
Predicting Metamorphic Relations for Matrix Calculation
Programs

Karishma Rahman
Montana State University

Bozeman, Montana

karishma.rahman@student.montana.edu

Upulee Kanewala∗

Montana State University

Bozeman, Montana

upulee.kanewala@montana.edu

ABSTRACT

Matrices often represent important information in scientific appli-

cations and are involved in performing complex calculations. But

systematically testing these applications is hard due to the oracle

problem. Metamorphic testing is an effective approach to test such

applications because it uses metamorphic relations to determine

whether test cases have passed or failed. Metamorphic relations are

typically identified with the help of a domain expert and is a labor

intensive task. In this work we use a graph kernel based machine

learning approach to predict metamorphic relations for matrix cal-

culation programs. Previously, this graph kernel based machine

learning approach was used to successfully predict metamorphic

relations for programs that perform numerical calculations. Re-

sults of this study show that this approach can be used to predict

metamorphic relations for matrix calculation programs as well.

KEYWORDS

Metamorphic testing, metamorphic relation, control flow graph,

support vector machine, random walk kernel

ACM Reference Format:

Karishma Rahman and Upulee Kanewala. 2018. Predicting Metamorphic

Relations for Matrix Calculation Programs. In MET’18: MET’18:IEEE/ACM

International Workshop on Metamorphic Testing , May 27, 2018, Gothenburg,

Sweden. ACM, Gothenburg, Sweden, Article 4, 4 pages. https://doi.org/10.

1145/3193977.3193983

1 INTRODUCTION

Matrix calculations are common in scientific applications. Often,

matrices represent data, graphs or mathematical equations in the

applications. [7]. They can be used to get quick and good approxi-

mation for complicated calculation in time-sensitive engineering

applications [7]. Moreover, matrix multiplication is used in graphics,

digital videos and solving linear equations of particular variables in

different applications [7]. But testing these applications is hard due

to the difficulties associated with defining suitable test oracles [14].

This is known as the oracle problem [14].Metamorphic Testing (MT)

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MET’18, May 27, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5729-6/18/05. . . $15.00
https://doi.org/10.1145/3193977.3193983

can be used to alleviate the test oracle problem [15]. MT conducts

testing by checking whether the programs behave according to

a set of metamorphic relations (MRs) [4]. A metamorphic relation

specifies how the output should change according to a change made

to the input [4]. MT operates as follows [4, 15]:

(1) Identify a suitable set of metamorphic relations which should

satisfy the program under test.

(2) Create a set of initial test cases.

(3) Apply the input transformations specified by the identified

MRs in Step 1 and create follow-up test cases for each of the

initial test case.

(4) Execute the initial and follow-up test case(s) and check if

the output change satisfies the change predicted by the MR.

When testing a program, a run-time violation of an MR can

mean that the program under test contains fault(s).

In a previous work [10], a graph kernel-based machine learning

method was introduced to predict MRs for programs with nu-

merical inputs and outputs that are represented with simple one-

dimensional data structures such as arrays or lists. So in this work,

we use the above method to predict MRs for functions performing

matrix calculations. Typically, matrices are represented with two-

dimensional data structures, thus the source code of these programs

are dissimilar to the ones used in previous work.

This approach starts by creating the control flow graphs (CFGs)

of each program, and the random walk kernel is used to compute

the similarity between the graphs. The computed kernel values are

used by a support vector machine (SVM) to automatically predict

MRs for previously unseen functions. In this study, three high

level categories of metamorphic relations are identified for the

matrix-based programs and are used for the predictions. We used

55 functions obtained from open source matrix calculation libraries

for evaluation of the method. Our result shows that for matrix-

based calculations, the random walk kernel can effectively predict

the MRs.

2 APPROACH

This section discusses the details of the metamorphic relation ap-

proach used in this study.

2.1 Function Representation

The first step of this method is to convert a function into its CFG.

This representation is specifically used since it allows the extraction

of information about the sequence of operations performed in a

control flow path that is directly related to the MRs satisfied by a

given function.

10

2018 ACM/IEEE International Workshop on Metamorphic Testing

MET’18, May 27, 2018, Gothenburg, Sweden K. Rahman and U. Kanewala

Table 1: The Metamorphic Relations used in the study

Metamorphic Relation Category Change made to the input Expected change in the output

Permutation of all the elements

Permutative Permutation of rows The matrix size will remain same

Permutation of columns

Scalar addition to matrix

Additive Addition of two or more matrices Element values will increase or remain same

Addition to the subset of elements of the matrix

Multiplicative Scalar multiplication to matrix Element values will increase

Multiplication to the subset of elements of the matrix

A CFG is a directed graph Gf = (V ,E) of a function f. Here, x is

a statement in f, represented by each node vx ∈ V . The operation
performed in each x are labeled label(vx). Supposedly if x and y

are statements of f, after execution of x, y is executed. Then it can

be said that e is an edge where e = (vx ,vy) ∈ E. Control flow of

f is represented by all the edges, and the starting and the exiting

point are represented by nodes vstart and vexit respectively [1].

We use the Soot1 framework to create the CFGs. It generates

CFGs in Jimple: a typed 3-address intermediate representation of

the Java code, thus each CFG node represents an atomic operation

[13]. We post-processed the generated CFGs by labeling all the

nodes indicating the operation performed in each nodes. In addi-

tion we annotated all the method call nodes in the CFG with their

return types. Figure 1 represents a function for calculating scalar

multiplication of a matrix and its post-processed CFG representa-

tion.

2.2 RandomWalk Kernel

After creating the CFG representation of the functions, the next

step is to use a graph kernel to compute the similarity between

the CFGs. In previous work [10], two graph kernels were used and

among them, better performance was shown by the random walk

kernel. Therefore we use the random walk kernel in this study. We

briefly describe the idea of the random walk kernel in this section.

More information about the random walk kernel and it’s definition

can be found in [10].

The random walk kernel computes the similarity score between

two graphs by summing up the similarity scores of all the pairs of

walks in the two graphs. The similarity score of a pair of walks is

computed by multiplying the similarity scores of their correspond-

ing step pairs. The similarity score of a pair of steps is computed by

multiplying the similarity scores of node and edge pairs that make

up the step. The similarity score of a node pair is determined by

their node labels: if the two node labels are the same, then the pair

is assigned a similarity score of one, else it is assigned a similarity

score of zero. Also, if the two node labels represent operations with

similar mathematical properties (but not identical), then the pair

is assigned a similarity score of 0.5. Edge labels decide the value

assigned for the similarity score of a pair of edges. Here, we only

used one type of edge showing the flow of control between the

operations. So the similarity score for a pair of edges is always one.

1https://www.sable.mcgill.ca/soot/

Figure 1: Scalar multiply function and its post-processed

CFG representation

11

Predicting Metamorphic Relations for Matrix Calculation Programs MET’18, May 27, 2018, Gothenburg, Sweden

Figure 2: Overview of the predictive Model creation

Table 2: Number of positive and negative instances for each

metamorphic relation

Metamorphic Relation Positive instances Negative instances

Permutative 14 41

Additive 37 18

Multiplicative 21 34

2.3 Predictive Model Creation

Support Vector Machine (SVM) is a supervised machine learning

algorithm and it can be used for binary classification [5]. The com-

puted random walk kernel values are supplied to a SVM with a

binary label indicating whether a given function satisfies a given

MR or not. The SVM uses the provided information to create a

model that can predict if a new function would satisfy the consid-

ered MR or not. In this study, the SVM implementation from the

scikit-learn2 toolkit was used. Figure 2 shows the overview of the

creation of the predictive model.

3 EXPERIMENTAL SETUP

This section describes the code corpus and MRs used in this study.

The details of the evaluation procedure are also discussed here.

3.1 The Code Corpus

A total of 55 functions, all of which takes matrices as inputs and

produces matrices as outputs, were used to measure the effective-

ness of the method described in Section 2 for predicting MRs. These

functions were collected from Apache Commons Math Library3,

which is an open source project. These functions execute a variety

of calculations on matrices such as addition, multiplication, sub-

traction, and searching (e.g. getting column matrix, getting row

matrix). There were several functions that performed the same

functionality, but they were implemented differently. For exam-

ple, Array2DRowRealMatrix class and OpenMapRealMatrix class

both have multiplication functions for matrices, but they are im-

plemented in different ways. In such cases, both the functions are

used in the code corpus. All the functions used in this study can

be found via the following URL: https://github.com/MSU-STLab/

MRPrediction/tree/master/alldotfiles

2http://scikit-learn.org/stable/
3https://commons.apache.org/proper/commons-math

Table 3: Best C and λ parameter of trainmodel for eachmeta-

morphic relation

Metamorphic Relation Best λ Best C

Permutative 0.9 0.1, 1, 10, 100, 1000

Additive 0.9 0.1, 1, 10, 100, 1000

Multiplicative 0.9 0.1, 1, 10, 100, 1000

3.2 Metamorphic Relations

We manually identified three categories of MRs - Additive, Permu-

tative, and Multiplicative, that are generally applicable to matrix

calculations. These three high-level categories are further divided

based on whether the modification is made at the element, row,

or column levels. The full categorization of the MRs is shown in

Table 1. In this work we only focus on predicting the high level MR

category; i.e. Permutative, Additive and Multiplicative.

3.3 Evaluation Procedure

We use train, validation and test method to evaluate the MR pre-

diction effectiveness. Table 2 shows the number of positive and

negative instances for each MR; positive indicates that a function

satisfies the given MR and negative indicates that the function does

not satisfy the given MR. For each MR, we divided the data into

three subsets, where each fold contained approximately the same

portion of positive and negative instances, as the original dataset.

The three folds were named as Train data, Test data, and Validation

data. The precomputed kernel values of the functions in Train data

were used to create the prediction model. The Validation data was

used to select parameters for the predictive model. Those are- (1)

regularization parameter C of the SVM (2) path weighing factor λ
in the random walk kernel where 0 ≤ λ < 1.

The parameter values selected using the validation set were then

used to create the predictive model for predicting the MRs for the

test data. We repeated the train, validation and test method ten

times so that the functions in each fold is selected randomly each

time to avoid any biases occur in fold divisions.

We used the Area Under the receiver operating characteristic

Curve (AUC) [8] to measure the prediction effectiveness and takes

values ranged in [0, 1] [9]. AUC measures the probability that a ran-

domly chosen negative example will have a lower prediction score

than a randomly chosen positive example. AUC does not depend on

the discrimination threshold of the classifier and has been shown

to be a better measure for comparing learning algorithms [8]. A

perfect classifier would have a AUC value of 1 [9]. A classifier that

makes random predictions has an AUC value of 0.5. [9].

4 RESULTS AND DISCUSSION

Table 3 lists the λ and C values that recorded the highest AUC

values for each MR on the validation set. For the three MRs here,

the value selected for the parameter C doesn’t seem to have a big

effect on the prediction accuracy. But for all the three MRs, the

best value for λ is 0.9. When the λ value is higher, the random

walk kernel gives a higher weight to longer paths according to it’s

definition [10]. Therefore this indicates that longer paths in the

12

MET’18, May 27, 2018, Gothenburg, Sweden K. Rahman and U. Kanewala

Figure 3: Prediction AUC score for random graph kernel for

validation dataset and test dataset

CFGs are more important for predicting these MRs than the other

paths.

Figure 3 shows the AUC scores for the validation data set and the

test data set. On the test data, the highest AUC score (0.81) could

be observed when predicting the Permutative MR. The other two

MRs also reported AUC values higher than 0.7 indicating that our

approach created effective predictive models for all the three MRs.

Further, for all the three MRs, AUC values for the validation data

set and the test data set is close. This indicates that there is a low

chance of over-fitting in the predictive model.

5 RELATEDWORK

Several previous studies have looked into automatically generat-

ing/predicting MRs. Kanewala et. al showed that, in previously

unseen programs, MRs can be predicted using a machine learning

method. Features were extracted from CFGs of the functions and

they were then used to create a predictive model [9]. Later, they

developed the graph kernel based approach used in this study to

predict MRs for numerical programs [10].

Liu et al. introduced a new method called Composition of Meta-

morphic Relation (CMR), where the generation of new metamorphic

relations is done by combining existing metamorphic relations [11].

Dong et. al conducted a similar study, where Compositional MR was

generated based on the speculative law of proposition logic [6].

Zhang et al. suggested a technique, where an algorithm searches

for metamorphic relations in the form of linear or quadratic equa-

tions [16]. Su et al. also suggested a new method called KABU,

which can be used to find more likely metamorphic relations by

dynamically inferring the properties of the status of a method [12].

Chen et al. introduced an approach calledDESSERT, whereDividE-

and-conquer methodology was used to identify the categorieS,

choiceS, and choicE Relations for Test case generation [2]. Later,

Chen et al. proposed a tool called METRIC, where metamorphic

relations were identified with category-choice framework [3].

6 CONCLUSION & FUTUREWORK

The metamorphic testing technique is very useful to test programs

that do not have a test oracle. The effectiveness of this technique

highly depends on the set of MRs used for testing. But the identifi-

cation process of MRs is mostly done manually.

This study is an extension of previous work, where the random

walk kernel is used to predict MRs for functions that performs ma-

trix calculation. Our results show that for these types of functions,

random walk kernel can be effective in predicting MRs.

In the future, we plan to increase the number of functions used

in this study. Further, new types of MRs, specifically for functions

that perform matrix calculation, can also be considered. We also

plan to extend the MR prediction scope beyond the function level.

ACKNOWLEDGMENTS

This work is supported by award number 1656877 from the Na-

tional Science Foundation. Any Opinions, findings and conclusions

or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect those of the National Science

Foundation.

REFERENCES
[1] F. E. Allen. 1970. Control Flow Analysis. In Proceedings of a Symposium on

Compiler Optimization. ACM, New York, NY, USA, 1–19. https://doi.org/10.1145/
800028.808479

[2] T. Y. Chen, P. L. Poon, S. F. Tang, and T. H. Tse. 2012. DESSERT: a DividE-and-
conquer methodology for identifying categorieS, choiceS, and choicE Relations
for Test case generation. IEEE Transactions on Software Engineering 38, 4 (July
2012), 794–809. https://doi.org/10.1109/TSE.2011.69

[3] T. Y. Chen, P. L. Poon, and X. Xie. 2016. METRIC: METamorphic Relation Identi-
fication based on the Category-choice framework. The Journal of systems and
software 116 (2016), 177–190.

[4] T. Y. Chen, T. H. Tse, and Z. Zhou. 2003. Fault-based testing without the need of
oracles. Information and Software Technology 45, 1 (2003), 1 – 9. https://doi.org/
10.1016/S0950-5849(02)00129-5

[5] C. Cortes and V. Vapnik. 1995. Support-Vector Networks. Mach. Learn. 20, 3
(Sept. 1995), 273–297. https://doi.org/10.1023/A:1022627411411

[6] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang. 2008. Case studies on testing with
compositional metamorphic relations. 24 (12 2008), 437–443.

[7] L. Hardesty. 2013. Explained: Matrices. (Dec 2013). http://news.mit.edu/2013/
explained-matrices-1206

[8] J. Huang and C. X. Ling. 2005. Using AUC and accuracy in evaluating learning
algorithms. IEEE Transactions on Knowledge and Data Engineering 17, 3 (March
2005), 299–310. https://doi.org/10.1109/TKDE.2005.50

[9] U. Kanewala and J. M. Bieman. 2013. Using machine learning techniques to
detect metamorphic relations for programs without test oracles. In 2013 IEEE
24th International Symposium on Software Reliability Engineering (ISSRE). 1–10.
https://doi.org/10.1109/ISSRE.2013.6698899

[10] U. Kanewala, J. M. Bieman, and A. Ben-Hur. 2016. Predicting Metamorphic
Relations for Testing Scientific Software: A Machine Learning Approach Using
Graph Kernels. Softw. Test. Verif. Reliab. 26, 3 (May 2016), 245–269. https://doi.
org/10.1002/stvr.1594

[11] H. Liu, X. Liu, and T. Y. Chen. 2012. A NewMethod for ConstructingMetamorphic
Relations. In 2012 12th International Conference on Quality Software. 59–68. https:
//doi.org/10.1109/QSIC.2012.10

[12] F. H. Su, J. Bell, C. Murphy, and G. Kaiser. 2015. Dynamic Inference of Likely
Metamorphic Properties to Support Differential Testing. In Proceedings of the
10th International Workshop on Automation of Software Test (AST ’15). IEEE Press,
Piscataway, NJ, USA, 55–59. http://dl.acm.org/citation.cfm?id=2819261.2819279

[13] R. Vallee-Rai and L. J. Hendren. 1998. Jimple: Simplifying Java Bytecode for
Analyses and Transformations. (1998).

[14] E. Weyuker. 1982. On Testing Non-Testable Programs. 25 (11 1982).
[15] T Y. Chen, S C. Cheung, and S. M. Yiu. 1998. Metamorphic testing: a new approach

for generating next test cases. (01 1998).
[16] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei. 2014. Search-

based Inference of Polynomial Metamorphic Relations. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering (ASE ’14).
ACM, New York, NY, USA, 701–712. https://doi.org/10.1145/2642937.2642994

13

