
Using Semi-Supervised Learning for Predicting Metamorphic
Relations

Bonnie Hardin
Montana State University

Bozeman, Montana

bonnie.enix@montana.edu

Upulee Kanewala
Montana State University

Bozeman, Montana

upulee.kanewala@montana.edu

ABSTRACT

Software testing is difficult to automate, especially in programs

which have no oracle, or method of determining which output is

correct. Metamorphic testing is a solution this problem. Metamor-

phic testing uses metamorphic relations to define test cases and

expected outputs. A large amount of time is needed for a domain ex-

pert to determine which metamorphic relations can be used to test a

given program. Metamorphic relation prediction removes this need

for such an expert. We propose a method using semi-supervised ma-

chine learning to detect which metamorphic relations are applicable

to a given code base. We compare this semi-supervised model with

a supervised model, and show that the addition of unlabeled data

improves the classification accuracy of the MR prediction model.

CCS CONCEPTS

• Software and its engineering→ Software defect analysis; •

Computing methodologies → Machine learning approaches;

KEYWORDS

Metamorphic Testing, Metamorphic Relations, Machine Learning,

Semi-Supervised Learning

1 INTRODUCTION

With the rapid growth of science and technology and the role it

plays in the world, it is increasingly necessary to verify the accuracy

of the software that produces new scientific findings. Researchers

in all scientific domains face a difficult problem when it comes

to testing their software. Generally, the correctness of software

is determined by comparing the results of the program with the

expected results. However, in the case of scientific code, the correct

results are often not known; this complication, known as the oracle

problem, makes testing scientific software a difficult task [1].

Metamorphic testing (MT) is one solution to the oracle problem.

MT requires the usage of metamorphic relations (MRs) to act as

a partial oracle for the program under test; an MR defines how

a change to a test input will change the corresponding outputs.

Defining MRs is often be done by domain experts, and is a time-

consuming process. The greater the cost needed to build a test suite,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MET’18, May 27, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5729-6/18/05. . . $15.00
https://doi.org/10.1145/3193977.3193985

the less likely a company or researcher is to use it. Therefore, MR

prediction models are needed to decrease the amount of time and

cost needed to construct an MT suite.

There are three main categories of machine learning methods:

supervised, semi-supervised, and unsupervised. In supervised ma-

chine learning algorithms, all of the data used to build the classifier

have labels. These models can be unpractical because of the cost of

obtaining the initial labels. In semi-supervised models, the major-

ity of the data is unlabeled. These models becoming increasingly

necessary, as big data is easily accessible on the Internet, but the

corresponding labels are not. The structure of the unlabeled data

helps to provide greater classification accuracy than with labeled

data alone.

In our previous work, we found that supervised learning algo-

rithms including SVMs and decision trees are effective for predict-

ing MRs [2, 3]. Our current study extends that work to include

unlabeled data in the training of the binary classifiers. Unlabeled

data has been shown to increase classification accuracy of machine

learning models [7]. Additionally, there are many methods that do

not have pre-determined metamorphic relations. These unlabeled

methods can easily be added to a semi-supervised model to increase

classification accuracy.

Our method uses a semi-supervised binary classification algo-

rithm to predict metamorphic relations for methods in a program.

The feature set we use consists of paths through each methods’

control flow graph. These features are input to the support vector

machine and label propagation algorithms, which output the pre-

dicted labels of "MR applies" or "MR does not apply". Our results

show that the label propagation algorithm performs better than

the support vector machine for 5 out of the 6 studied MRs. This

result suggests the conclusion that the addition of unlabeled data,

in a semi-supervised algorithm, can significantly improve on the

classification accuracy of a supervised machine learning model for

MR predictions.

2 RELATEDWORK

In the field of metamorphic relation development, several other

studies have taken place recently. A 2012 study by Liu et al. pro-

poses a method for the composition of MRs [4]. Their study showed

that by combining two or more MRs, they can produce a new MR

with a higher fault-finding effectiveness than the original. Two MRs

are "compositable" if for any source test case t1 and its MRm1, the

corresponding follow-up test case t2 can be used as a source test

case for a second MR,m2. So t1 and t2 are "compositable", thereby

creating a new MR. A second paper by Su et al. studies the dynamic

inference of MRs [8]. The study builds a tool to implement their al-

gorithm. The algorithm works by first defining a set of MRs, which

14

2018 ACM/IEEE International Workshop on Metamorphic Testing

MET’18, May 27, 2018, Gothenburg, Sweden B. Hardin et al.

they call transformers: "multiplier", "adder", "negator", "shuffler",

and "reverser". For each transformer in the set, a function is exe-

cuted with and without the transformation applied. The results are

compared to see if the functions exhibit a metamorphic property.

In this way, they can predict which MRs apply to a given function.

The final paper, and most similar to this study, that we mention

is a 2013 study by Kanewala et al [2]. This study, conducted by

one of the authors, has many similarities with our current work in

that it uses a feature set consisting of node and path data through

a function’s control flow graph. These features are input into an

SVM and a decision tree to build binary classifiers for metamorphic

relations. The key difference between this study and ours is that

this study uses supervised learning techniques, while ours extends

into semi-supervised learning. Semi-supervised learning classifiers

can be more accurate than their supervised counterparts because

of the addition of unlabeled data [7].

3 METHOD

In this section, we present our method for predicting MRs using

semi-supervised learning. The overview of the method is shown

in Figure 1. We begin by transforming the methods used into their

control flow graphs (CFGs). We extract the features from these

CFGs and input the features into the selected machine learning

algorithms. These algorithms are then used to predict labels for

new methods.

3.1 Feature Extraction

Based on the results of previous studies [2] [3], we believe there

is a correlation between the paths taken through a method and

metamorphic relations. MRs are defined directly based on the se-

quence of operations performed in a program; therefore, there must

be a relationship between the paths taken through a method and

the MRs which are suitable tests. To evaluate this hypothesis, we

transform a set of methods into their control flow graphs, and use

elements of the CFGs as features for our machine learning models.

A CFG is a directed graphG = (V ,E), whereV is the set of vertices

in the graph, and E is the set of edges in the graph. Each vertex

v ∈ V represents an executable statement in the code. Each edge

e ∈ E = (vx ,vy) if x ,y are executable statements in the code where

y is executed directly following x .
We begin with a collection of 62 open source Javamethods. These

methods all perform actions related to scientific computing, such

as sorting or calculating the Hamming distance. This collection

of methods was chosen as the subject of our study because of

the common actions they perform in scientific computing. These

methods were converted to control flow graphs using Soot1, a Java

optimization framework. These representations were stored in .dot

files. After obtaining the .dot files, we extract the set of features

described below from each method. The feature set consists of two

types: node features and path features.

A node feature consists of the given node, followed by the in

degree and the out degree. The node features for the CFG in Figure

1 are shown in Table 1. Path features consist of the shortest paths

from the start node to each node in the graph, and the shortest paths

from each node in the graph to the end node. The path features

1http://www.sable.mcgill.ca/soot/

Feature Feature Count

start - 0 - 1 1

add - 1 - 1 1

if - 2 - 2 1

assi - 1 - 1 1

add - 1 - 1 1

end - 1 - 0 1

Table 1: Node features for the CFG in Figure1.

Feature Feature Count

start - add 1

start - add - if 1

start - add - if - assi 1

start - add - if - add 1

start - add - if - add - end 1

add - if - add - end 1

if - add - end 1

assi - if - add - end 1

add - end 1

Table 2: Path features for the CFG in Figure1.

MR Initial Test Case Follow-Up Test Case

Addition i1, i2, ..., in i1 + c, i2 + c, ..., in + c
Multiplication i1, i2, ..., in i1 ∗ c, i2 ∗ c, ..., in ∗ c
Permutation i1, i2, ..., in in , i1, ..., i2
Inclusion i1, i2, ..., in i1, i2, ..., in + 1
Exclusion i1, i2, ..., in i1, i2, ..., in − 1

Inversion i1, i2, ..., in 1/i1, 1/i2, ..., 1/in
Table 3: Metamorphic Relations Used in the Experiment.

for the CFG in Figure 1 are shown in Table 2. Paths through a

control flow graph represent the possible executions of a program.

Similarly, a metamorphic relation is chosen for a program based

on the possible paths of execution. Therefore, we believe a feature

set consisting of paths through a program is a good predictor for

metamorphic relations.

We also collect the labels for each element in our data set. For

each MR under consideration, a data point is assigned a label of

either 1 or 0, if the MR applies or does not apply to the method.

Our experiment uses six MRs, shown in Table 3. These MRs were

defined in a previous study by Murphy et al. that used metamorphic

relations to test machine learning models [5]. We selected these 6

because they are commonly found in scientific computing applica-

tions. For each test case, i is an integer value, and c is a constant
that is applied to i to change the value for the follow-up test case.

3.2 Support Vector Machine

As a baseline approach, we use the support vector machine algo-

rithm. To do so, we use scikit-learn, a collection of Python machine

learning modules [6]. We selected scikit-learn’s LinearSVC imple-

mentation of an SVM. An SVM is a supervised machine learning

classification algorithm that finds a hyperplane among the data

15

Using Semi-Supervised Learning for Predicting Metamorphic Relations MET’18, May 27, 2018, Gothenburg, Sweden

public static int add_vals(int a[])
{
 int sum = 0;
 for(int i = 0; i < a.length; i++) {
 sum += a[i];
 }
 return sum;
}

if

add

Label
Propagation

Support
Vector

Machine

assi

add

Feature 0 Feature 1 … Feature m
Method 0
Method 1

...
Method n

count0,0 count0,1 count0,m
count1,0 count1,1 count1,m

countn,0 countn,1 countn,m

start

end

Figure 1: Overview of Method.

points that separates both classes of data. Data points are then

classified into the positive or negative class based on their location

in relation to the hyperplane.

3.3 Label Propagation

Label propagation is a semi-supervised machine learning classifica-

tion algorithm [9]. We selected this algorithm to compare against

the SVM, expecting the addition of unlabeled points to increase the

accuracy of the model.

The algorithm works as follows. The set of labeled data points

is defined as Xl = {(x1,y1), ..., (xl ,yl)}. The set of unlabeled data

points is defined as Xu = {(xl+1,yl+1), ..., (xl+u ,yl+u)}. Yl is the
list of known labels, and Yu is the list of unknown labels. Given

an input of Xu , Xl , Yl , label propagation builds a model that can

predict labels for a set of previously unseen data points. The al-

gorithm consists of three steps: first, propagate Y ← TY , second
row normalize Y , and third, clamp the labeled data. T is a proba-

bilistic transition matrix, where Ti j is the probability of jumping

from node j to node i . The value for any given Ti j is calculated

as wi j/∑l+u
k=1

wk j , where wi j is a predetermined weight directly

correlated with the Euclidean distance of the two nodes i and j. Y
is a label matrix that represents the label probability distributions

of each data point. The dimensions are (l + u)xC , where l is the
length of the labeled data, u is the length of the unlabeled data, and

C is the set of labels. Yi contains the probability that i is assigned
to each label c ∈ C . The first step in the algorithm propagates the

labels to previously unlabeled points. Then, Y is row-normalized

to ensure the label probabilities retain their meanings. The labeled

data is clamped in the third step of the algorithm. This step is to

ensure the original labels do not change.

Scikit-learn implements two semi-supervised algorithms: label

propagation and label spreading. We selected label propagation

because it clamps the original true labels; label spreading allows

for the input label distributions to change over the course of the

algorithm. Because our data set is relatively small, we believe that

clamping the known labels will yield higher classification accuracy.

To build the label propagation classifier, we start with the 62 data

points that have calculated feature sets and labels. We randomly

choose half of the data points to be considered unlabeled.

Parameter Description Value

n_neighbors number of neighbors used for the

knn kernel

3

max_iter max number of iterations allowed 1

tol threshold to consider the system at

steady state

1e-10

Table 4: Parameters used in label propagation.

4 EVALUATION METHOD

To evaluate SVM classifier, we split the data into training and test-

ing sets using stratified cross validation. The training set consists

of 80% of the original data set, leaving the testing set with the

remaining 20%. The SVM builds a classifier to predict labels for

previously unseen data points. An SVM takes a parameter c , which
represents the penalty parameter of the error term; we built our

model with c = 1.0. To evaluate the label propagation classifier,

we also use stratified cross validation, this time splitting the data

into training, validation, and testing sets. To find the optimal pa-

rameters for the label propagation algorithm, we built a nested

cross-validation method. The training set consists of 80% of the

total data set, and the testing set consists of the remaining 20%. The

training set then consists of 60% unlabeled data and 40% labeled

data. The parameters accepted by the scikit-learn implementation

of label propagation are shown in Table 4. We then test each of

the models using the validation set. We select the best performing

model based on accuracy score. Then, that model is tested using

the test data. This process is repeated 5 times, and the scores from

each run averaged together.

5 RESULTS AND DISCUSSION

The results of the SVM and label propagation algorithms are shown

in Figure 2. We performed our method on the six selected MRs in

Table 3. For 5 out of the 6 MRs, the accuracy of the semi-supervised

label propagation model is better than that of the supervised SVM

model.

We performed a paired-samples t-test to determine the statistical

relevance of the accuracy improvements. The results are shown in

16

MET’18, May 27, 2018, Gothenburg, Sweden B. Hardin et al.

Table 5. Inversion, Inclusion, and Addition have p-values of less

than 0.05, representing a statistically significant change. In our pre-

vious supervised learning study, Inversion performed significantly

worse than in this study. For this MR, it is clear that the addition

of unlabeled data improves the prediction accuracy. For the MRs

whose p-values represent a non-significant improvement in accu-

racy, we believe that the addition of more unlabeled data points

would lower the p-values. We believe the small size of our data set

is the key reason why these p-values are high. Improving a model

with additional unlabeled data is much easier and more practical

than to improve one with additional labeled data. For this reason,

we believe our method to be a promising approach to use in the

future for predicting MRs.

MR p-value

Inversion 0.00362

Inclusion 0.00400

Exclusive 0.34344

Addition 0.05369

Permutation 0.03538

Multiplication 0.12683

Table 5: T-test Comparing SVM and Label Propagation.

Add. Mult. Perm. Inv. Exc. Inc.

0.5

0.6

0.7

0.8

0.44

0.72

0.53

0.71

0.66

0.62

0.5

0.76

0.63

0.81

0.66 0.66

A
cc
u
ra
cy

SVM Label Propagation

Figure 2: SVM and Label Propagation Results

6 THREATS TO VALIDITY

Themain threat to validity for this study is in terms of external valid-

ity. The key issue is that of generalizing based on small-scale results.

The results of this study suggest label propagation as an effective

algorithm for predicting metamorphic relations. On relatively sim-

ple, open-source methods, this algorithm has been effective, and

has improved upon the efficiency of manual metamorphic relation

generation. However, these results cannot definitively prove this

method will scale to industrial sized software, especially in a system

interacting with multiple software artifacts.

7 CONCLUSION AND FUTUREWORK

We have presented a technique to predict metamorphic relations

from Java methods. We built a machine learning model using a

support vector machine and the label propagation algorithm. Both

algorithms used a feature set consisting of path data throughout

the graph representations of the program under test. We found

that label propagation performed better than the SVM for 5 out of

the 6 MRs. The results lead to the conclusion that unlabeled data

increases the prediction accuracy of a binary metamorphic relation

prediction classifier.

In the future, we would like to use the label spreading instead

of label propagation. This algorithm allows the α parameter to be

relaxed so that labels are not clamped. Additionally, we plan to use

a semi-supervised support vector machine (S3VM) to build a model

for our data. We will use a graph kernel with the S3VM to determine

similarities among methods, rather than the built-in kernels used

by label propagation and SVMs. Because of the promising results

of the label propagation algorithm, we believe a semi-supervised

support vector machine would yield a higher still classification

accuracy than the SVM or label propagation models.

ACKNOWLEDGMENTS

This work is supported by award number 1656877 from the Na-

tional Science Foundation. Any Opinions, findings and conclusions

or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect those of the National Science

Foundation.

REFERENCES
[1] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The oracle problem in software testing: A survey. IEEE transactions on software
engineering 41, 5 (2015), 507–525.

[2] Upulee Kanewala and James M Bieman. 2013. Using machine learning techniques
to detect metamorphic relations for programs without test oracles. In Software
Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium on. IEEE,
1–10.

[3] Upulee Kanewala, James M. Bieman, and Asa Ben-Hur. 2016. Predicting meta-
morphic relations for testing scientific software: a machine learning approach
using graph kernels. Software Testing, Verification and Reliability 26, 3 (2016),
245–269. DOI:http://dx.doi.org/10.1002/stvr.1594 stvr.1594.

[4] Huai Liu, Xuan Liu, and Tsong Yueh Chen. 2012. A new method for construct-
ing metamorphic relations. In Quality Software (QSIC), 2012 12th International
Conference on. IEEE, 59–68.

[5] Christian Murphy, Gail E Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing.. In SEKE, Vol. 8.
867–872.

[6] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, and others. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, Oct (2011), 2825–2830.

[7] Joel Ratsaby and Santosh S. Venkatesh. 1995. Learning from a Mixture of Labeled
and Unlabeled Examples with Parametric Side Information. In COLT.

[8] Fang-Hsiang Su, Jonathan Bell, ChristianMurphy, and Gail Kaiser. 2015. Dynamic
inference of likely metamorphic properties to support differential testing. In
Automation of Software Test (AST), 2015 IEEE/ACM 10th International Workshop
on. IEEE, 55–59.

[9] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled
data with label propagation. (2002).

17

