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ABSTRACT

Metamorphic testing is a well known approach to tackle the oracle

problem in software testing. This technique requires the use of

source test cases that serve as seeds for the generation of follow-up

test cases. Systematic design of test cases is crucial for the test

quality. Thus, source test case generation strategy can make a big

impact on the fault detection effectiveness of metamorphic testing.

Most of the previous studies on metamorphic testing have used

either random test data or existing test cases as source test cases.

There has been limited research done on systematic source test

case generation for metamorphic testing. This paper provides a

comprehensive evaluation on the impact of source test case gener-

ation techniques on the fault finding effectiveness of metamorphic

testing. We evaluated the effectiveness of line coverage, branch

coverage, weak mutation and random test generation strategies

for source test case generation. The experiments are conducted

with 77 methods from 4 open source code repositories. Our results

show that by systematically creating source test cases, we can sig-

nificantly increase the fault finding effectiveness of metamorphic

testing. Further, in this paper we introduce a simple metamorphic

testing tool called "METtester" that we use to conduct metamorphic

testing on these methods.
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1 INTRODUCTION

A test oracle [21] is a mechanism to detect the correctness of the

outcomes of a program. The oracle problem [3] can occur when
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there is no oracle present for the program or it is practically infea-

sible to develop an oracle to verify the correctness of the computed

outputs. This test oracle problem is quite frequent especially with

scientific software and is one of the most challenging problems

in software testing. Metamorphic testing (MT) technique was pro-

posed to alleviate this oracle problem [7]. MT uses properties from

the program under test to define metamorphic relations (MRs). A

MR specifies how the outputs should change according to a specific

change made into the source input. Thus, from existing test cases

(named as source test cases) MRs are used to generate new test

cases (named as follow-up test cases). Then the set of source and

follow-up test cases are executed on the program under test and

the outputs are checked according to the corresponding MRs. The

program under test can be considered as faulty if a MR is violated.

Effectiveness of MT in detecting faults depends on the quality

of MRs. Additionally the effectiveness of MT should also rely on

the source test cases. Effectiveness of metamorphic testing can be

improved by systematically generating the source test cases. Such

a systematic approach can reduce the size of the test suite and

could be more cost effective. Most of the previous studies in MT

have used randomly generated test cases as source test data for

metamorphic testing. In this study we investigated the effectiveness

of line, branch coverage, weak mutation, and random testing for

creating source test cases for MT.

Our experimental results show that test cases satisfying weak

mutation coverage provide the best fault finding effectiveness. We

also have found that combining one or more systematic source

test case generation technique(s) may increase the fault detection

ability of MT.

2 BACKGROUND

MT is a property based testing approach which aims to alleviate the

oracle problem. But the effectiveness of MT not only depends on

the quality of MRs but also on the source test cases. In this section

we briefly discussed MT and source test generation techniques, line,

branch coverage and weak mutation.

2.1 Metamorphic Testing

Source test cases are used in MT [7] to generate follow-up test cases

using a set of MRs identified for the program under test (PUT). MRs

[9] are identified based on the properties of the problem domain

like the attribute of the algorithm used. We can create source test

cases using techniques like random testing, structural testing or

search based testing. Follow-up test cases are generated by applying

the input transformation specified by the MRs. After executing the

source and follow-up test cases on the PUT we can check if there

is a change in the output that matches the MR, if not the MR is
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considered as violated. Violation of MR during testing indicates

fault in the PUT. Since MT checks the relationship between inputs

and outputs of a test program, we can use this technique when the

expected result of a test program is not known.

For example, in figure 1, a Java method add_values is used to

show how source and follow-up test cases work with a PUT. The

add_valuesmethod sumup all the array element passed as argument.

Source test case, t = {3, 43, 1, 54} is randomly generated and tested

on add_values. The output for this test case is 101. For this program,

when a constant c is added to the input, the output should increase.

This will be used as a MR to conduct MT on this PUT. A constant

value 2 is added to this array to create a follow-up test case t
′
=

{5, 45, 3, 56} and then run on the PUT. The output for this follow-up
test case is 109. To satisfy this AdditionMR the follow-up test output

should be greater than the source output. In this MT example, the

considered MR is satisfied for this given source and follow-up test

cases.

2.2 Source Test Case Generation

To generate source test cases we have used the EvoSuite [11] tool.

EvoSuite is a test generation tool that automatically produces test

cases targeting a higher code coverage. EvoSuite uses an evolution-

ary search approach that evolves whole test suites with respect

to an entire coverage criterion at the same time. In this paper we

generated source test cases based on line, branch coverage , weak

mutation and random testing. Below we briefly describe the sys-

tematic approaches used by EvoSuite to generate them.

2.2.1 Line Coverage. In line coverage [18], to cover each line of

source code, we need to make sure that each basic code block in a

method is reached. In traditional search-based testing, this reacha-

bility would be expressed by a combination of branch distance [16]

and approach-level. The approach-level measures how distant an

individual execution and the target statement are in terms of the

control dependencies. The branch distance estimates how distant a

predicate (a decision making point) is from evaluation to a desired

target result. For example, given a predicate x==6 and an execution

with value x = 4, the branch distance to the predicate valuing true

would be |4-6|=2, whereas execution with value x=5 is closer to

being true with a branch distance of |5-6|=1. Branch distance can

be measured by applying a set of standard rules [14, 16].

In addition to test case generation, if reformation is a test suite to

execute all statements then the approach level is not important, as

all statements will be executed by the similar test suite. Hence, we

only need to inspect the branch distances of all the branches that

are related to the control dependencies of any of the statements

in that class. There is a control dependency for some statements

for each conditional statement in the code. It is required that the

branch of the statement leading to the dependent code is executed.

Hence, by executing all the tests in a test suite the line coverage

fitness value can be calculated. The minimum branch distances

dmin (b, Suite) are calculated for each executed statement among

all observed executions to every branch b in the collection of control

dependent branches BCD . Thus, the line coverage fitness function
is defined as [18]:

fLC (Suite) = v(|NCLs |−|CoveredLines |)+
∑

b ∈BCD
v(dmin (b, Suite))

Where NCLs are the set of all statements in the class under

test (CUT), CoveredLines are the total set of covered statements

which are executed by each test case in the test suite, and v(x) is a

normalizing function in [0,1] (e.g. v(x) = x
(x+1) ) [2].

2.2.2 Branch Coverage. The idea of covering branches is well

accepted in practice and implemented in popular tools, even though

the practical rationale of branch coveragemay not alwaysmatch the

more theoretical interpretation of covering all edges of a program’s

control flow. Branch coverage is often defined as maximizing the

number of branches of conditional statements that are executed by

a test suite. Thus, a unit test suite is considered as satisfied if and

only if its at least one test case satisfies the branch predicate to true

and at least one test case satisfies the branch predicate to false.

The fitness value for the branch coverage is calculated based on a

criteria which is how close a test suite is to covering all branches of

the CUT. The fitness value of a test suite is calculated by executing

all of its test cases, keeping trail of the branch distances d(b, Suite)
for each of the branch in the CUT. Then [18]:

fBC (Suite) =
∑
b ∈B

v(d(b, Suite))

To optimize the branch coverage the following distance is cal-

culated, where dmin (b, Suite) is the minimal branch distance of

branch b on all executions for the test suite [18]:

d(b, Suite) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if the branch has been covered,

v(dmin (b, Suite)) if the predicate has been

executed at least twice,

1 otherwise,

Here it is needed to cover the true and false evaluation of a

predicate, so that a predicate must be executed at least twice by a

test suite. If the predicate is executed only once, then in theory the

searching could oscillate between true and false.

2.2.3 Weak Mutation. Test case generation tools prefer to gen-

erate values that satisfy the constraints or conditions, rather than

developers preferred values like boundary cases. In weak mutation

a small code modification is applied to the CUT and then force the

test generation tool to generate such values that can distinguish

between the original and the mutant. If the execution of a test case

on the mutant leads to a different state than the execution on the

CUT than a mutant is considered to be "killed" in the weak muta-

tion. A test suite satisfies the weak mutation criterion if and only if

at least one test case kill each mutant for the CUT.

Infection distance is measured with respect to a set of mutation

operator which guides to calculate the fitness value for the weak

mutation criterion. Here inference of a minimal infection distance

function dmin (μ, Suite) exists and define [18]:
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Figure 1: Test Source and follow-up inputs on PUT.

dw (μ, Suite) =
⎧⎪⎪⎨
⎪⎪⎩

1 if mutant μ was not reached,

v(dmin (μ, Suite)) if mutant μ was reached.

This results in the following fitness function for weak mutation

[18]:

fWM (Suite) =
∑
μ ∈Mc

dw (μ, Suite)

WhereMc is the set of all mutants generated for the CUT.

3 EVALUATION METHOD

We conducted a set of experiments to answer the following research

questions:

• RQ1:Which source test case generation technique(s) is/are

most effective for MT in terms of fault detection?

• RQ2: Can the best performing source test case generation

technique be combined to increase the fault finding effec-

tiveness of MT?

• RQ3: Does the fault detection effectiveness of an individual

MR change with the source test generation method?

• RQ4: How does the source test suite size differ for each

source test generation technique?

3.1 Code Corpus

We built a code corpus containing 77 functions that take numerical

inputs and produce numerical outputs . We obtained these functions

from the following open source projects:

• The Colt Project1: A set of open source libraries written

for high-performance scientific and technical computing in

Java.

• Apache Mahout2: A machine learning library written in

Java.

• Apache Commons Mathematics Library3: A library of

lightweight and self-contained mathematics and statistics

components written in the Java.

We list these functions in Table 2. Functions in the code corpus

perform various calculations using sets of numbers such as cal-

culating statistics (e.g. average, standard deviation and kurtosis),

1http://acs.lbl.gov/software/colt/
2https://mahout.apache.org/
3http://commons.apache.org/proper/commons-math/

Figure 2: METtester Architecture.

calculating distances (e.g. Manhattan and Tanimoto) and search-

ing/sorting. Lines of code of these functions varied between 4 and

52, and the number of input parameters for each function varied

between 1 and 4.

3.2 METtester

METtester [17] is a simple tool that we are developing to auto-

mate the MT process on a given Java program. This tool allows

users to specify MRs and source test cases through a simple XML

file. METtester transforms the source test cases according to the

specified MRs and conducts MT on the given program. Figure 2

shows the high level architecture of the tool. Below we describe

the important components of the tool:

• XML input file: User will provide information (Figure 3)

regarding method names to test, source test inputs, MRs, and

the number of test cases to run.

Fault Detection Effectiveness of Source Test Case Generation Strategies for Metamorphic Testing MET’18, May 27, 2018, Gothenburg, Sweden
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Figure 3: An example of the XML input given to METtester.

• XML file parsing: Xmlparser class in our tool will parse

information from the .xml file and process those. Then that

informationwill be sent to the Follow-up test case generation

module.

• Follow-up test Case Generation: In this module follow-

up test cases are generated based on the provided MRs and

the source test cases.

• Execute Source & Follow-up test cases on the PUT: Af-

ter generation of the follow-up test cases METtester will run

both the source and follow-up test cases individually into

the system programs and return outputs from the programs.

• Compare Source & Follow-up test results: After getting

the test results from the test program METtester will com-

pare those results with the MR operators mentioned in the

xml file. If it satisfies the MR property then the class will flag

the test case as "Pass". If it fails to satisfy the MR property

class will flag it as "Fail" which means there is fault in the

program.

3.3 Experimental Setup

For the 77 methods described in Section 3.1 we generated a total of

7446 mutated versions using the μJava mutation tool [15]. We used

the following six metamorphic relations that were used in previous

studies to test these functions [13]. Suppose our source test case

is X = {x1,x2,x3, ...,xn } where xi ≥ 0, 0 ≤ i ≤ n. Let source and
follow-up outputs be O(X ) and O(Y ) respectively:

• MR - Addition: add a positive constant C to the source test

case and the follow-up test case will be Y = {x1 + C,x2 +
C,x3 +C, ...,xn +C}. Then O(Y ) ≥ O(X ).

• MR - Multiplication: multiply the source test case by a

positive constant C and the follow-up test case will be Y =
{x1 ∗C,x2 ∗C,x3 ∗C, ...,xn ∗C}. Then O(Y ) ≥ O(X ).

• MR - Shuffle: randomly permute the elements in the source

test case. The follow-up test case can beY = {x3,x1,xn , ...,x2
}. Then O(Y ) = O(X ).

• MR - Inclusive: include a new element xn+1 ≥ 0 to the

source test case and the follow-up test case will be Y =
{x1,x2,x3, ...,xn ,xn+1}. Then O(Y ) ≥ O(X ).

• MR-Exclusive: exclude an existing element from the source

test case and the follow-up test casewill beY = {x1,x2,x3, ...,
xn−1}. Then O(Y ) ≤ O(X ).

• MR - Invertive: take the inverse of each element of source

test case. Then the follow-up test casewill beY = {1/x1, 1/x2,
1/x3, ..., 1/xn }. Then O(Y ) ≤ O(X ).

For each of the methods, we used EvoSuite [11] described in

section 2.2 to generate test cases targeting line, branch and weak

mutation coverage. We used the generated test cases as the source

test cases to conduct MT on the methods using the MRs described

using METtester. Further, we randomly generated 10 test cases for

each method to use as source test cases, to be used as the baseline.

4 RESULTS AND DISCUSSION

4.1 Effectiveness of the Source Test Case
Generation Techniques

Figure 4 shows the overall mutant killing rates for the four source

test generation techniques. Among all test case generation tech-

niques, weak mutation performed best by killing 68.7% mutants.

Random tests killed 41.5% of the mutants. Table 1 lists the number

of methods that reported the highest mutant kill rates for each type

of test generation technique. For some methods, several source test

generation techniques gave the same best performance.Therefore,

Figure 5 shows a Venn diagram of all the possible logical relations

between the best performing source test generation techniques for

the set of methods. Weak mutation based test generation technique

reported the highest kill rate in 41 (53%) methods, whereas ran-

dom testing reported the highest kill rate only in 13 (17%) methods.

Therefore these results suggest that weak mutation based source

test case generation is more effective in detecting faults with MT.

Figure 4: Total % of mutants killed by each source test suite

generation technique.

Table 1: Total number of methods having the highest mu-

tants kill rate for each source test generation techniques.

Total Methods Weak mutation Line Branch Random

77 41 26 29 13

RQ1: Weak mutation based test suites have the highest

fault detection rate for majority of the methods

4.2 Fault Finding Effectiveness of Combined
Source Test Cases

To observe whether combining source test case generation tech-

niques will achieve a higher fault detection rate, we combined the

5



Table 2: All methods with Mutants kill rates and test suite size for each Source test case generation technique

Branch weak mutation Line Random |

Method name Killrate

(%)

No.

of

Test

Cases

Killrate

(%)

No.

of

Test

Cases

Killrate

(%)

No.

of

Test

Cases

Killrate

(%)

No.

of

Test

Cases

add_values (Add elements in an array) 63.63 1 63.63 1 54.54 1 30 10

array_calc1 33.33 1 33.33 1 46.15 1 52.10 10

array_copy (Deep copy an array) 56.00 1 64.00 1 64.00 1 0.00 10

average ( Average of an array) 38.10 1 73.80 1 42.86 1 28.20 10

bubble (Implements bubble sort) 51.40 1 44.95 3 36.69 1 16.90 10

cnt_zeroes (Count zero in an array) 41.00 1 51.30 2 38.46 1 0.00 10

count_k (Occurrences of k in an array) 31.80 1 36.36 2 34.09 1 50.00 10

count_non_zeroes (Count non zero element in array) 41.00 1 48.71 2 51.28 1 22.20 10

dot_product 63.00 1 60.87 1 56.52 1 22.20 10

elementwise_max (Elementwise maximum) 46.30 2 68.51 3 83.33 2 0.00 10

elementwise_min (Elementwise minimum) 44.40 1 55.56 1 55.56 1 0.00 10

find_euc_dist (Euclidean distance between two vectors) 80.10 1 76.39 1 79.17 1 50 10

find_magnitude (Magnitude of a vector) 52.10 1 75.00 1 52.10 1 8.69 10

find_max (find the maximum value) 70.80 1 50.00 1 50.00 1 70.90 10

find_max2 64.10 1 71.84 2 67.96 1 98.40 10

find_median (Find median value in an array) 48.70 2 98.93 3 41.71 2 53.10 10

find_min (Find minimum value in an array) 40.40 1 61.70 1 57.45 1 83.80 10

geometric_mean (Returns the geometric mean of the entries in the input array) 51.20 1 53.66 1 95.12 1 65.40 10

hamming_dist (Hamming distance between two vectors) 40.90 1 84.09 3 59.09 2 15.90 10

insertion_sort (Implements insertion sort) 43.60 1 42.55 2 37.23 1 32.65 10

manhattan_dist (Manhattan distance between two vectors) 53.30 1 61.36 2 53.30 1 0.00 10

mean_absolute_error (Measure of difference between two continuous variables) 37.50 1 41.07 2 39.29 1 0.00 10

selection_sort (Implements selection sort) 41.30 1 41.30 2 39.40 1 21.60 10

sequential_search (Finding a target value within a list) 37.20 2 25.58 3 30.23 2 37.50 10

set_min_val (Set array elements less than k equal to k) 51.20 2 58.14 2 30.23 1 100 10

shell_sort (Implements shell sort) 43.70 1 42.51 1 43.11 1 0.00 10

variance (Returns the variance from a standard deviation) 26.10 1 39.86 1 30.40 1 25.70 10

weighted_average (A mean calculated by giving values in a data set) 86.10 1 56.94 1 86.10 1 21.20 10

manhattanDistance (The distance between two points in a grid) 48.89 1 77.78 2 22.22 1 9.10 10

chebyshevDistance (Distance metric defined on a vector space) 39.08 2 43.68 5 35.63 2 2.00 10

tanimotoDistance (a proper distance metric) 30.21 2 32.97 5 44.50 2 5.60 10

errorRate 61.04 3 58.44 2 58.44 2 0.00 10

sum 50.00 1 77.78 1 50.00 1 35.30 10

distance1 (Compute the distance between the instance and another vector) 53.33 1 80.00 1 53.33 1 14.8 10

distanceInf (Compute the distance between the instance and another vector) 46.67 1 46.67 1 46.67 1 14.8 10

ebeadd (Creates an array whose contents will be the element-by-element addition of the arguments) 92.68 2 100.00 3 100.00 2 15.8 10

ebedivide (Creates an array whose contents will be the element-by-element division) 100.00 2 100.00 5 100.00 2 26.8 10

ebemultiply (Creates an array whose contents will be the element-by-element multiplication) 100.00 2 100.00 3 92.68 2 15 10

safeNorm (Returns the Cartesian norm ) 14.78 1 98.63 5 97.08 4 0.8 10

scale(Create a copy of an array scaled by a value) 48.72 1 58.97 3 53.85 1 47.8 10

entropy 88.42 1 88.42 2 88.42 1 42.9 10

g 93.55 2 95.16 2 93.55 1 20.9 10

calculateAbsoluteDifferences 60.98 1 60.98 1 60.98 1 0 10

evaluateHoners 46.03 1 79.37 1 47.62 1 80.4 10

evaluateInternal 95.25 1 93.47 2 95.55 1 90.6 10

evaluateNewton 80.00 1 65.71 1 64.29 1 76.8 10

meanDifference (Returns the mean of the (signed) differences) 40.00 1 80.00 1 40.00 1 40 10

equals 22.50 3 27.50 4 21.25 3 100 10

chiSquare (Implements Chi-Square test statistics) 96.41 2 96.41 2 96.41 2 65.6 10

partition 43.26 5 95.81 5 28.84 3 88.1 10

evaluateWeightedProduct 30.61 2 40.82 2 42.86 2 2 10

autoCorrelation (Returns the auto-correlation of a data sequence) 25.20 2 93.50 2 43.09 1 79.40 10

covariance (Returns the covariance of two data sequences) 24.84 1 23.57 1 23.57 1 86.70 10

durbinWatson (Durbin-Watson computation) 0.00 0 33.77 1 0.00 0 14.10 10

harmonicMean (Returns the harmonic mean of a data sequence) 74.00 1 74.00 1 76.00 1 42.50 10

kurtosis (Returns the kurtosis (aka excess) of a data sequence) 93.84 1 93.84 1 97.16 1 34.80 10

lag1 (Returns the lag-1 autocorrelation of a dataset) 99.55 1 32.70 1 89.55 1 33.70 10

max (Returns the largest member of a data sequence) 51.72 1 56.90 1 51.72 1 96.60 10

meanDeviation (Returns the mean deviation of a dataset) 54.39 1 33.33 1 28.07 1 78.30 10

min (Returns the smallest member of a data sequence) 67.41 1 81.03 2 70.69 1 96.60 10

polevl 94.23 2 88.46 1 88.46 2 45.50 10

pooledMean (Returns the pooled mean of two data sequences) 36.43 1 34.88 1 34.88 1 19.30 10

pooledVariance (Returns the pooled variance of two data sequences) 43.08 1 47.83 1 47.83 1 31.10 10

power 53.33 1 53.33 1 53.33 1 15.80 10

product (Returns the product) 50.00 1 50.00 1 50.00 1 94.70 10

quantile (Returns the phi-quantile) 40.13 2 40.76 2 32.48 2 40.00 10

sampleKurtosis ( Returns the sample kurtosis (aka excess) of a data sequence) 93.86 1 93.86 1 92.98 1 85.10 10

sampleSkew (Returns the sample skew of a data sequence) 89.47 1 89.47 1 97.37 1 89.50 10

sampleVariance (Returns the sample variance of a data sequence) 75.31 1 75.31 1 12.35 1 71.20 10

skew ( Returns the skew of a data sequence) 93.88 1 93.88 1 93.88 1 48.80 10

square 47.37 1 47.37 1 57.89 1 5.30 10

standardize (Modifies a data sequence to be standardized) 89.26 1 89.26 1 91.95 1 77.60 10

sumOfLogarithms ( Returns the sum of logarithms of a data sequence) 75.00 1 68.75 1 68.75 1 21.90 10

sumOfPowerOfDeviations 68.75 1 52.08 1 75.00 1 64.90 10

weightedMean (Returns the weighted mean of a data sequence) 77.46 1 77.46 1 77.46 1 65.00 10

weightedRMS (Returns the weighted RMS (Root-Mean-Square) of a data sequence) 86.96 1 86.96 1 86.96 1 43.30 10

winsorizedMean (Returns the winsorized mean of a sorted data sequence) 33.00 1 37.93 1 34.48 1 0.00 10

Fault Detection Effectiveness of Source Test Case Generation Strategies for Metamorphic Testing MET’18, May 27, 2018, Gothenburg, Sweden
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Figure 5: Venn Diagram for all the combinations of source

test suites that performed best for each individual methods.

best performing source test generation technique, weak mutation,

with the other source test generation techniques. Table 3 shows

the total percentage of mutants killed with each combined test

suite. Combination of weak mutation and random test cases has the

greater percentage of mutants kill rate (74.91) than combination

of line (72.87) and branch (74.6) separately with weak mutation. If

we combine all of the three strategies it slightly increases the total

percentage of killed mutants (75.98) but there are few things to be

considered, like combined test suite size.

Table 3: Total % ofmutants killed after combiningWeakMu-

tation, Line, Branch Coverage, and Random Testing

Weak

Mutation

+Line(%)

Weak

Mutation

+Branch(%)

Weak

Mutation

+Line+

Branch(%)

Weak Mu-

tation+

Random(%)

72.87 74.6 75.98 74.91

RQ2: Combining weak mutation test cases with random

test cases will lead to detect more faults

4.3 Fault Finding Effectiveness of Individual
MRs

To see how each source test case generation technique performs

with individual MRs, Figure 6 illustrates the percentage of mutants

killed by all six MRs separately using weak mutation, line, branch

coverage and random test suites. Weak mutation has the highest

percentage of killed mutants in all the six MRs. Specifically with

multiplication and invertive MRs, the weak mutation test suite

surpasses others on mutants’ killing rate. But line coverage based

test suites were similar to weak mutation on killing mutants with

addition, shuffle, inclusive and exclusive MRs. For exclusive MR, all

the test suites performed almost similarly.

RQ3: Weak mutation killed highest number of mutants

in all the MRs

4.4 Impact of Source Test Suite Size

Table 4 compares the coverage criteria in terms of the total number

of tests generated, their average and median test suite size of the in-

dividual methods. In addition, in columns Smaller, Equal, and Larger

we compare whether the size of the weak mutation test suites are

smaller, equal or larger than those produced by other source test

case generation techniques. And p-value column shows the p-value

computed using the paired t-test between weak mutation - line and

weak mutation -branch. We are not comparing random test suites

here, because we intentionally generated 10 random test cases for

each method. Weak Mutation leads to larger test suites than branch

and line coverage and on average, number of test cases produced

for weak mutation are larger than those produced for branch and

line coverage. The total number of test cases are also relatively

larger for weak mutation compared to line and branch coverage.

RQ4:Weak Mutation generated a higher number of test

cases

5 THREATS TO VALIDITY

Threats to internal validity may result from the way empirical

study was carried out. EvoSuite and our experimental setup have

been carefully tested, although testing can not definitely prove the

absence of defects.

Threats to construct validity may occur because of the third party

tools we have used. The EvoSuite tool has been used to generate

source test cases for line, branch and weak mutation test generation

techniques. Further, we used the μJava mutation tool to create

mutants for our experiment. To minimize these threats we verified

that the results produced by these tools are correct by manually

inspecting randomly selected outputs produced by each tool.

Threats to external validity were minimized by using the 77

methods was employed as case study, which is collected from 4

different open source project classes. This provides high confidence

in the possibility to generalize our results to other open source

software. We only used the EvoSuite tool to generate test cases for

our major experiment. But we also used the JCUTE [20] tool to

generate branch coverage based test suites for our initial case study

and also observed similar results.

6 RELATEDWORK

Most contributions on MT use either random generated test data or

existing test suites for the generation of source test cases. Not much

research has been done on systematic generation of source test

cases for MT. Gotlieb and Botella [12] presented an approach called

Automated Metamorphic Testing where they translated the code into

an equivalent constraint logic program and tried to find test cases

that violates the MRs. Chen et al. [8] compared the effectiveness

of random testing and "special values" as source test cases for MT.

Special values are inputs where the output is well known for a

particular method. Wu et al.[22] proved that random test cases are

more effective than those test cases that are derived from "special

values". Segura et al. [19] also compared the effectiveness of random

7
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Figure 6: % of Mutants killed by all six MRs using 4 test suite strategies (Branch, Line Coverage, Weak Mutation and Random)

Table 4: Average test suites size for Weak mutation, Line coverage, Branch coverage and Random

Test Suites Total Number of Test Cases Average Size Median size Std Dev Smaller Equal Larger p-value

Weak mutation 135 1.75 1 1.13 - - - -

Line 97 1.26 1 0.67 1 45 31 3.102e-07

branch 99 1.29 1 0.59 2 49 26 1.375e-05

Random 770 10 10 0 77 0 0 -

testing with manually generated test suites for MT. Their results

showed that randomly generated test suites are more effective

in detecting faults than manually designed test suites. They also

observed that combining random testing withmanual tests provides

better fault detection ability than random testing only.

Batra and Sengupta [5] proposed genetic algorithm to generate

test cases maximizing the paths traversed in the program under

test for MT. Chen et al. [6] also addressed the same problem from

a different prospective. They proposed partitioning the input do-

main of the PUT into multiple equivalence classes for MT. They

proposed an algorithm which will generate test cases which will

cover those equivalence classes. They were able to generate test

cases that provide high fault detection rate. Symbolic Execution

was used to construct MRs and their corresponding source test

cases by Dong and Zhang [10]. Program paths were first analyzed

to generate symbolic inputs and then, these symbolic inputs were

used to construct MRs. In the final step, source test cases were

generated by replacing the symbolic inputs with real values.

Barus et al. [4] applied the Adaptive Random Testing (ART) over

the random testing (RT) to find the effectiveness of source test case

generation on MT. Their results showed that ART outperforms RT

on enhancing the effectiveness of MT. Alatawi et al. [1] used the

automated test input generation technique called dynamic symbolic

execution (DSE) to generate the source test inputs for metamorphic

testing. Their results showed that DSE improves the coverage and

fault detection rate of metamorphic testing compared to random

testing using significantly smaller test suites. Compared to them,

in this work, we evaluate the effectiveness of four commonly used

coverage criteria for automated source test case generation.

7 CONCLUSIONS & FUTUREWORK

In this study we empirically evaluated the fault finding effectiveness

of four different source test case generation strategies for MT: line,

branch, weak mutation and random.

Our results show that weak mutation coverage based test gen-

eration can be an effective source test case generation technique

for MT than the other techniques. Our results also show that the

fault finding effectiveness of MT can be improved by combining

source tests generated for weak mutation coverage with randomly

generated source test cases.

Further, in this paper we introduce a MT tool called "METtester."

We plan to incorporate the investigated automated source test

generation techniques into this tool. We also plan to extend the

current case study to larger code bases and experiment with more

source test generation techniques such as adaptive random test

generation and data flow based test generation. Further, we plan to

analyze the impact of the coverage of follow up test cases in our

future research.
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