2018 IEEE International Parallel and Distributed Processing Symposium

Scalable Data Resilience for In-Memory Data
Staging

Shaohua Duan*, Pradeep Subedi*, Philip Davis*, Keita Teranishi, Hemanth Kollaf, Marc Gamell}, Manish Parashar*
*Rutgers Discovery Informatics Institute, Rutgers University, Piscataway, NJ 08854, USA
TSandia National Labortory, Livermore, CA 94550, USA
Hntel, Austin, TX 78746, USA

Abstract—The dramatic increase in the scale of current and
planned high-end HPC systems is leading new challenges, such
as the growing costs of data movement and 10, and the reduced
mean times between failures (MTBF) of system components. In-
situ workflows, i.e., executing the entire application workflows
on the HPC system, have emerged as an attractive approach to
address data-related challenges by moving computations closer
to the data, and staging-based frameworks have been effectively
used to support in-situ workflows at scale. However, the resilience
of these staging-based solutions has not been addressed and they
remain susceptible to expensive data failures. Furthermore, naive
use of data resilience techniques such as n-way replication and
erasure codes can impact latency and/or result in significant
storage overheads. In this paper, we present CoOREC, a scalable
resilient in-memory data staging runtime for large-scale in-situ
workflows. CoREC uses a novel hybrid approach that combines
dynamic replication with erasure coding based on data access
patterns. The paper also presents optimizations for load balancing
and conflict avoiding encoding, and a low overhead, lazy data
recovery scheme. We have implemented the CoREC runtime and
have deployed with the DataSpaces staging service on Titan at
ORNL, and present an experimental evaluation in the paper. The
experiments demonstrate that CoOREC can tolerate in-memory
data failures while maintaining low latency and sustaining high
overall storage efficiency at large scales.

I. INTRODUCTION

HPC applications are experiencing a dramatic increase in
parallelism and performance as we transition from the current
petascale era with many hundreds of thousands of cores [1],
toward the exascale era. While the increase in parallelism and
performance promises unprecedented computational and data
analytics capabilities along with new insights into complex
phenomena (e.g., fusion, combustion, astronomy, etc.) [2]
[3], it brings forth new challenges. These challenges include
growing data volumes and rates, and increasing costs (time
and energy) for moving, analyzing and storing this data [4], as
well as ensuring reliability in spite of failures affecting system
components [5].

Data staging and in-situ/in-transit data-management tech-
niques have emerged as effective solutions for addressing data-
related challenges at extreme scales [6]. These techniques
leverage resources (compute, storage) on the HPC system
itself to stage data and to execute data-processing workflows
close to where the data is being produced, which reduces
the amount of data that needs to be moved off the system
and stored to persistent storage (see Figure 1). For example,
a multi-scale, multi-physics turbulent combustion application
S3D [7], has an intricate data-processing workflow with mul-
tiple analyses performed at different temporal frequencies on

1530-2075/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPS.2018.00021

105

pom A=y o]
]

1 e |

Resiliency approach i E Resiliency approach |

(Checkpoint/restart) | (ULFM)
i

____ -

Resiliency approach i

(Checkpoint/restart) i
i

e

———— [T
E Resiliency approach i

| (Fenix)

i
i
| |
Resiliency approach i i
(ULFM) | Vulnerable for failure i

|

Fig. 1: A typical data staging workflow with fault tolerance.

non-overlapping subsets of data. The DataSpaces [6] staging-
based in-situ framework has been effectively used to support
these workflow requirements [8], [9].

There is also a rapidly growing body of research addressing
the resilience of extreme-scale applications [10]. This includes
approaches such as Checkpoint/Restart and runtime extensions
to programming systems (e.g., ULFM, Fenix, etc.). However,
the end-to-end application workflow, including the analyses
components, is as important as the simulation itself: the final
results of the overall computation are the outputs of the
workflow, and contaminated or missing data due to faults in
any component of the workflow can invalidate these outputs.
As a result, ensuring the resilience of the end-to-end workflow
is critical, and addressing the fault tolerance of staging-based
in-situ workflow frameworks is essential.

Unfortunately, traditional HPC fault tolerance techniques,
such as Checkpoint/Restart and replication [11], can not be
directly used to implement resilient data staging services. For
example, using traditional Checkpoint/Restart, recovery from
a failure in one of the data staging nodes would require all
the components of the workflow to rollback, which can be
very expensive and wasteful. Similarly, the process replication
approach presented in [12], which can potentially provide
resiliency for in-situ workflows and data staging, requires
twice the amount of computing and storage resources and
may not be feasible. A more traditional approach based on
replication, where multiple copies of the data are maintained,
is a viable alternative but can have a large storage over-
head [13]. For example, if you want a system to tolerate up
to two node failures, using replication results in a storage
overhead of 200%. An alternate approach to achieving data
reliability is using erasure coding. While erasure coding can
dramatically reduce the storage cost, it incurs the overhead
of encoding/decoding the data during writes and recovery
from failures [14]. Resilience approaches based exclusively
on replication or erasure coding would result in large storage

EE

IE
computer
psouety

overhead or computation overhead respectively. This warrants
an approach to data resilience that is capable of maintaining
low storage overhead while guaranteeing high performance.

In this paper, we present CoOREC (Combining Replication
and Erasure Coding), which is a hybrid approach to data re-
silience for staging-based in-situ workflows. CoREC provides
the benefit of data replication, i.e., high performance, while
leveraging erasure coding to reduce storage costs. COREC uses
online data classification, based on spatial/temporal locality, to
determine whether to use erasure coding or replication, and
balances storage efficiency with low computation overheads
while maintaining desired levels of fault tolerance. We also
develop optimizations such as load balancing and conflict
avoiding encoding for CoREC, as well as a low-overhead lazy-
recovery scheme for the staging nodes, to alleviate overheads
and interference associated with CoREC for both data-writes
and data-recovery.

We have used CoREC to implement resilient data staging
within DataSpaces and have deployed it on the Titan Cray XK7
production system at Oak Ridge National Laboratory (ORNL).
Our experimental evaluations using synthetic workloads and
the S3D combustion workflow demonstrate that CoREC effi-
ciently maintains storage efficiency and low latency for various
use cases and supports sustained performance and scalability
in spite of frequent node failures.

The remainder of this paper is organized as follows.
Section II presents the low-latency and high-efficiency CoREC
approach to data resilience for staging-based in-situ workflows,
and Section III describes the design of CoREC. In Section
IV, we present the implementation and evaluation of CoREC.
Finally, Section V presents related work and Section VI
concludes the paper.

II. COREC (COMBINING REPLICATION AND ERASURE
CODING)

In this section, we first explore resilience requirements of
staging-based in-situ workflows and investigate why traditional
mechanisms, such as Checkpoint/Restart, are unable to effec-
tively meet these requirements. We then introduce, model and
analyze CoREC, our hybrid approach to in-staging data re-
silience, and present an online approach for data classification
based on data access patterns, which underlies CoREC.

A. Data Resilience for Staging-based In-situ Workflows

Data staging techniques leverage resources on the HPC sys-
tem (i.e., cores and storage on simulation nodes as well as on
dedicated nodes) to store and process data as it flows (typically
memory to memory using RDMA) between components of an
in-situ workflow. For example, DataSpaces [6], [15], a data
staging service targeting extreme-scale application workflows,
uses data staging cores to implement a semantically special-
ized, virtual shared-space abstraction that can be associatively
accessed by all applications and services, and provides under-
lying runtime and RDMA-based asynchronous data transport
mechanisms to support in-situ/in-transit workflows. It enables
live data to be extracted from running applications, indexes
this data online, and then allows it to be monitored, queried
and accessed by other applications and services via the shared-
space using semantically meaningful operators.

While there is an increasing body of work on scalable
fault-tolerance mechanisms applicable to individual applica-

106

300

M Exec M Exec-CoREC Exec-check M Checkpoint M Restart

250 +

200 +

150 +

Time (sec)

100 +

50 +

o 1

1G 2G 4G 8G

Fig. 2: Impact of checkpointing olrjlatgtsa‘lzéing—based in-situ application
workflows. Exec is the total execution time of the workflow without
checkpointing; Exec-CoREC is the total execution time of the work-
flow using CoREC; Exec-check is the total execution time of the
workflow with periodic checkpointing of the staged data; Checkpoint
is the total time required to checkpoint the data staging servers;
Restart is the time required to perform a global restart of the data
staging servers using a checkpoint..

tions [5], these mechanisms are not directly applicable to in-
situ workflows, and to the data staging service supporting the
workflow and the data being staged by the workflow. In the
Checkpoint/Restart approach, checkpoint data is periodically
saved during application execution, and when a failure occurs,
the application uses these checkpoints to rollback to the most
recent consistent state. Using Checkpoint/Restart for fault
tolerance of the data staging service presents two concerns.
The first is the impact on the runtime of application workflows
that use the data staging service. To illustrate this impact,
we performed periodic checkpointing of the data stored at
the DataSpaces servers to the parallel file system on Titan
and measured the total execution time with no server failure.
Checkpointing was performed every 4 seconds (based on the
discussion for S3D presented in [5]) for a total of 8 staging
servers with varying staged data sizes, which resulted in 12
checkpoints for data sizes of 1G to 4G and 13 checkpoints
for a 8G data size. The results are plotted in Figure 2. From
the plots, we can see that even if no failures are present,
checkpointing significantly increases the total execution time
of the workflow as the staged data size increases. In this
case, the time spent to achieve fault tolerance for just the
staging servers is ~40% of the total workflow run-time without
failures. In addition, this does not include the work lost from
rolling back to a previous state. As presented in this paper,
failure recovery using CoREC increases the total execution
time of the workflow by up to 2.3%, which is significantly
lower than using checkpoint/restart. Furthermore, there is no
loss of work in the case of CoREC. The second concern is the
overhead due to large amounts of data movement and potential
cascading rollback. When using Checkpoint/Restart, rolling
back the data staging server can cause the components of the
workflow to become out of sync. Since all of the components
of the workflow need to rollback to an overall consistent state,
this can trigger a cascading rollback of the workflow where the
rollback of one component triggers other healthy component(s)
to rollback, and, in the worst case, cause the entire workflow to
restart from the beginning. This process can result in significant
coordination and data movement overheads. Process replica-
tion or process-redundancy [12] is another mechanism often
used for fault tolerance. This approach consists of replicating
all processes and their computations. Using replication for fault
tolerance of the data staging service would require each staging
server and its data to be replicated, which doubles the compute
and storage requirements and can make it infeasible.

YA

%
TI1TT

TTTTT
TS n+1

TTTTT
TSn

T
TSi

NN
TS1

<Y

(a) Single time step data locality case

A miammEn

III\II

TTTTTT
TS n+1

TTTTIT -
@ TTTTTT
TSn

1
|

Hot data Querydata Cold data

%

X
(b) Multi time steps data locality case
Fig. 3: An illustration of spatial and temporal data write/update
patterns for a 2D data domain with N + 1 time steps. The solid
red regions and slash regions (i.e., hot data) indicate data written into
the staging area, while the black dot regions (i.e., cold data) are not
updated since time step <.

Since ensuring access to the staged data in spite of failures
is most critical for a staging service, data resilience techniques
such as data replication or erasure coding are more appropriate.
Data replication involves making multiple copies of the data
object and distributing them across multiple nodes, which
enables efficient recovery by re-routing requests to a replica in
case of a failure. However, it can result in increased storage re-
quirements, which may not be feasible for in-memory staging
due to limited memory size and increasing data volumes.

An alternate approach to data resilience with lower storage
overheads is to employ erasure coding techniques. Erasure
codes are constructed using two configurable parameters n and
k (where k < n). The data is treated as a collection of fixed
size units called blocks/objects. Every k original objects (called
data objects) are encoded into n—k additional equal size coded
objects (called parities) and the set of the n data and parity
objects is called a stripe. In case of a data staging service,
objects of independently encoded multiple stripes are stored on
distinct staging servers, allowing the service to tolerate n — k
server failures.

While erasure coding provides lower storage overheads
as compared to the replication, it can lead to significant
computation and network overheads as parity has to be re-
computed for every object update. If a data object in a stripe
is updated, erasure coding must update the associated parity.
This process involves reading old data objects in the stripe,
re-computing parities and updating them. For example, if a
stripe has 6 data objects and 2 parity objects, updating one
data object requires 5 data object reads (for old data), re-
computing 2 parity objects and 2 parity object writes. As a
result, using erasure coding can be suboptimal for frequently
written/updated data objects.

B. CoREC, A Hybrid Approach

CoREC is a hybrid approach that dynamically (and intelli-
gently) combines replication with erasure coding based on data

107

access patterns to balance storage efficiency with computation
overheads, while maintaining desired levels of fault tolerance.
Specifically, COREC uses a robust classification of data access
patterns to identify hot and cold data — the key idea is to
replicate the write-hot data while applying erasure coding for
write-cold data. Using replication for write-hot data eliminates
the expensive parity updates as we only need to update the
replicas. Using erasure coding for write-cold data ensures
limited object updates and dramatically reduces storage costs
as compared to using a pure replication-based approach. For
example, in a two-failure resiliency case, let us assume that
60% of the data is identified as write-cold, which uses erasure
code (n =8,k = 6), and the remaining 40% hot data objects
are replicated for fault-tolerance. Here, using CoREC, we incur
only 100% storage overhead compared to the 200% needed for
full replication, but maintain write performance close to that of
replication, assuming write-cold data are rarely updated. Note
that we do not consider read access patterns in our hot/cold
classification because data encoded with systematic erasure
codes do not need to be decoded for reads in the absence
of failures [14].

C. Classifying Data Access

CoREC utilizes the concept of write-hot and write-cold
data to identify data objects as candidates for either repli-
cation or erasure coding. If a data object has been recently
written/updated more than a threshold number of times within
a certain interval it is considered to be hot data, otherwise it is
considered to be cold data. While data access patterns in real
applications can change as the application evolves, i.e., a hot
data object may become cold and vice versa, access patterns
in scientific applications typically exhibit high temporal and
spatial data localities as the data and its access is typically
defined along some discretization of a physical domain (e.g.,
a mesh or a grid), and the accesses are iterative in time [8].

During the execution of scientific simulation workflows, the
simulation (e.g., S3D) issues a data write request, which writes
n-dimensional data, at the end of each time-step/iteration.
Here, we use temporal locality of objects to indicate data
objects being written/updated in consecutive time-step, and
spatial locality of objects to refer to data objects that are near
to each other in the n-dimensional space. As an illustrative
example, consider a simulation that uses a 2-dimension Carte-
sian grid as show in Figure 3(a). The simulation writes data
objects in region {(2, 2), (6, 6)} of the grid at time step 1, and
this hot data turns cold at time step ¢ (temporal locality). At
time step n, another application writes/updates only a portion
of that region (say region {(2,2), (3,3)}). In this case, it is
very likely that the surrounding data objects in region {(2, 2),
(6, 6)} (due to spatial locality) will also be written/updated at
subsequent time steps, n + 1, n+ 2, and n + 3 [8].

We may go beyond this one step lookahead prediction and
consider several time steps. For example, suppose that the
highlighted data objects at time step 1 and step 2 are written by
one application in Figure 3(b), and these multiple objects turn
cold at time step ¢. If at time step n another application writes
a portion of the combined regions of {(2, 2), (4, 6)} and {(4,
4), (7, 5)}, it will likely access objects in the combined region
during time steps n+ 1, n+ 2, and n + 3. This multi-time step
look-ahead mechanism is beneficial because an application

may have several different hot data objects at the same time-
step in different regions of the grid. CoREC uses these spatial-
temporal data locality attributes for multi time-step data access
prediction.

While choosing candidates for replication and erasure cod-
ing, we need to consider the properties of both replication and
erasure coding as described in sub-section II-A. Since replica-
tion has advantages in terms of write performance for frequent
writes but has storage overhead as compared to erasure coding,
we use data access patterns to classify write-hot and write-
cold data and apply replication and erasure coding techniques
respectively. Specifically, newly written or updated data objects
are classified as hot data. Data objects with spatial coordinates
near current hot-data are anticipated to be accessed in near-
future, and thus are also considered hot. The data objects with
temporal locality in previous iterations/time-steps relative to
the current hot data objects are also classified as hot data
objects. CoOREC replicates these hot data objects while all other
cold-data objects are erasure coded. We use reference counters
to record the access frequency of each data object. From a
pool of replicated data objects, the object with the lowest
access frequency is selected as a candidate for erasure coding.
Once it is erasure coded, its access frequency is reset back to
zero and incremented with every future access. The objects
in the erasure coding pool with highest access frequencies
are selected to be transitioned to replication if and only if
the current storage overhead is lower than a user-specified
threshold, i.e., CoREC aims to maintain storage efficiency
while providing highest performance.

D. Modeling the CoREC Approach

In this section we analyze the trade-off between replication
and erasure coding and the impact of data access classification
on a simple hybrid approach.

If Njeyer is the data resilience level, i.e., the maximum
number of simultaneous node failures that system should be
able to recover from, using replication for fault tolerance
requires Njepe; copies of each object. Therefore, the storage
efficiency, which is ratio of the size of original data objects
to the size of original data object plus redundant data objects,
for replication is: 1

EFE =—
" N, level T 1
Assuming that data is transferred between servers using a
streaming approach and it take c seconds to transfer one object
from the current server to the remote server. Further assuming
that these servers have a [second latency before sending the
object to other servers to make copies, the time required to
transfer Nj.,¢; replica objects to guarantee data resiliency for
one object is:

C’l‘ =1x Nlevel +c

Using Reed Solomon Code [16], supporting Nje,e; fault
tolerance with a group of V,,,4e servers involves both encoding
and data transfer between servers. It requires a computation
overhead of O(Njeyer X Npode) and data transfer of Nieyep +
Npode — 1 data objects for N,,q4. objects. Thus, the storage
efficiency is:

Nnode

B, = ot
Nlevel + Nnode

108

and the time required to encode one data object is:

I x (Nlevel + Nnode)

Ce:ONeve Nnoe
(: L d)+ Nnode

+c

1) Simple Hybrid Erasure Coding: In this paper, we use
simple hybrid erasure coding to refer to a hybrid approach
where candidate data objects for replication and erasure coding
are selected randomly without any data classification. Suppose
that an application stages n disjoint objects, and runs for
a duration 7" while uniformly updating each object ¢ times.
Then, the resulting object update frequency is f = % If
the probability that an object will be replicated is P, and the
probability that an object will be erasure coded is P. = 1— P,
then the storage efficiency for simple hybrid erasure coding
(Ehybria) can be computed as:

N, node

(Nnode X (Nle'uel + 1) X P’r + (Nlevel + Nnode) X Pe)

The corresponding time complexity is given by:

Chybrid = (PT x Cp. + P, x Ce) X f X n (1)

2) CoREC: In CoREC we classify data objects as hot or
cold based on the data update frequency f. Assuming that
the object update frequency is non-uniform for hot and cold
data, let these frequencies be fj, and f. respectively, and that
fn > fe. For n disjoint data objects, P, x n hot data objects
are replicated and P, x n cold data objects are encoded in
CoREC, where P, and P, are the percentages of hot and cold
data objects in the data staging service respectively. Therefore,
the time complexity for CoREC can be computed as:

CCOREC:P}LXG,-thXTL-‘rPCXCCXfCXTL (2)

Since each data object in the data staging service is classified
as either hot or cold, P. = 1 — P},. From equation 1, we have:
CCOREC:(CTth_CeXfc)anph+cexfcxn

(3)

Accordingly, the time complexity for exclusively using erasure

coding Cerqsure and replication Chrepiicq are:
Creptica = (fn — fe) X Cr Xxn X Py +Cr X foexn (4)

Cerasurc:(fh_fc)XchnXPh+Cchcxn &)

The advantage of CoREC as compared to simple hybrid
erasure coding in terms of time complexity can be computed
as:
Gain = Chypria — CcorEC =
(Co—Cp) x Py x Pox (fn—fe) Xn

The storage efficiency for COREC, which depends on percent-
age of hot and cold data (Fco,rEc), is given by:
Nnode
(Nnode X (Nlem:l + 1) X P7' + (Nlevel + Nnode) X Pe)

(6)

)

The prediction and classification of hot data objects de-
pends upon the accuracy of the classifier. If the classifier is not
accurate, it might classify cold data as hot data (or vice versa).
Even if the accuracy of the classifier is perfect, replicating all
hot data objects might be infeasible due to limited memory

size. Since we can tolerate a limited storage overhead for data
resiliency, in CoREC we introduce two parameters: miss ratio
rm and storage efficiency constraint S. We use miss ratio, i.e.,
the ratio of misclassified data objects to total hot data objects,
as a measure of the accuracy of data access classification.
Then, Ppr,,n real hot data are classified as cold data and
encoded. Thus, the time complexity for CoREC under miss
ratio r,, can be computed as:

Ccorrc = Po(1 = 1m)Cy fpn + PprimCe fan + PCe fon =
(Gr'fh - Cefc + (Cc - Gr)fn'rm)nph + Ccfcn
)

The storage efficiency constraint S is used as an upper bound
for the storage overhead that can be tolerated, which is a lower-
bound for Ejypriq and Ecorec. When Ecoppc = S, the
storage efficiency constraint limit is reached and equation 7
can be solved to obtain value of P, as:
_E. x(S—-E.)
" Sx(E,-E,)

When P, < Py and P, > P,, (P, —(1—1r,,)P,)n real hot data
are encoded under constraint S. Thus, when CoREC hits the
storage efficiency constraint, the time complexity for CoREC
with miss ratio r,, can be computed as:

CcorEC =

Pr(l - Tm)crfhn + (Ph - (1 - Tm)Pr)Cefhn + P.Cefen =

(fh_fC)CenP]l+C€an_ (Ce _Cr)(l _rm)Prfhn 9)
(

Using the time complexity equations (1), (3), (4), (5), (8)
and (9), we plot relative write/update cost versus the hot data
percentage in Figure 4. When all of the data objects are cold
(Marker 1 in the figure), the write performance of CoREC
is the same as simple hybrid erasure coding, because data
is written/updated rarely. With the increase in the hot data
percentage, the time complexity for COREC increases linearly,
i.e., performance is gained due to the replication of hot data
objects. If we assume that classification is accurate and there is
no constraint on storage, then all hot objects are replicated and
all cold objects erasure coded. In this case, the write cost will
be similar to replication. When storage constraint limit S is
reached (Marker 2 in the figure), some of the hot data objects
will be erasure coded, irrespective of their classification, which
will lead to an increase in the cost. In addition to this, if the
classifier is not accurate, then there will be misclassifications,
and write/update performance will be further degraded. In con-
clusion, between points 1 and 2 in Figure 4, the performance
of CoREC increases due to the increase in hot data objects,
but beyond point 2, the storage overhead limit is reached and
objects are erasure coded irrespective of their classification,
leading to a constant difference in time complexity with the
full erasure coding approach, i.e., Cergsure-

Based on Equation (6) and Figure 4, we can deduce that
CoREC’s time complexity depends on the following factors:
(i) The difference in the data access frequencies of hot and
cold data objects, i.e., fn — f.. The larger the difference, the
greater the benefit of CoREC. (i7) The difference in the time
complexity of replication and erasure coding, i.e., C. — C,.
The larger the difference, the greater the benefit of CoREC.
(7i7) The scale of workload n. The larger the workload, the

109

.

Relative time complexity

1 2 3 o
0 Pn=Pr 100 Pn (%)

Percentage of hot data
Fig. 4: An analytic study of the relative time complexity of CoOREC
(Ccorpc) with RS (4, 3), and varying miss ratios(R,,) and percent-
ages of hot data objects (F). The time complexity for erasure coding
(Cerasure), replication (Crepiica) and simple hybrid erasure coding
(Chybria) is noted by red dotted lines, as baselines.

greater the benefit of CoREC. (iv) The miss ratio, i.e., 7.
The lower the miss ratio, the greater the benefit of CoREC.

III. COREC SYSTEM DESIGN

CoREC is composed of three key components, i.e., the
grouped replication & erasure coding based data placement
scheme, the load balancing & conflict-avoid encoding work-
flow, and the lazy recovery strategy. In this section, we present
the overall design and implementation details of CoREC, and
describe these three components.

A. Data Placement

1) Grouped Replication & Erasure Coding Scheme: In
order to tolerate concurrent staging server failures, we divide
staging servers into replication groups and erasure coding
groups. A replication group includes the data object and its
replica, and an erasure coding group includes data objects
and their parities. The grouped replication and erasure coding
scheme overcomes the limitation of random replication and
makes data objects able to survive concurrent failures with
higher probability. Figure 5 shows an example of how two-
way replication and erasure coding group (K = 2,n = 3)
work in a twelve-servers data staging.

o® %0
¢ 5

O Replication group

Coding group

° Staging server

°_<

Fig. 5: Data Objects, Replicas and Parity layout in data staging.
Servers 0 and | are in the same replication group while servers 0,
1, and 2 belong the same coding group. It is assumed that they are
physically located in different cabinets.

The placement of replicas and data/parity objects on
staging servers in the physical organization can also have
a critical effect on data resilience. In many cases, a single
event such as a power failure or a physical disturbance will

affect multiple devices, and greatly increases the risk of data
loss. By reflecting the underlying physical organization of
data staging servers, our approach can model and thereby
address potential sources of correlated staging server failures.
Specifically, in CoREC, we reorder the data staging server ID
based on network topology and organize them in a logical ring,
as depicted in Figure 5. Each server is followed in the logical
ordering by a server on a different node or cabinet so that as
many as n contiguous servers belong to n different nodes or
cabinets. By encoding this information into the logical network
topology, our data placement policy can separate the data
object, its replicas and parity objects across different failure
groups while maintaining the desired distribution.

B. Load Balancing & Conflict Avoid Encoding Workflow

In CoREC, data objects are encoded in staging servers
during transition from replication to erasure coding. If one
staging server is currently busy with a large read-write work-
load, assigning the encoding task to this server will impact
other requests being served, as well as the encoding time.
CoREC addresses this interference with a load-balancing &
conflict-avoid encoding workflow. Since hot data objects are
always replicated, CoREC can simply select the staging server
with the lightest workload in the replication group to perform
data classification and encoding operation.

Data flow: .--—-p

Work flow: —p
Grouped Server 1 Grouped Server 2 (helper server)

Client: object put request

Client: object put request
;

cold
Encoding

cold
Encoding

low
Keep token

low
Keep token

metadata

Fig. 6: Encoding workflow in CoREC.

metadatay
<

Figure 6 illustrates an encoding workflow with one server
and one paired server, also called helper server, executing
on a replication group of size 2. The encoding workflow is
triggered by the server when it receives an object-put request
from a client. Once server receives and pre-processes the data
object, data classification component classifies data objects
and make decision for the data resilience approach based on
data frequency and storage efficiency constraint. After that, the
workload measurement component decides whether to encode
locally or let the helper server encode based on its workload
level. If local node’s workload is high, then it sends the replica
node (node with replica data) an encoding token to perform
erasure coding. Otherwise, the server performs encoding lo-
cally. After the server performs the encoding operation, it sends
data & parity objects to other servers in the erasure coding

group.

The encoding workflow comprises four principal com-
ponents. First, a data fitting and partition component pre-

110

processes the data objects into a specific size and shape.
Second, a data classification and encoding component clas-
sifies data object and makes it resilient. Third, a workload
measurement component measures a server’s workload level
based on the frequency of client read-write requests. Finally,
a data/parity object consistency mechanism provides atomic
encoding processing for each data objects. In a replication
group, all servers share one encoding token and the server can
get the encoding token only if it has a low workload. Only the
server that holds an encoding token can perform an encoding
operation, which ensures that exactly one stripe is placed in the
coding grouped servers. It also ensures that the less busy server
in the group performs more encoding operation than the busier
one and workload is balanced throughout the coding group.

C. Data Size & Geometric Shape

While very small data objects suffer from metadata over-
heads, larger data objects have relatively smaller metadata
overheads and achieve better throughput during asynchronous
communication such as RDMA [6]. However, large-sized data
objects increase the processing time required for data encod-
ing, decoding, replication and transportation [17]. This leads
to longer data access latencies. Thus, an appropriate object
size is required to balance metadata overhead and data access
latency.

Algorithm 1 Geometric partitioning and fitting of an object

Input: Data Object (object), metadata, dimension (n), fitting
size (size);

Output: Fitting data objects (object[m]), metadata
(metadatalm));
N <1

object|m] < object
while N # 0 do
if 3 obj in object|m] > size then
get maximum boundary size of obj in dimension n
partition boundary to half
partition obj to half
metadata[m] < metadata
object|m] < obj
else {Object is fitting}
return object|m|, metadatam]
end if
end while

In order to fit data objects into desirable size and shape on
the servers, the data fitting and partition component in CoOREC
uses Algorithm 1. In this algorithm, we first set a range of
target data object sizes. When a staging server receives a data
object that is larger than the range, we partition the object into
halves along the longest geometric dimension. This is done
repeatedly until all sub-objects fall into the range of target
size. This simple binary partition algorithm ensures that data
objects do not exceed a threshold size. Partitioning in this
way ensures a balance between the size of objects and the
quantity of objects. Under perfect conditions, every object can
be partitioned into regular and uniform n-dimensional objects.

D. Data Recovery

Existing large-scale resilient storage solutions typically use
an aggressive recovery strategy [18]. Whenever a failure on

New/Update component : I:l

Existing component : [N

Staging Server

Fault Tolerance
Module

System Monitor

Jerasure Library
Object
Object

Transportation

Data Storage Layer

Parity Object [

[

Query Engine, Data Indexing

Client

Fig. 7: System Architecture

one or more servers is detected, all lost objects are recovered
and re-generated onto active servers immediately. The problem
with such an aggressive data recovery scheme is that it requires
significant resources to recover from a failure. Decoding
operations and data transportation may consume considerable
network and computing resources in a short time window.
These overheads eventually hinder the application read-write
requests. In CoREC, we propose a new lazy recovery scheme
with a time limit on delayed data recovery.

There are two modes in our recovery scheme: the degraded
mode and lazy recovery mode. When a transient failure occurs
and there is no replacement staging server, COREC switches
to the degraded mode. In this mode, only the requested data
is re-constructed, sent to the client and discarded. The recon-
struction of failed data objects in the read-path increases the
read-latency. Experimental evaluation results for the reading
performance in degraded mode are presented in Section I'V.

After a replacement server joins data staging, CoREC
switches to the lazy recovery mode. In this mode, each object
on the failed server will be recovered immediately after it
is queried or updated. The recovery of all other remaining
objects are triggered based on the time-limit set for delayed
data recovery. The time-limit setting depends on the fault
tolerance requirement for data objects and the overall MTBF
of the system. Normally, too long of a time-limit constraint
results in an unacceptably high risk of permanently losing
the data as it increases the chance of multiple failures in the
same group. On the other hand, too short time-limit constraint
risks interfering with the application’s regular requests in the
same way as aggressive recovery. Specifically, CoREC uses
%M TBF as the recovery timeline constraint. In many data-
intensive simulation applications, most of the failed objects
will be recovered much earlier than the end of the timeline
due to high-frequency of update and query requests.

IV. EXPERIMENTAL EVALUATION

This section describes the implementation details of
CoREC and presents an experimental evaluation using syn-
thetic benchmarks as well as the S3D combustion simulation
and analysis workflow [7].

CoREC is implemented on the top of DataSpaces [6], an
open-source data staging framework. The schematic overview
of the runtime system is presented in Figure 7. In addition to
modifying several existing components of DataSpaces for the
integration, the system architecture introduces three key new
components: Local Object Management, Object Transporta-

111

tion, and System Status Monitor. The Local Object Manage-
ment component maintains local data objects, replicas, parity
objects, and metadata. It also stores the data object classi-
fication information in addition to performing the encoding,
decoding and object preprocessing tasks. We use the Jerasure
open-source library [19] to perform encode/decode operations.
While evaluation results demonstrate the efficacy of CoREC
when using Reed-Solomon code, the Jerasure library offers a
variety of erasure codes to choose from and it is straightfor-
ward to change the erasure code used in CoREC. The Object
Transportation component synchronizes data objects, replicas,
parities, and metadata while managing the transportation of
objects between different staging servers. Server’s workload
monitoring, failure detection and recovery initiation is per-
formed by the System Status Monitor component.

1) Synthetic Experiments: Our synthetic experiments were
performed on the ORNL Titan Cray XK7 system. These exper-
iments evaluate the read and write performance of applications
with different data read and write patterns, when they use
CoREC for resilient data staging. To better understand the
performance and effectiveness of our approach, we selected
five test cases with common data reading and writing patterns
used by real scientific simulation workflows. In these cases,
we assume that scientific applications write data to a 3-
dimensional global space (data domain). We also assume that
data is written in multiple iterations (time-steps) as described
in five test cases below. We compared our results with three
other fault tolerance mechanisms: Replication (replicates all
data objects and places replicas on remote staging servers),
Erasure Coding (encodes all data objects locally and places
data/parity objects on remote staging servers), and Hybrid
Erasure Coding (without data classification — data objects
are randomly selected for replication/erasure coding within
a defined constraint on storage overhead). We additionally
compared our results to the performance of data staging
without any fault tolerance. In order to evaluate the balance
between the write response time and the storage cost for
various data resilience technique, we introduce write efficiency,
which is a ratio of application’s observed write response time
to the storage efficiency of the data resiliency technique. The
low write efficiency value indicates a better balance between
time and storage cost for data resilience. The setup of these
experiments is described in Table I. The experimental results
are presented in Figure 8 and Figure 9, followed by a detailed
discussion and analysis of each.

Total number of cores 64+ 32+8 =104

No. of parallel writer cores 4x4x4=064

No. of staging cores 8

No. of parallel reader cores 32

Volume size 256 X 256 X 256
In-staging data size (20 TSs) 320MB

No. of replica 1

No. of data objects 3

No. of parity objects 1

Coding technique Reed-Solomon Code
Storage efficiency for hybrid erasure coding | 67%
Storage efficiency lower-bound for CoREC 67%

TABLE I: Experimental setup for synthetic tests.

1) Case 1 - Write the entire data domain in each time
step: In this case, the data of the entire domain is written
at every simulation time step. Since, there is no data repli-

2.5 3.5
<)
AP P8
v L > o >
£ 25 ZE g
=15+ I g B 2
g 2 2y 2
5 ©5 o
o 1+ T 15 Y a o]
k4 =1 =
b 1 =3 =
£ 05+ £
= o =

o 2 e O (L
& & K
(g’Q’bQ\eﬂ\\g ‘v@% SISy
Q’b
(a) Case 1 (b) Case 2
0.4 r 0.7 0.6 0.9
g o3 t06 Tosi o8
o 03 fos >3 T07
£ o025 S gEoar t06 g
v +04 35 g o058
2 0.2 £2034% £
§_ £ 03 $ §_ + 0.4 E
g 015 op SB027F +03E
o 0.1 f0232 Q 2
S 005 fo1 501
0 E o 0
QO L o o e O L
& & &L & & S &L
& FEE e & & E e
Q/Z"@ @ 0@@ @
(c) Case 3 (d) Case 4
1.4
T 12
@
o 1
£
208
3
c
S 06
3
= 04
el
©
202
0
. x &
E R E DS SR b &x
FF X O E L L
SR X SR S S
Q,z}.Q (JO%(Z}(,(JOQ%(,
(e) Case 5

Fig. 8: Average data write and read response time (blue bars) and
Write Efficiency = Write response time/Storage Efficiency (red line)
of different data resilience mechanisms for the five test cases using
different writing patterns. DataSpaces: Data staging without fault
tolerance; Replicate: Data is replicated for resilience; Erasure: Data
is erasure coded for resilience; Hybrid: Simple hybrid erasure coding
without any data classification; CoOREC+1d and CoREC+2d: CoREC
in degraded mode with 1 and 2 server failures; CoREC+If and
CoREC+2f: CoREC in lazy recovery mode with 1 and 2 server
failures; Erasure+1f and Erasure+2f: Erasure coded data staging with
an aggressive recovery strategy under 1 and 2 server failures.

cation, encoding, data movement and metadata synchroniza-
tion overhead, the data staging without fault tolerance has
the best relative data write response time. In our tests, the
replication approach has smaller write response time and total
workflow execution time in comparison to other fault tolerance
approaches because it does not have the overhead of data
encoding, which also leads to a smaller data transportation
overhead. In contrast, the result for the erasure coding method
shows the worst write access performance and the longest total
workflow execution time because of the overhead associated
with frequently encoding the original data objects and the
placement of data/parity objects on remote servers. Although
only a portion of data objects are erasure coded in hybrid
erasure coding, frequently switching between replication and

112

Etransport M metadata Mencode M classify
69 66.8
= 68.8 66.7
3 686 66.6
v 684
E eg2 0.009 | 66:5
s 6'8 66.4 0.006
g o8 66.3 B
o o 66.2
g 67.6 661
3 674 :
2 672 66
P67 65.9
66.8 65.8
& @ ;\\b & & @ {\b &
Q,Q\\db ((1\’05 \2\\\\0 (JC% Q/Q\\(’ Q}/b{’ Q\:\o (J(%
S S
(a) Case 1 (b) Case 2
66.5 67.8
’g 66.4 67.6
)
> 903 67.4 0.006
£ 66.2 67.2
15 66.1 67
§ 66
% 65.9 66.8
T 6538 66.6
L2 65.7 66.4
65.6 66.2
(2 e O (@} 2 e O <
&S & K &S &
Q,Q\\(’ C\’b‘j P ?JQ\\O Q}’b% Q\&Q &
< <
(c) Case 3 (d) Case 4

Fig. 9: Breakdown of the total execution time (in seconds) for the
workflows in Figure 8. transport: Time spent in data movement;
metadata: Time spent to update the distributed metadata; encode:
Time spent to perform data encoding; classify: Time spent for data
classification in CoREC (listed as number).

erasure coding approach on the same data object makes this
approach’s write performance just slightly better than the
erasure coding approach and has longest total transportation
time. For CoREC, due to the write-intensive workload, the
workload balance and conflict-avoid encoding workflow plays
a vital role in minimizing the interference to regular request.
CoREC gets achieves a decrease of 48.7% and 53.2% in
encoding time and an improvement of 35.2% and 38.7% in the
write response time, relative to simple hybrid erasure coding
and erasure coding. The lower-bound constraint for storage
efficiency in CoREC causes some data objects to be erasure
coded, even if they are hot, and this leads to a 31.7% increase
in write-time as compared to replication.

2) Case 2 - Write the entire data domain in multiple
time steps: In this case, the entire data domain is divided
into 4 subdomains, and each subdomain is written in a time
step. This means that in every 4 time steps, the entire data
domain is written. Since each subdomain has the same write
access frequency, all data objects in that subdomain are either
hot or cold. However, CoREC leverages its multi-time step
look ahead mechanism to efficiently convert data objects from
cold to hot i.e., moving from erasure coding to replication.
Thus, CoREC has slightly better (around 6.51%) performance
improvement for write response time and 38.4% decrease in
the encoding time with respect to simple hybrid erasure coding,
while incuring an overhead of 0.8% in the write response

time over replication. In addition, the conflict avoid encoding
workflow and fewer data conversion from replication to era-
sure coding contributes to having smaller data transportation
overhead than simple hybrid erasure coding.

3) Case 3 - Write a subset of the data domain at a
higher frequency than others: In this case, data objects of a
subdomain in a particular domain is written at higher frequency
and data objects in other subdomains are written just once.
This setup addresses the presence of hot spots in the data
domain. CoREC can easily identify these hot data objects and
apply the corresponding resiliency technique. Since erasure
coding and simple hybrid erasure coding select either all data
objects or randomly as candidates for erasure coding, CoREC
improves the write response time by 7.2% and 9.6% and
decreases encoding time by 50.4% and 56.5% respectively,
while increasing the write response time by just 1.51% as
compared to replication.

4) Case 4 - Write subsets of the data domain with random
access pattern: This case differs from the previous case as the
subdomains of the data domain are randomly chosen for writ-
ing/updating. The random access pattern reduces the accuracy
of the data classifier, which is based on temporal and spatial
locality. However, the workload balance and conflict-avoid
encoding workflow optimizations enhance the performance of
CoREC by 3.14% and 13.4% and decrease encoding time by
14.6% and 17.8% compared to simple hybrid erasure coding
and pure erasure coding respectively.

Figure 9 shows the breakdown of the normalized execution
time for workflows in aforementioned cases in failure free case.
The plots show that CoREC has lower overheads compared
to simple hybrid erasure coding and pure erasure coding in
all cases. CoREC has less data transport time than erasure
coding and simple hybrid technique because fewer erasure
coded objects incur updates and it minimizes the parity update
operations, which leads to less encoding time also. While
replication has better performance, it should be noted that it
suffers from high storage overhead.

5) Case 5 - Read entire data domain in each time step:
The data of the entire domain is read for every time step in
this case. The replication-only method has a slightly better
read response time than the original method because having
multiple copies of the data at separate nodes/servers can
increase data access bandwidth for concurrent data access
requests. Since, erasure coding splits original data objects
into small objects and distributes them among the staging
servers, a single read request can be distributed across multiple
servers and consequently erasure coding, simple hybrid erasure
coding, and CoREC have better read response times than both
replication and the original data staging technique. We also
performed experiments for various cases of reads as we did
for writes, but the results are not presented in this paper due to
lack of space. These results show similar patterns as case 5. We
also evaluated read response time in the presence of failures.
In degraded mode, the read response time increases by 4.11%
and 23.4% for single and double server failures respectively,
as compared to failure-free case. However, when using lazy
recovery, the read response time increases by 2.41% for single
failure and 8.43% for double server failures as compared to
failure-free case.

113

0.09 7

2 failure, recovery

008 1
007 +
9006+
2 3
o 0.05
g 1

F 004 T
2 E
$ 003 T
= |

002 T

001 F

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time Step
Fig. 10: The average read response time for reading the entire data

domain with 1 and 2 failures, along with failure recovery, for 20 time
steps. The first failure occurs at time step 4, and second failure occurs
at time step 6. First failure-recovery be%ins at the 8" time step and
another recovery is initiated at the 12" time step, and they end at
time steps 9 and 13 respectively.

While we demonstrated that CoREC performs better on
average than both erasure coding and simple hybrid erasure
coding, replication might seem like a good choice for fault
tolerance. However, we also need to consider the storage
overhead associated with each fault tolerance mechanism. We
also plot the ratio of write-response time and storage efficiency
in Figure 8. It can be seen that, data staging without fault-
tolerance provides best performance along with best storage
efficiency. On the other hand, fault-tolerance introduces over-
heads on both write response time and storage efficiency.
Among the fault-tolerant mechanisms, CoREC provides the
best balance for storage efficiency and write response time in
all the data access patterns studied.

In order to study the impact of lazy recovery in CoREC,
we also plot the read response time at every time step for 20
time steps in Figure 10. For a single failure case, we inject
a staging server failure at time step 4 and recover it at time
step 8. For the two failure case, we inject a first staging server
failure at time step 4 and a second failure at time step 6, and
then start recovering them at time step 8 and 12 respectively.
In both the cases, the entire data domain was read for all time
steps. We observe that, unlike aggressive recovery, our lazy
recovery approach does not trigger data recovery for the failed
server immediately, which may result in an increased data read
response time. From time step 8 to time step 9, our approach
gradually recovers unavailable data objects, which leads to a
nominal increase in the data read response time for recovery
from multi-server failure. After time step 14, the data read
response time resets back to what it had been before the failure
was injected.

No. of cores 4480 8960 17920

No. of simulation cores | 16 X 16 x 16 = 4096 | 32 x 16 x 16 = 8448 | 32 x 32 x 16 = 16896

No. of staging cores 256 512 1024

No. of analysis cores 128 256 512

Volume size 1024 x 1024 x 1024 2048 x 1024 x 1024 2048 x 2048 x 1024

Data size (GB) 160 320 640

No. of replica T 0 i

No. of data objects 3 3 3

No. of parity objects 1 1 1

Storage efficiency 67% 67% 67%

TABLE II: Configuration of core-allocations, data sizes, and data
resilience for the three test scenarios on 4480, 8960 and 17920 cores.

2) Large Scale S3D Experiment: We also performed large-
scale tests for COREC using the lifted hydrogen combustion
simulation workflow using S3D [7] and an analysis application
on Titan, and compared it to pure replication and erasure
codes. CoREC was tested using three different core count

(4480, 8960 and 17920) and corresponding grid domain sizes
so that each core was assigned a spatial sub-domain of size
64 x 64 x 64. For comparison purpose, we also ran S3D without
data staging, S3D with data staging but without resilience, and
S3D with data staging and resilience. The cumulative time
for reading/writing data over 20 time steps was measured.
The core configurations, the data region assignments, and
data resilience for our experimental setup are summarized in
Table II.

4

35 @S3D disk W DataSpaces [OReplicate [@Erasure B CoREC
' RErasure+1f B CoREC+1f BErasure+2f B COREC+2f
3
S 21.5436 sec 22.7551 sec 26.8691 sec
© 25
()
E 2 3
[
T 15
2 —
1
0.5
0

8960

No. of cores
Fig. 11: Comparison of the cumulative data read response time using

the S3D and coupled analysis workflow on Titan.

22

20 @53D disk W DataSpaces OReplicate [@AErasure B CoREC
18 BErasure+1f E@CoREC+1f BErasure+2f @ CoREC+2f
o 16 346.68 sec
214 234.42 sec 7R
1y .
£ 166.46 sec %
= 10
[
2 8
2 s
4
2
0

8960

No. of cores
Fig. 12: Comparison of the cumulative data write response time using

the S3D and coupled analysis workflow on Titan.

Figure 11 and Figure 12 illustrate the experimental results
for the S3D coupled simulation and analysis application work-
flow, for various resiliency settings. Since the PFS (parallel
filesystem based) based S3D does not have data staging and
the data is saved to disk, it has the longest read and write
response time. While data staging without resilience shows
best performance, it is not able to recover from failures.
Among the resilient data staging techniques studied, CoOREC
reduces the write response time by 7.3%, 14.8%, and 5.4% as
compared to pure erasure coding on 4480, 8960, and 17920
cores respectively. In comparison to replication, COREC has
an overhead of 4.2%, 5.3%, and 17.2% in write response time
on 4480, 8960, and 17920 cores respectively. It can also be
seen that in the presence of failures, COREC reduces the read
response time by up to 40.8% and 37.4% for one and two
server failures respectively as compared to pure erasure coding.

These results show that COREC demonstrates good overall
scalability, better storage efficiency with small overheads for
different processor counts and data sizes, while providing data
resiliency for extreme-scale HPC systems.

V. RELATED WORK

The increasing performance gap between compute and I/O
capabilities has motivated recent developments in both in-situ
and in-transit data processing paradigms. In-situ and in-transit

114

data processing allows analytics to directly access in-memory
simulation data, and has been used for visualization, indexing
building, data compression, statistical analysis [20] [21], etc.
A number of data staging solutions such as DataSpaces [15]
/ActiveSpaces [22], PreDatA [23] provide services for support-
ing in-situ and in-transit approaches, e.g., [8], with a primarily
focus on fast and asynchronous data movement off simulation
nodes. Unfortunately, these frameworks do not address the
resilience of staged data, which is an important concern at
extreme scales.

While supporting resilience in contexts other than in-
situ/in-transit data analytics, such as Checkpointing [24], [25],
[26], [27] and Replication/Erasure Coding [18], [28] has been
widely studied, there are limited research efforts focussed on
in-situ/in-transit data processing systems. The study in [29]
exploits the reduction style processing pattern in analytics
applications and reduces the complications of keeping check-
points of the simulation and the analytics consistent. Research
efforts in [30] use a synchronous two-phase commit trans-
actions protocol to tolerate failures in high performance and
distributed computing system. In comparison to these efforts,
our data resilience approach specifically targets data staging
based in-situ workflows, and is more flexible, asynchronous
and scalable. Furthermore, it can handle dynamic execution
and failure patterns across multiple applications that are part
of in-situ/in-transit workflows.

While aspects of COREC may appear conceptually similar
to Cocytus [13], where replication is used for small-sized and
scattered data (e.g., metadata and key) and erasure coding is
used for large data (e.g., value), CoREC uses data access
frequency rather than data size for data classification. In
contrast to Cocytus, which is designed for cluster storage
system, CoREC targets in-situ/in-transit data processing on
large-scale HPC systems.

VI. CONCLUSION AND FUTURE WORK

Data-staging frameworks have emerged as effective solu-
tions for addressing data-related challenges at extreme scale
and supporting in-situ/in-transit workflows. However, the re-
silience of these frameworks remains a challenge. This paper
addresses data resiliency for staging-based in-situ/in-transit
workflows. In this paper we presented CoREC, a scalable
hybrid approach to data resilience for data staging frame-
works that used online data access classification to effectively
combines replication and erasure codes, and to balance com-
putation and storage overheads. Furthermore, utilizing lazy
recovery and conflict-avoid encoding workflow optimizations,
we reduced the interference due data-resiliency on the simu-
lation/analysis components of the workflow.

We have implemented CoREC on top of the DataSpaces
data staging services and deployed it on the Titan Cray XK7 at
OLCEF. To evaluate its effectiveness and performance we used
both synthetic benchmarks and real world large scale S3D
application. Our experiments demonstrated that CoREC can
dynamically classify data objects based on data-driven access
pattern and provide efficient fault-tolerance. The source code
for our prototype implementation of CoREC is publicly avail-
able at https://github.com/shaohuaduan/datastaging-fault-
tolerance.

As future work, we plan to expand CoREC to support
multiple storage layers, for example, using NVRAM and SSD,
and designing a new models for data resilience that incorporate
utility-based data placement across these layers.

VII. ACKNOWLEDGMENTS

This worked was supported in part by the National Science
Foundation (NSF) via grants number CCF 1725649, and by
Sandia National Laboratories, a multi-mission laboratory man-
aged and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Hon-
eywell International, Inc., for the U.S. Department of Energys
National Nuclear Security Administration under contract DE-
NA-0003525. The research at Rutgers was conducted as part
of the Rutgers Discovery Informatics Institute (RDI?).

REFERENCES

[1] S. Ahern et al., “Scientific discovery at the exascale, a report from the
doe ascr 2011 workshop on exascale data management, analysis, and
visualization,” in Scientific Discovery at the Exascale, a Report from the
DOE ASCR 2011 Workshop on Exascale Data Management, Analysis,
and Visualization, 2011, pp. 1-4.

[2] E. E D’Azevedo, J. Lang, P. H. Worley, S. A. Ethier, S.-H. Ku,
and C. Chang, “Hybrid mpi/openmp/gpu parallelization of xgcl fusion
simulation code,” in Supercomputing Conference 2013, 2013.

[3] S.Ku, C. Chang, and P. Diamond, “Full-f gyrokinetic particle simulation
of centrally heated global itg turbulence from magnetic axis to edge
pedestal top in a realistic tokamak geometry,” Nuclear Fusion, vol. 49,
no. 11, p. 115021, 2009.

[4] F Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific workflow
on multi-core platform,” in Proc. 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’12), 2012.

[5] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen,
and M. Parashar, “Local recovery and failure masking for stencil-
based applications at extreme scales,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2015 International Conference
for, November 2015.

[6] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163-181, Jun 2012.

[7] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes,
S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
R. Sankaran, S. Shende, and C. S. Yoo, “Terascale direct numerical
simulations of turbulent combustion using s3d,” Computational Science
& Discovery, 2009.

[8] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson,
H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-transit process-
ing to enable extreme-scale scientific analysis,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2012 International
Conference for, Nov 2012, pp. 1-9.

[9]1 M. Parashar, “Addressing the petascale data challenge using in-situ
analytics,” in Proceedings of the 2Nd International Workshop on
Petascal Data Analytics: Challenges and Opportunities, ser. PDAC "11.
New York, NY, USA: ACM, 2011, pp. 35-36. [Online]. Available:
http://doi.acm.org/10.1145/2110205.2110212

[10] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward
exascale resilience: 2014 update,” in Supercomputing Frontiers and
Innovations: an International Journal, vol. 1, no. 1, 2014, pp. 5-28.

[11] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems,” in The Journal of Supercomputing,
vol. 65(3), 2013, pp. 1302-1326.

[12] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engel-
mann, “Combining partial redundancy and checkpointing for hpc,” in
at the 32nd IEEE International Conference on Distributed Computing
Systems (ICDCS), 2012.

[13] H. Zhang, M. Dong, and H. Chen, “Efficient and available in-memory
kv-store with hybrid erasure coding and replication,” in the Fourteenth
USENIX Conference on File and Storage Technologies (FAST) for,
February 2016.

115

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

(28]

[29]

[30]

P. Subedi and X. He, “A comprehensive analysis of xor-based erasure
codes tolerating 3 or more concurrent failures,” in Parallel and Dis-
tributed Processing Symposium Workshops and PhD Forum (IPDPSW),
2013 IEEE 27th International Symposium on, April 2013.

C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction and
coordination framework for coupled simulation workflows,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC 10, 2010, pp. 25-36.

1. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
in Journal of the Society for Industrial & Applied Mathematics, vol.
8(2), 1960, p. 300.

M. M. T. Yiu, H. H. W. Chan, and P. P. C. Lee, “Erasure coding for
small objects in in-memory kv storage,” in in Proceedings of the 10th
ACM International Systems and Storage Conference (SYSTOR), May
2017.

A. Cidon, R. Stutsman, S. Rumble, S. Katti, J. Ousterhout, and
M. Rosenblum, “Mincopysets: derandomizing replication in cloud stor-
age,” in at the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2013.

J. S.Plank, J.Luo, C. D.Schuman, L.Xu, and Z.-O. Hearn, “A per-
formance evaluation and examination of open-source erasure coding
libraries for storage,” in the Seventh USENIX Conference on File and
Storage Technologies (FAST), Dec 2009, pp. 263-272.

H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma, “In situ
visualization for large-scale combustion simulations,” IEEE Computer
Graphics and Applications, no. 3, pp. 45-57, 2010.

J. C. Bennett, V. Krishnamoorthy, S. Liu, R. W. Grout, E. R. Hawkes,
J. H. Chen, J. Shepherd, V. Pascucci, and P.-T. Bremer, “Feature-based
statistical analysis of combustion simulation data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 12, pp. 1822—
1831.

C. Docan, F. Zhang, T. Jin, H. Bui, Q. Sun, J. Cummings, N. Pod-
horszki, S. Klasky, and M. Parashar, “Activespaces: Exploring dynamic
code deployment for extreme scale data processing,” Concurrency and
Computation: Practice and Experience, 2014.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Predata -
preparatory data analytics on peta-scale machines,” in Parallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on,
April 2010, pp. 1-12.

L. B. Gomez, D. Komatitsch, and N. Maruyama, “Fti: high performance
fault tolerance interface for hybrid systems,” in 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2012, pp. 728-740.

L. Arturo, B. Gomez, N. Maruyama, and F. Cappello, “Distributed
diskless checkpoint for large scale systems,” in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing (CC-
Grid), May 2010, pp. 263-272.

D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Techniques for
efficient in-memory checkpointing,” in Proceedings of the 9th Workshop
on Hot Topics in Dependable Systems, Nov 2013, pp. 263-272.

S. Gao, B. He, and J. Xu, “Real-time in-memory checkpointing for
future hybrid memory systems,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, Nov 2015, pp. 263-272.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: a scalable, high-performance distributed file system,” in in
Proceedings of the 7th symposium on Operating Systems Design and
Implementation OSDI'06. Berkeley, CA, USA: USENIX Association,
2006, pp. 307-320.

J. Liu and G. Agrawal, “Supporting fault-tolerance in presence of in-
situ analytics,” in 2017 17th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid), May 2017, pp. 304—
313.

J. Lofstead, J. Dayaly, 1. Jimenezz, and C. Maltzahn, “Efficient, failure
resilient transactions for parallel and distributed computing,” in 2074

International Workshop on Data Intensive Scalable Computing Systems,
November 2014, pp. 17-24.

