Professional Development for Computer Science Principles: Design Considerations
and Teacher Learning QOutcomes

Abstract

With the increased attention on integrating computer science concepts into K-12
curricula, there has been a growing investment into professional development
opportunities that prepare teachers to teach computer science principles. Yet, little
research exists on design features of professional development that help teachers gain the
computer science content, skills and teaching pedagogy that ultimately make an impact
on student learning and participation in the classroom. In this work we present a
professional development model for helping K-12 teachers integrate computer science
principles across the curriculum in a variety of content areas. We subsequently
investigate the ways in which the design features of the model promoted teacher learning
of computer science content and pedagogy.

Introduction

In recent years, there has been rekindled interest in K-12 computer science education,
both in the U.S. and around the world. One aspect of computer science education that
has gained momentum is computational thinking. Computational thinking combines
critical thinking skills with the power of computing to help learners make decisions or
solve problems. Wing (2006) argued that computational thinking is a fundamental skill
for everybody and that “to reading, writing, and arithmetic, we should add computational
thinking to every child’s analytical ability” (p.33). This focus on helping all students
develop computational thinking skills is also reflected in the newly released National
Educational Technology Standards for Students (ISTE, 2016).

Fluck et al. (2016) identify three primary reasons for the rekindled interest in
computer science. The first is the economic reason, which rests on the need for a country
to produce a greater number of computer scientists. By 2018 it is projected that 51% of
all STEM jobs will be in computer science related fields (Carnevale, Smith, & Melton,
2011). The second reason is social and emphasizes the value of helping all students
become creators of computing rather than passive consumers. Despite the wide available
of technology in teenage life, for instance, recent data indicate that most teens are only
users of technology while only a small and fairly homogeneous number of teens acquire
skills required to become creators of computing innovations (Cuny, 2012). The third is a
cultural rationale, which enables people to be drivers of culture a change, by using
computers to produce their own cultural artifacts. But there is also a fourth reason resting
on the equity rationale. Specifically, there is urgency to broaden participation in
computing particularly among females and under-represented minorities (Cuny, 2012).
To address this issue, a new bold initiative called CS for All aims to empower all
American students to learn computer science and be equipped with the computational
thinking skills necessary for economic opportunity and social mobility.

Incorporating CS as a core element of the school curriculum, involves a number
of challenges including what computer science content to teach and how to prepare
teachers to acquire the knowledge and skills needed to teach that content (Angeli et al.,
2016). In terms of content, a number of computer science curricula emerged in the last

few years as well as a framework focusing on Computer Sciences Principles (CSP) or big
ideas in computing. These principles include: creativity, abstraction, data, algorithms,
programming, Internet, and impacts of computing on society. Teachers, however, play a
key role in how curricula are presented to students. Unfortunately, many teachers lack a
strong foundation of computing and as a result effective professional development (PD)
is key to helping teachers build capacity to use curricula and frameworks.

Purpose of the Study
With the increasing focus on integrating CS concepts into K-12 curricula, there
has been a growing investment into PD opportunities that prepare teachers to teach
computer science principles. Yet, little research exists on design features of PD that
appear to help teachers gain the CS content, skills and teaching pedagogy that ultimately
make an impact on student learning and participation in the classroom. In this work we
present a PD model for helping K-12 teachers integrate CS principles across the
curriculum in a variety of content areas. Specifically, we investigate the following
questions:
* What design features should characterize computer science related PD?
* How do these design features impact teacher learning of computer science content
and pedagogy?

Context of this Work

This work is situated in the context of a larger NSF-funded initiative which focuses on
preparing middle and high school teachers interested in implementing CS principles in
their classrooms, particularly in conjunction with STEM curricula. We describe the PD
model developed as part of this work focusing on learning objectives, content,
pedagogical strategies and job-embedded follow-up support. We subsequently report on
teachers’ input on their learning and remaining questions.

Description of the PD Model

Our approach to PD includes two key components: a 1-week long summer institute aimed
at improving teacher computer science related knowledge and skills, and job-embedded
follow up support during the academic year. Our 1-week summer institute, which is the
focus of this work, is designed around core elements of effective PD reported in the
literature, including: CS content, pedagogical strategies for teaching CS, and strategies
for broadening participation in computing.

The focus of the summer institute is on materials aligned with CSP, specifically
the seven principles of computing. Each day of the summer institute focuses on
addressing content related to a particular principle through hands-on activities. The
activities are delivered by content and pedagogy experts as well as teacher leaders who
have previously engaged in the PD program. From a pedagogical standpoint participants
learn about pedagogical strategies specific to delivering computer science lessons to
students including pair programming, POGIL, open-ended projects allowing for
creativity, team-based projects, a variety of kinesthetic activities such as those found on
CS unplugged, pacing issues, and sustained reflection. On the third and fourth day of the
institute teachers work in pairs or teams to draft lesson plans that integrate CS principles
into existing school curricula which helps them draw connections between computer

science content, Common Core State Standards and the Next Generation Science
Standards. All activities are conducted in a supportive and collaborative environment,
which promotes active learning by engaging teachers in experiencing CS principles as
learners. Figure 1 provides a snapshot of the week-long institute.

Time Monday T Tuesday Wednesday Thursday

9:00-9:30 Pair Programming & Scratch Projects | Tales from the Field & CSTA discussion | Broadening Participation

CSP: Data - Representation,
Structures, & Manipulation (Binary

0:30-10:15 Scrateh Project Development Representations) CIS: Internet (Routing Activity)
10:15-10:30 10-11: Registration and Check In | Break Break Break

11:00-11:30 Introductions, Program CSP: Data - Lesson Activities {Finding

Purpose & Overview 11:30-12.00 |Lesson Plan Review & Mappingto | Patterns in English, Working with
10:30-12:00 CS Unplugged (Harold the Robot) |Core Standards sensor data) CSP: Internet - web programming
12:00-12:45 Lunch Lunch Lunch Lunch

CSP: Algorithms - Intro and Model
Lesson (need to shrink from 453 to | CSP: Algorithms - CS Unplugged | CSP: Data - CS Unplugged Activity CSP: Impact -Blown to Bits

12:45-1:15 30min) Activity (Batfleship) (Databases) Presentations

CSP: Programming -Directed Creating Recruiting devices: CSP: Generating Questions from Lesson Plan Review & Mapping fo
1:15-2:15 Scrateh Lesson with Levels Interactive Projects with Seratch visualizations Core/ISTE/CSTA Standards
2:156-2:30 Break Break Break Break

More Directed Scratch Lesson with | CSP: Creativity - Assessing CSP: Abstraction, Data & Models
2:30-3:30 Levels Programs for Creativity (Social Models) Sharing of Implementation Plans

Reflection: Stop, Start, Continue: | Reflection: Stop, Start, Continue: Evaluation surveys; Resources; Going
3:30-4:00 Reflection on Learning Reflection on Learning Reflection on Learning Forward

4:00| Adjourn Adjourn Adjourn Adjourn

Blown to Bits Reading (1 assigned

Homework chapter) How will integrate into classroom How will integrate into classroom

Figure 1. Snapshot of Week-Long Summer Institute

Participants

Participants included 22 middle/high school teachers from over a dozen different schools.
These teachers taught a variety of content areas including mathematics, science,
technology, business education, engineering or other STEM related field.

Data Collection and Analysis

Data for all teachers were collected from two sources: pre and post self-assessed surveys
on their comfort level with CS principles, and daily reflections on PD activities from the
summer institute. All reflections were structured around the same three prompts to
facilitate consistent responses: (a) What did you learn from this session? (b) What do you
still have questions about? and (c) What additional supports could you use? This allowed
us to document the ways in which participation in the summer institute can support
changes in teacher learning and instructional practice.

Participants’ surveys were analyzed using descriptive statistics. Daily reflections
from the summer institute (N = 88) were analyzed qualitatively using the constant
comparative method (Bogdan & Biklen, 2003). Specifically, we repeatedly read
reflections in order to identify similarities and differences among participant responses as
well as emergent themes specific to computer science content and pedagogy presented in
the summer institute (Miles & Huberman, 1994).

Findings

In this section, we present the findings of our work organized in four areas: (a) teacher

learning of computer science content, (b) teacher learning of pedagogical strategies for

teaching computer science content, and (c) teacher learning of strategies for broadening
participation in computing.

Pre and post survey data (see Table 1) as well as analysis of daily reflections
indicated that teachers became more confident in teaching computer science skills related
to CS principles (creativity, abstraction, data, algorithms, programming, Internet and
impacts). In their daily reflections, most teachers also indicated learning new content
related to algorithms as well as the difference between algorithms and programming.
Further, they indicated that they had improved their computer programming skills in
Scratch and HTML. As one teacher noted, “I have never coded before. Today I learned
to do that with HTML and it was great!” Finally, most teachers indicated improvements
in their knowledge and skills around data analysis and visualization techniques.

Table 1. Pre/Post Survey Data on Confidence in Teaching CS Principles

I feel more confident teaching computer science | Pre: Pre: Post: Post:
skills related to ... Mean SD Mean SD
Creativity 3.10 1.32 4.50 0.74
Abstraction 2.83 1.26 4.43 0.79
Data 3.10 1.37 4.19 1.10
Algorithms 3.10 1.21 4.38 0.84
Programming 3.10 1.35 4.43 0.73
Internet 3.55 1.25 4.48 0.73
Impacts 341 1.43 4.38 0.72
N=22

1: strongly disagree to 5: strongly agree

Despite improvements in their knowledge and skills, participants also identified
remaining questions particularly around abstraction and technical skills in using Scratch
programming. They also indicated the need for more tutorials on how to analyze data
and more content specific ideas for incorporating data into their curricula.

From a pedagogical standpoint, participants really valued the opportunity to
experience CS unplugged activities as learners (e.g., Battleships:
http://csunplugged.org/searching-algorithms/; Harold the Robot:
http://csunplugged.org/harold-the-robot-2/). They also indicated that they learned new
pedagogical strategies for teaching CS, including pair programming and inquiry oriented
activities. Further, all participants appreciated the engagement with existing content
standards in mathematics, literacy and science and the ways in which they were able to
draw connections between CS principles across disciplines. A number of teachers
discussed learning about the importance of using rubrics to assess computational
products, an activity that they practiced during the week-long institute. Finally, several
teachers indicated improvements in their ability to generate enthusiasm among students
for CS, including girls and minorities.

When asked which activities they planned to implement in their classrooms,
participants uniformly noted pedagogical activities such as CS unplugged and pair

programming. They also indicated ways in which they plan to incorporate data (e.g., by
utilizing Google forms), and programming with Scratch in their curriculum. Some
teachers also indicated that they plan to have teams of students debug existing programs.
As one teacher noted, “This the first PD I had where I am not overwhelmed and actually
have materials I can directly use in the classroom.”

Conclusion

In this work we presented one approach to PD that helps teachers integrate CS principles
into existing curricula. We argue that such integration is essential for broadening
participation in computing and promoting computational thinking skills across the entire
education pipeline. Our findings indicate that the proposed PD model holds promise for
the successful infusion of CS content in middle and high school classrooms as it helps
teachers gain confidence in their own knowledge (content and pedagogical) as well as
develop plans for implementing CS principles into existing curricula. Our next challenge
is scaling up the model to reach a greater number of teachers in our region.

References

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J.
(2016). A K-6 Computational Thinking Curriculum Framework: Implications for
Teacher Knowledge. Educational Technology & Society, 19 (3), 47-57.

Bogdan, R. C., & Biklen, S. K. (2003). Qualitative research for education: An
introduction to theories and methods (4th ed.). New York, NY: Pearson.

Carnevale, A.P., Smith, N. & Melton, M. (2011). STEM: Science Technology
Engineering and Mathematics. Georgetown University: Center for Education and
the Workforce.

Cuny, J. (2012). Transforming high school computing: A call to action. ACM Inroads,
3(2): 32-36.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J.
(2016). Arguing for Computer Science in the School Curriculum. Educational
Technology & Society, 19 (3), 38—46.

ISTE (2016). The 2016 ISTE Standards for students. Retrieved from
http://www.iste.org/standards/standards/for-students-2016

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded
sourcebook. Thousand Oaks, CA: Sage.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

