Etot [MeV] -1748.334 -1739.454 -1747.546 -1741.885 -1748.016
VC [MeV] 923.927 924.854 912.204 912.216
Tn [MeV] 2785.404 2800.225 2783.593 2794.909
Tp [MeV] 1458.103 1512.705 1442.018 1477.485

3/2+ − 5/2+ Ref.1

ΔEtot[MeV] 0.000 008 0.619 -0.046 0.141 -0.074
ΔVC [MeV] 0.451 -0.307 -0.098 0.001
ΔTn [MeV] 2.570 0.954 -0.728 0.087
ΔTp [MeV] 0.688 0.233 -0.163 -0.022

MeV could be rather large. As the Coulomb energy cannot be measured it has to

be calculated. For that two successful energy functionals, SIII11 and SkM∗ 12, are

employed.

As can be seen from Table 1, for the energetically lowest Slater determinant with

Kπ = 5/2+ the total HF binding energy agrees with the measured one up to about

9 MeV for the SkM∗ and up to about 6 MeV for the SIII energy functional. Keeping

in mind that no parameters have been adjusted to the specific nucleus considered

here it is surprising that these mean-field models can predict the experimental

binding energy of 1748.334 MeV with an uncertainty of only about 0.5 %.

By rearranging the occupation of the single-particle states such that the last

neutron sits in a Kπ = 3/2+ state one obtains after minimization of the total

energy an excited HF state that is to be regarded as the intrinsic state of the

experimentally observed Kπ = 3/2+ band.

Table 1 shows that the excited states occur at 0.619 MeV for the SkM∗ and at

0.141 MeV for the SIII density functional. The difference in Coulomb energies ∆VC

amounts to 0.451 MeV for SkM∗ and to −0.098 MeV for SIII. Without selfconsis-

tently minimizing the energy for the two sets of neutron occupation numbers the

Coulomb energies of the two states would be identical because the occupied proton

single-particle states were not changed. The Coulomb energy difference comes from

the fact that the different occupied last neutron orbits polarize the protons in a

slightly different way.

The deviations between the two energy functionals reflect the differences in the

structure of the intrinsic states as also seen from the difference in the single-particle

states discussed in Ref. 2.

The next step is to include pairing correlations with the Bogoliubov ansatz (7)

and do self-consistent HFB calculations based on the SkM∗ and SIII density-matrix

functionals. The two states are generated by self-consistently blocking either the

5/2+ or the 3/2+ quasiparticle state for pairing and putting in one neutron only.

The agreement of total energy with the experimental one is improved for both

functionals with an amazingly small deviation of less than 0.05%. But the Coulomb
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energy differences shrink, see Table 1. For the SIII energy functional, only 1 keV re-

mains for ∆VC . This reduces the amplification factor of Eq. (11) to about 100. For

SkM∗ a larger value of ∆VC of about 300 keV is obtained due to a larger splitting of

the corresponding single-particle orbitals. From this one must conclude that pair-

ing correlations result in states with even more similar charge distributions than in

the HF calculation. Therefore, such correlations not only decrease the anticipated

amplification factors but also make their determination very uncertain, due to de-

pendence on very detailed properties of the mean-field and pairing effects. As even

the sign of the amplification factor is uncertain, much more refined calculations

are needed that include coupling to low-lying core excitations and projection on

eigenstates with good total angular momentum and particle number. Before being

able to provide reasonably trustable numbers how the transition energy varies as

function of the fine structure constant α one has to make sure that the model repro-

duces the three low lying rotational Kπ = 5/2+, 3/2+, 5/2− bands up to J ≈ 9/2

and the known transitions within the bands and between them. This would provide

more confidence in the quality of the many-body states and their Coulomb energy.
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