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A B S T R A C T

Gaze-based interaction is reviewed, categorized within a taxonomy that splits
interaction into four forms, namely diagnostic (off-line measurement), active
(selection, look to shoot), passive (foveated rendering, a.k.a. gaze-contingent
displays), and expressive (gaze synthesis). Diagnostic interaction is the mainstay
of eye-tracked applications, including training or assessment of expertise, and is
possibly the longest standing use of gaze due to its mainly offline requirements.
Diagnostic analysis of gaze is still very much in demand, especially in training
situations such as flight or surgery training. Active interaction is rooted in
the desire to use the eyes to point and click, with gaze gestures growing in
popularity. Passive interaction is the manipulation of scene elements in response
to gaze direction, e.g., to improve frame rate. Expressive eye movement is drawn
from its synthesis, which can make use of a procedural (stochastic) model of eye
motion driven by goal-oriented tasks such as reading. In discussing each form of
interaction, seminal results and recent advancements are reviewed, highlighting
outstanding research problems. The survey paper extends an invited proceedings
contribution to VS-Games 2017.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Motivation for this paper was found in the recent in-
clusion of eye tracking technology in virtual reality head-
sets. Acquisitions of eye tracking companies Eye Tribe,
Eyefluence and SMI by Facebook (Oculus), Google, and
Apple, respectively, were notable events. Other eye track-
ing developments in helmet-mounted displays (HMDs) in-
clude the FOVE, and SMI or Pupil Labs add-ons to
the HTC Vive. Interestingly, these HMDs are affordable
(∼$600) compared to what was available some 15 years ago
(∼$60,000) [1]. Most of these systems, including the one
used by the author in 2002, feature binocular eye track-

?Originally published in the proceedings of IEEE VS-Games 2017.
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Fig. 1. Gaze interaction taxonomy.

ing sampling at 60 Hz or better. New systems sport a
larger number of infra-red LEDs, e.g., surrounding each
eye, and are more comfortable than the author’s 2002
HMD custom-built by Virtual Research and ISCAN.
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Head-Mounted Displays only constitute one type of eye-
tracked display, typically suggestive of immersive interac-
tion in virtual reality. Currently most of these displays
make use of 60-120 Hz eye trackers. While being worn on
the head but with the immersive display removed, so-called
mobile eye trackers can be used for various augmented real-
ity applications such as examination of navigation in public
spaces such as evaluating the utility of signage as aids to
wayfinding, e.g., in an airport. These are also typically
60-120 Hz devices. More traditional devices, so-called re-
mote or table-mounted, can offer very fast sampling rates,
currently up to 2,000 Hz when combined with a chin rest.
Generally speaking, eye trackers are usually evaluated in
terms of their sampling speed and accuracy, measured in
terms of degrees visual angle. Current eye-tracking devices
typically boast about 1◦ visual angle accuracy.

Why has eye tracking suddenly become so popular, or,
perhaps more importantly, how is tracked gaze being ex-
ploited in virtual reality and other applications? A use-
ful taxonomy for reviewing these applications is shown in
Fig. 1, which splits gaze-based interaction into four forms,
namely diagnostic (off-line measurement), active (selec-
tion, look to shoot), passive (foveated rendering, a.k.a.
gaze-contingent displays), and expressive (gaze synthesis).

Diagnostic analysis of gaze, e.g., for assessment of pro-
ficiency or training, is mainly performed offline following
its recording during performance of some task, often un-
der controlled conditions. Active use of gaze makes use
of the real-time (x, y, t) data that eye trackers provide as
a streaming signal, similar to the mouse although the eye
movement signal is continuous and more noisy that the
mouse, which can often show no movement, e.g., when
“parked”. Active gaze is often meant to effect selection or
some kind of command. Passive gaze usually does not im-
ply any specific user action, however, it implies a change
to the display in response to gaze movement. Finally, ex-
pressive eye movement implies movement of the eyes that
is in turn observed by the user, e.g., movement of the eyes
of an avatar or virtual character. This type of eye move-
ment can be produced from processed recorded gaze, i.e.,
data-driven, or it can be synthesized by procedural (e.g.,
stochastic) algorithms of eye motion. Such models can be
driven by goal-oriented tasks such as reading.

Before reviewing the four forms of gaze-based interac-
tion, a short review of eye movement basics offers some
nomenclature and characteristics of gaze.

2. Eye Movement Basics

Detailed human vision is limited to the central 2◦ vi-
sual angle, about the dimension of one’s thumbnail at
arm’s length. Outside of this range, visual acuity drops
sharply, e.g., about 50% during photopic (daytime) con-
ditions. High visual acuity within the central 2◦ is due
to the tight packing of cone photoreceptors in the central
foveal region of the retina. Outside foveal vision, the vi-
sual field can be delineated further into parafoveal vision

Fig. 2. An update on Yarbus [2], replicating his clas-
sic demonstration of task dependency. The painting at
left, photographed by the author, is Ilya Efimovich Re-
pin’s Vsevolod Mikhailovich Garshin (1855-1888), 1884, Oil
on canvas, Gift of the Humanities Fund, Inc., 1972, The
Metropolitan Museum of Art, New York, NY. At upper
right is raw (unprocessed) eye movement data recorded at
500 Hz by Nina Gehrer, when performing two visual tasks:
gauging the emotion of the subject or free viewing. At lower
right is the author’s visualization of microsaccades depicted
in bright yellow within fixations shown as orange discs.

(out to about 5◦), then perifoveal vision (10◦), and then
peripheral vision (all the way out to about 80◦ on either the
temporal or nasal side of each eye). Sundstedt showed a
nice depiction of the human visual field in her SIGGRAPH
2010 course notes [3] and subsequent book [4].
Because of the fovea’s limited spatial extent (2◦), in or-

der to visually inspect the entire 160◦–180◦ (horizontal)
field of view, one needs to reposition the fovea along suc-
cessive points of fixation. Most of viewing time (about
90%) is spent in fixations, which is why detection of these
eye movements is of particular importance.
Fixations are characterized by tremor, drift, and mi-

crosaccades which are used to stabilize gaze on the point
of interest on the one hand, but keep the eyes in constant
motion on the other, so as to prevent adaptation [5]. This
is a consequence of the directional selectivity of retinal and
cortical neurons implicated in visual perception [6, 7]. If
the eyes were perfectly still, the visual image would fade
from view.1 Pritchard [9] illustrates the three eye move-
ments carrying an image across the retinal photoreceptor
mosaic by curved lines away from the center of vision (slow
drift), high-frequency (150 Hz) tremor (superimposed on
drift), and straight lines representing microsaccades, the
fast flick movements back toward the center. The mag-
nitude of all these movements is very small; the diameter
of the foveal patch shown is 0.05 mm. Microsaccades have
received a great deal of attention, as they have been identi-
fied as potential indicators of task difficulty (i.e., cognitive
load) [10], mental fatigue [11], emotional attention [12],

1An impressive simulation of this phenomenon was demonstrated
by Mahowald and Mead [8] in the design of a silicon retina based on
physiological principles—when held still the image faded.
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and perceived threat and anxiety [13], among others. For
reviews, see Martinez-Conde et al. [14, 15] and Kowler [16].

Note that from an analytical perspective of fixation (or
in general event) detection, microsaccades are often seen
as signal noise that may be undetectable within the mea-
surement noise introduced by the eye tracker itself [17].
Indeed to detect microsaccades themselves, not only are
fast sampling rates required (≥ 300 Hz), but also special-
ized detection algorithms, with Engbert and Kliegl’s [18]
being one of the more popular approaches that relies on
examination of the median of the eye movement velocity
to protect the analysis from noise [19]. An example visu-
alization of detected microsaccades is shown in Fig. 2.

The fovea is repositioned by large jumps of the eyes
known as saccades. Saccade amplitudes generally range
between 1◦–45◦ visual angle (but can be larger; at about
30◦, the head starts to rotate [20]). Saccades and mi-
crosaccades show comparable spatiotemporal characteris-
tics, suggesting a dynamic continuum, supporting the hy-
pothesis of a common oculomotor generator [21].

When tracking an object, smooth pursuits are used to
match the motion of the moving target. When fixating
an object, the semi-circular canals of the inner ear provide
signals to counter-rotate the eyes when the head turns—
this is known as Vestibulo-Ocular Reflex, or VOR. The
eyes may also rotate in opposite directions during ver-
gence movements; when looking close, the eyes converge,
when looking far, they diverge. Vergence eye movements
are used for depth perception and are tightly coupled to
accommodation, the focusing of the eye’s lens. Further
details can be found in the author’s monograph on eye
tracking methodology [22].

3. Diagnostic Applications

Diagnostic analysis of eye movements generally relies on
detection of fixations in an effort to discern what elements
of the visual scene attracted the viewer’s attention. Note
that fixations may themselves be detected by first finding
saccades. There are generally two approaches to eye move-
ment event detection: a position-variance approach meant
to locate fixations vs. a velocity-based approach generally
designed to identify saccades [22]. The sequential pattern
of fixations is referred to as the scanpath [23]. What is
perhaps most relevant is the observation made classically
by Yarbus [2]: the pattern of fixations is task-dependent
(see also Fig. 2). That is, vision is largely top-down, di-
rected by viewing strategy and task demands. However,
vision is also bottom-up, drawn often involuntarily by eye-
catching elements in the scene [24]. Being able to visualize
and analyze an expert’s strategy, e.g., during inspection or
monitoring, is of prime importance to the understanding of
expertise. A cogent example lending insight into expertise
was given by Law et al. [25] in a virtual laparoscopic train-
ing environment: eye movements clearly showed novices
fixated on the laparoscope tip while experts, practiced in
the tool’s manipulation, focused on the target.

(a) cockpit with ArUco markers (b) scanpath edge bundling

Fig. 3. Scanpath visualization during pre-flight checklist us-
ing Peysakhovich’s [26] edge bundling.

3.1. Assessing and Training Expertise
Ericsson et al. [27] surveyed experts’ gaze and noted

that experts tend to make shorter fixations, make better
use of extrafoveal/peripheral information, and make use of
a larger visual span (area around the fixation). Because
experts’ visual search strategies develop with training, it
makes sense to not only analyze visual patterns, e.g., to
assess expertise, but also as a means of its development
via training. A compelling example of assessment concerns
programmers, which shows that novices put in more effort
and have more difficulty reading source code during the
progression of an introductory programming course [28].
Following a review of literature related to the use of

scanpaths in training, we showed that Gaze-Augmented
Think-Aloud can be particularly effective [29]. This proto-
col records the eye movements of an expert as they verbal-
ize whatever task they are expert in, and then the video
playback is shown to novices as a means of training of
the same task. This is a fairly straightforward applica-
tion of eye tracking, yet it holds a number of important
advantages over alternatives where pointing (e.g., with a
laser pointer) is involved. Eye movements are faster then
hand/limb movements, and perhaps for this reason seem
more effortless than pointing. The expert is therefore free
to look and make verbal deictic references (e.g., “look
at this” [30]) without having to consciously think about
pointing at something.

3.2. Tracking Dynamic Areas Of Interest
Recorded eye movements of both expert and novice can

be used to assess the effectiveness of training. A particu-
larly good example of an eye tracking application in spa-
tial research [31] is flight simulation and training, where
the study of visual monitoring is especially important [32].
Fig. 3 illustrates two critical issues in this domain: track-
ing of dynamic Areas Of Interest (AOIs) and visualization
of recorded eye movements. Analysis of AOIs is a popular
method of segmenting the scene into individual semanti-
cally different zones [33]. When AOIs are dynamic, i.e.,
they can change their position in time, data analysis be-
comes problematic [34, 35]. The problem is exacerbated in
real environments, where constantly moving objects make
the manual coding of a recorded video the most effective
technique of eye movement analysis [36]. Fig. 3a shows
the use of ArUco fiducial markers [37] as a means of aug-
menting reality to allow labeling of physical objects, such
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Fig. 4. Mixing Gaussian point spread functions to produce
an ambient/focal heatmap. Ambient intensity is modeled
by negating the Gaussian, yielding a valley instead of peak.

as the cockpit of an aircraft in this instance. Given camera
space coordinates of the corners of the markers and their
known real-world dimensions, a Jacobi iterative method
can be used to solve for the homography between camera
and real-world reference frames [38].

3.3. Visualizing Eye Movements
A common form of eye movement visualization is the

scanpath, used to represent saccadic transitions between
AOIs. Fig. 3b shows attribute-driven edge bundling vi-
sualization of aggregate scanpaths [26]. Color indicates
direction of gaze, as identified by the colorwheel at bot-
tom right. Besides scanpaths, the heatmap, or attentional
landscape, as introduced by Pomplun et al. [39] and pop-
ularized by Wooding [40], is used to represent aggregate
fixations (both visualizations were predated by Nodine et
al.’s [41] “hotspots” rendered as bar-graphs). Other sim-
ilar approaches involve gaze represented as height maps
[42, 43] or Gaussian Mixture Models [44]. Heatmaps are
generated by accumulating exponentially decaying inten-
sity I(i, j) at pixel coordinates (i, j) relative to a fixation
at coordinates (x, y),

I(i, j) = exp
(−((x − i)2 + (y − j)2)/(2σ2)

)
where the exponential decay is modeled by the Gaussian
point spread function (PSF), see Fig. 4. A GPU-based
implementation [45] is available for real-time visualization.

Heatmap visualization can also be extended to depict vi-
sualization of dynamic ambient/focal visual attention, as
expressed by the K coefficient [46]. Coefficient Ki is calcu-
lated for each fixation as the difference between standard-
ized values (z-scores) of the successive saccade amplitude
(ai+1) and the current ith fixation duration (di) [47],

Ki =
di − μd

σd
− ai+1 − μa

σa
, such that K =

1
n

∑
n

Ki,

where μd, μa are the mean fixation duration and saccade
amplitude, respectively, and σd, σa are the fixation dura-
tion and saccade amplitude standard deviations, respec-
tively, computed over all n fixations and hence n Ki co-
efficients (i.e., over the entire duration of the scanpath).
Locations corresponding to ambient fixations are made to
subtract from the mean surface level, i.e., each Gaussian

kernel’s polarity (up or down) is determined by Ki, using
the sign of Ki to affect the kernel’s direction,

I(i, j) = sgn (Ki) exp
(−((x − i)2 + (y − j)2)/(2σ2)

)
.

3.4. Summary and Further Reading
Eye movement analysis depends to a large extent on de-

tection of fixations in the recorded (or real-time) (x, y, t)
eye movement signal. Outstanding problems include bet-
ter algorithms for scanpath comparison, and better visual-
izations. In general, visualization is becoming an increas-
ingly significant eye tracking component. In their EuroVis
state-of-the-art (STAR) report, Blascheck et al. [48] review
and classify visualization techniques for eye movement
data. Recent contributions include analysis and visual-
ization of dynamic ambient/focal visual attention [47, 46],
and transition matrix analysis of eye movement [49], but
more advanced developments are sure to come.

4. Active Applications

Once eye trackers matured sufficiently to produce a real-
time signal of the viewer’s (x, y, t) gaze point, they were
investigated for their interactive potential. Two seminal
contributions from this time are those of Jacob [50] and
Starker and Bolt [51]. Both contributions focused on some
means of using dwell time to effect some kind of system re-
sponse. Jacob used dwell time as a means of disambiguat-
ing gaze-based selection, while Starker and Bolt used it as
an interest metric, prompting the system to provide more
detail when something was fixated for a prolonged period
of time. What is especially notable about Jacob’s contri-
bution was his observation of the Midas Touch problem—
anything looked at can trigger a response unless some
mechanism can be used to prevent it, e.g., dwell time.

4.1. Gaze Gestures
Although dwell time is still heavily relied upon for gaze-

based selection, gaze-based gestures have also become pop-
ular. For gaze-based eye typing [52], Isokoski’s gaze ges-
tures to off-screen targets showed some potential early on
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(a) rotary interface
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(b) keypad interface

Fig. 5. Entering 9 6 1 0 : a rotary design for gaze-based
Personal Identification Number (PIN) entry affords faster
input than a traditional keypad grid design.
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[53]. Our implementation of EyeWriter [54] showed util-
ity of gaze gestures for eye typing, but its performance
was slower than dwell-time based eye typing because of its
average stroke per character requirement. In the case of
eye typing, dwell time outpaced gestures because it was
faster, on average, to select one character key with dwell
time than say 4 gaze gestures per character.

In the specific case of PIN entry, where the alphabet is
small, dwell time is a hindrance to speed. We compared
two leading approaches, one based on PassFaces [55], and
showed that boundary-crossing gestures were faster than
dwell time on the given task [56], see Fig. 5. The speed
benefits for our rotary interface were similar to those of
Dasher’s boundary-crossing approach [57]. Dasher uses
boundary-crossings to select characters and words outpac-
ing traditional dwell-time based character entry during
eye-typing, but only after some user training.

The rotary interface shown in Fig. 5a is similar to an-
other well-known gaze-gesture based interface, the pEYE
menu designed by Huckauf et al. [58, 59]. These circular
menus were meant for eye typing, although it was acknowl-
edged that the design could be used for other applications.
pEYE menus lacked a central fixation point which we in-
cluded in the rotary interface to exploit center bias [60, 61].
pEYE menus were designed to be hierarchical in nature.

Urbina et al. [62] tested various combinations of pie seg-
mentation (e.g., 4, 6, 8, 12 slices) and menu depths (e.g.,
2, 3, 4) along with selection via either dwell time or bor-
der crossing. They suggested that up to six slices can be
effectively and efficiently selected with gaze. Other pie-
shaped interfaces include Patidar et al.’s [63] Quickpie,
a pEYE menu with border crossing activation instead of
dwell time, similar to our rotary interface.

4.2. Smooth Pursuits
Beyond fixations and gaze gestures, smooth pursuit eye

movements have received relatively little attention, espe-
cially their automatic detection [64]. Smooth pursuits may
feature in the eye tracking signal anytime there are mov-
ing objects present, and further, head movements (where
they are allowed) may be disguised as eye-tracking events.
Although there has been some exploration for pursuit de-
tection with the Kalman filter [65], an interactive method
for their detection, mixed with simultaneous detection of
fixations and saccades, has been elusive. As an example of
their interactive potential, Vidal et al. [66] used Pearson’s
product-moment correlation to detect synchronization be-
tween a user’s visual pursuit of a moving object and its
time series (trajectory). Using circular motion, Esteves
et al. [67] introduced Orbits, disambiguating selection of
moving targets based on direction and speed, e.g., clock-
wise vs. anti-clockwise. Providing another way to enter
PIN codes, Cymek et al. [68] and then later Freytag et
al. [69] both used smooth pursuits to track moving tar-
gets. Cymek et al. argued that smooth pursuits might
promote user acceptance of pursuit-based, non-command
style gaze-based interaction, a notion put forth previously
by Jacob [70] and Nielsen [71].

4.3. Gameplay and Interaction in 3D Environments
In gameplay, a tempting form of interaction is to use

the eyes to point at something to aim or shoot at, as in
a first-person shooter [72]. This is particularly effective
for arcade-style games (e.g., missile command), as it re-
duces the amount of mouse movement (although perhaps
spinning that large trackball was part of the fun of the old
arcade game). Gaze in this context can also be used to ori-
ent the viewpoint, as in Tobii’s (an eye tracking company)
version of Rise of the Tomb Raider.
Besides gameplay, gaze can also be used in 3D environ-

ments for various interactive tasks, e.g., interaction with
multimedia [73]. Instead of gestures or dwell time, in these
environments, gaze-based selection can be aided by a me-
chanical switch used as a selector, e.g., a foot [74]. In 3D
applications, gaze can be used to ray-cast a virtual light
ray to select an object. Note that if implemented prop-
erly, performance with hand pointing can be comparable
to gaze-based pointing, if the user does not have to extend
their arm to point, e.g., “shoots from the hip” [75]. Re-
cently, Mott et al. suggested a dynamic, cascading (adap-
tive) form of dwell time for eye-typing applications [76],
and Istance and Hyrskykari emphasized the importance of
visible targets for efficacy of gaze gestures [77].

4.4. Summary and Further Reading
Sundstedt [4] reviewed various issues of gaze-based

gameplay. The Midas Touch is an ever-present consid-
eration. Multi-modality as well as gaze gestures are also
interesting emerging alternatives.

5. Passive Applications

Passive use of gaze suggests that the eyes are not used
to actively select something, rather, the system responds
to gaze in a continuous manner. Passive interaction can be
considered more natural than active, since, as Zhai et al.
[78] put it, the eyes are a perceptual organ, and are not well
suited as interactive motor devices (like the hands). Possi-
bly the best example of passive use of gaze is the foveated,
gaze-contingent display, or GCD [79]. GCDs have been
used to simulate arbitrary visual fields (including scotoma)

(a) modeling scotoma (b) spatiochromatic degradation

Fig. 6. Real-time visualization of scotoma and spatiochro-
matic peripheral degradation.
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Fig. 7. The zone of comfortable stereo display viewing
(based on Shibata et al. [94]) augmented to include short-
view distances such as the desktop and haploscope.

[80, 81, 82] and to visualize human spatiochromatic periph-
eral degradation [83], see Fig 6.

One objective of the GCD is to match human retinal or
visual acuity resolutions in an attempt to increase frame
rates without the user noticing. Matching foveal resolu-
tion only at the point of gaze can free up computational
resources in the periphery. In computer graphics, this
was classically referred to as view-dependent simplification
[84], or Level-Of-Detail (LOD) management [85, 86].

5.1. Foveated Rendering for Speed
There are two main approaches to foveated displays:

model- and pixel-based. The model-based approach ma-
nipulates graphics geometry prior to rendering, e.g., by re-
ducing the number of triangles to render outside the foveal
region. A classic example of this was demonstrated by Lue-
bke et al. [87] although earlier proposals also exist [88].
The pixel-based approach deals with reducing spatiotem-
poral complexity of pixel data just prior to rendering, e.g.,
via MIP-mapping [89] or Laplace filtering [90].

Recent examples of foveated rendering include those of
Guenter et al. [91] and Patney et al. [92]. Guenter pre-
dicted a 100-fold increase in rendering speed at a 70◦ field
of view using three delineations for resolution degradation:
foveal, middle, and outer. The effect of these as well as
most other gaze-contingent displays is a region of high res-
olution, with resolution degrading progressively outwards.
How the resolution degrades varies—it can be discretized
into three levels (as per Guenter et al.), or it can follow
a more smoother function resembling that of visual acuity
or contrast sensitivity [93].

5.2. Foveated Rendering for Comfort
Apart from rendering speedup, a perhaps more impor-

tant application of the gaze-contingent display is to pro-
mote viewing comfort of 3D displays (e.g., stereo or virtual
reality). 3D displays break the natural coupling between

vergence and accommodation (focal distance) by render-
ing images with non-zero disparity (stimulating vergence)
at a fixed display distance [95, 96, 97]. This dissociation—
referred to as the accommodation-vergence conflict—has
been considered to be the primary reason for discomfort
(asthenopia) felt by viewers of 3D (stereoscopic) displays,
with its source tied to eye strain and fatigue [98, 99].
Fig. 7, adapted from Shibata et al. [94], shows results

from their experiment using a dual-lens haploscope mon-
itor arrangement to demarcate a visual comfort zone for
various stereoscopic display types, including mobile, desk-
top, television, and cinema displays. A key insight from
their study is that comfortable perception of on-screen dis-
parity is dependent on viewing distance. In cinema, the
range extends from 1.6 m to the full screen width, produc-
ing a relatively wide range of disparities. A mobile device’s
range, 0.28–0.44 m, narrows the comfortable on-screen dis-
parity range considerably.
We examined vergence response via gaze disparity, mea-

sured at the screen depth, at two mid-range viewing dis-
tances: a typical desktop display at a distance of 0.5 m and
a haploscope at a distance of 0.86 m, see Fig. 8. We found
that vergence error increases away from the z = 0 screen
plane [100], which we conjectured as objective evidence of
the accommodation-vergence conflict.
To reduce visual discomfort, local disparity of the 3D

display can be adjusted at the 3D gaze location [101, 102],
or alternatively, peripheral blur can be simulated via gaze-
contingent depth-of-field [103]. We implemented a real-
time depth-of-field display based on the work of Riguer et
al. [104]. Peripheral blur is simulated through estimation
of the Circle of Confusion (CoC) radius

CoC = a· | f

d0 − f
| · | 1− d0

dp
|

where a=1.0 is modeled lens aperture diameter, f=2.2 is
the lens focal length, d0 is the distance between the focal
plane and the lens (objects in this plane at this distance are
in sharp focus), and dp is the distance from the rendered
object to the lens. Unlike Mantiuk et al. [105], we did not
estimate d0 as the depth value of the current pixel at the
viewer’s gaze point, rather, we used gaze depth z directly,
and set the depth-of-field focal plane to this distance.
Gaze depth estimation is derived from mapping 2D co-

ordinates to 3D gaze depth, requiring 3D calibration. A
binocular eye tracker delivers two eye gaze points, (xl, yl)

(a) desktop (b) Wheatstone haploscope

Fig. 8. Desktop and Wheatstone haploscope stereo displays.
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Fig. 9. Binocular disparity of point P w.r.t. fixation point F
at viewing distance D with (assumed) interocular distance
a [98]. Given gaze coordinates on the image plane, (xl, yl)
and (xr, yr), gaze depth (∆d) is found via triangle similarity.

for the left eye and (xr, yr) for the right, measured in
screen coordinates. The horizontal disparity ∆x=xr−xl
is sufficient to estimate the gaze depth coordinate z =
(∆xD)/(∆x− a) where D is the viewing distance and a is
the inter-ocular distance (e.g., 6.3 cm) [106], see Fig. 9.

5.3. Latency & Saccade Endpoint Prediction
The greatest obstacle to practical utility of foveated ren-

dering is eye tracking latency leading to a delay in the ap-
pearance of the central, high-resolution inset. To be indis-
tinguishable from a full-resolution display, the inset should
appear within 7 ms of fixation onset [107]. Greater de-
lays (e.g., 15 ms following fixation onset), while detectable,
have minimal impact on performance of visual tasks when
the radius of the foveal inset is 4◦ or greater. Due to sac-
cadic suppression, which raises perceptual thresholds for
low spatial frequencies and motion signals just before, dur-
ing, and for about 20–80 ms after each saccade, delays as
long as 60 ms do not significantly increase blur detection
[108]. Use caution when interpreting these results: the
latter pertains to the time following saccade termination
(60 ms), the former to the time following fixation onset (7
ms). Either way, there is precious little time within which
the foveal region must be updated before the update is
noticed. Regarding visual performance, however, Loschky
and McConkie’s [107] point was that in certain cases the
user will tolerate the delay in order to complete whatever
task they were trying to accomplish.

One of the most promising recent approaches to beat-
ing the gaze-contingent lag was demonstrated via saccade
endpoint prediction [111]. The basic premise is straightfor-
ward, dating back to Anliker [112] who suggested predict-
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Fig. 10. Models of horizontal saccade velocity profiles rang-
ing from 5◦-80◦, using the Gamma shaping function pro-
vided by Van Opstal and Van Gisbergen [109] to illustrate
data depicted by Collewijn et al. [110].

ing saccade termination by mirroring the saccade veloc-
ity profile once peak velocity was detected. The assumed
symmetry of the velocity profile is an oversimplification,
however, as saccades of different amplitudes have differ-
ently shaped velocity profiles. The velocity profile of small
saccades is symmetrical but is skewed for large saccades,
and can be modeled by the expression

V (t) = α

(
t

β

)γ−1
e−t/β

where time t≥0, α, β>0 are scaling constants for velocity
and duration, respectively, and 2 < γ < 15 is the shape
parameter that determines the degree of asymmetry [109].
Small values of γ yield asymmetrical velocity profiles and
as γ tends to infinity, the function assumes a symmetrical
(Gaussian) shape, see Fig. 10 for an illustration. To handle
asymmetric velocities, Arabadzhiyska et al. [111] built a
kind of saccade velocity lookup table for each viewer. The
scheme appears effective at predicting the landing position
of saccades in mid-flight and thereby offsetting any lag due
to latency incurred by the eye tracker.
Other approaches to gaze prediction can be based on

scene content instead of on the (real-time) eye movement
signal. Examples include utilization of saliency maps
[113, 114], often relying on so-called bottom-up models
of visual attention [24, 115], or classification of important
environment or game objects, e.g., via machine learning
[116, 102]. The latter approach can be seen as an exam-
ple of a growing trend toward modeling of visual attention:
combining bottom-up saliency models with contextual top-
down information [117].

5.4. Summary and Further Reading
Latency and visual comfort issues are at the forefront of

gaze-contingent display research, but several notable ap-
proaches have already been proposed to alleviate both.
Gaze-contingent depth-of-field is software-based. Recent
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(a) motion capture (b) modeling

Fig. 11. Eye tracking and motion capture for gaze synthesis.

advancements in hardware e.g., focal surface displays [118],
are starting to produce similar effects.

6. Expressive Applications

To bridge Mori’s [119] Uncanny Valley, avatars, whether
acting in film or games for entertainment or more seri-
ous applications, should be modeled with as realistic eye
motion as possible. Indeed, Garau et al. [120] found a
strong subjective interaction effect between the realism of
a character and its gaze: for a more realistic character,
more elaborate gaze behavior was preferred. Gaze behav-
ior, e.g., of a game character, influences perceived trust
[121]. Gaze behavior of conversational agents can also be
used to convey emotion and expression [122, 123]. In vir-
tual reality, eye gaze is critical for correct identification of
deictic reference [124]. In film, extreme close shots of the
eyes are important for conveying the character’s emotional
or perhaps cognitive state, e.g., as in Neil Burger’s 2011
feature film Limitless, or Jeff Wadlow’s 2014 Kick-Ass 2.

Thus far, eye movements have been modeled at a fairly
coarse grain of motion, largely based on Lee et al.’s [125]
seminal Eyes Alive model, which focused on saccades, im-
plementing what is known as the saccadic main sequence
[126, 127, 128] (see below). According to Ruhland et al.’s
[129] state-of-the-art report on eye modeling, beyond the
rapid saccadic shifts of gaze, previous work on eye mo-
tion has also included smooth pursuits, vergence, and the
coupling of eye and head rotations.

How are avatar fixations animated? Recall that fixations
are characterized by tremor, drift, and microsaccades, and
that the eyes are in constant motion to prevent adaptation
[9]. The eyes are thus never perfectly still. Meanwhile, the
perceptual system is sensitive to and amplifies small fluc-
tuations [130], hence when viewing synthetic eye motion
it makes sense to consider the jitter and drift that charac-
terize gaze fixation [9].

Rapid advancement of eye tracking technology has revi-
talized interest in recording eye movements for inclusion
in computer graphics [131, 132]. Why not simply use
eye trackers to record eye motion and map that motion
onto the eyes of an avatar? This is indeed possible (see
Fig. 11), however, an eye tracker and an actor emoting ex-
pressive eye motions are not always available. Moreover,
eye trackers typically inject noise into the recorded signal
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Fig. 12. Procedural eye movement simulation “gristmill”.

[17], which is difficult to separate from the underlying gaze
jitter that may be of interest [133].

We have developed a straightforward stochastic model
of gaze jitter using 1/fα pink noise as an effective means
of simulating microsaccadic jitter [133]. We have shown
that adding some, but not too much, jitter is perceived
as more natural than omitting it altogether [134]. Why
pink noise and not white noise? Three possible signals
could trigger microsaccades: fixation error, neural noise,
and insufficient retinal motion [135]. Evidence suggests
that the three possibilities might not be mutually exclu-
sive, i.e., fixation error and neural noise combine to trigger
microsaccades. Recorded neural spikes are superimposed
with noise that exhibits non-Gaussian characteristics and
can be approximated as 1/fα noise [136].

Pink noise is also suitable for describing physical and bi-
ological distributions, e.g., plants [137] and galaxies [138],
as well as the behavior of biosystems in general [139].2
Aks et al. [141] suggest that memory across eye movements
may serve to facilitate selection of information from the vi-
sual environment, leading to a complex and self-organizing
(saccadic) search pattern produced by the oculomotor sys-
tem reflecting 1/fα pink noise.

Microsaccadic (fixation) jitter can thus be modeled by
pink noise perturbation around the fixation point pt+h =
pt + P(α = 0.6, ω0 = 0.85), where P(α, ω0) defines a pink
noise filter as a function of two parameters with 1/fα de-
scribing the filter’s power spectral density and ω0 the fil-
ter’s unity gain frequency [142]. The pink noise filter takes
as input a white noise signal, e.g., modeled by Gaussian
noise, N (μ = 0, σ = 12/60) arcmin visual angle. Setting
α = 1 produces 1/f noise, which has been observed as
characteristic of pulse trains of nerve cells belonging to
various brain structures [130].

Saccades are modeled by advancing the fixation point
pt at simulation time t from one look point Pi−1 to the
next Pi, i.e., pt = Pi−1 + H(t)Pi, following fixation dura-

2See Zhou et al. [140] for a discussion of different colors of noise
and their point sampling implementations.
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Fig. 13. Face scanning model with implicit self-loops and
transition matrix used by Normoyle et al. [121].

tion at point pt with H(t) = 1
10 t5 − 1

4 t4 + 1
6 t3, a Hermite

blending function on the normalized interval t ∈ [0, 1] used
to smoothly advance position pt. Saccade durations follow
the main sequence Δt = 2.2θ+21 ms which relates saccade
duration to amplitude.3 Fixation durations are modeled
by normal distribution which can be adjusted to a given
task, e.g., N (μ=250, σ =50) ms for reading.

The procedural eye movement simulation is illustrated
in Fig. 12 by a gristmill which accepts as input a sequence
of fixations with fixation durations. Such a sequence can
be produced by simulation, or obtained from eye move-
ment data recorded by an eye tracker. If the latter, then
fixations and their durations are extracted via event de-
tection, i.e., filtering. Given a sequence of fixations, jitter
can be modeled as pink noise perturbation, as described
above, or perhaps as a self-avoiding random walk [144].

6.1. Modeling Gaze Guidance/Allocation

A good approach to simulating a sequence of fixations is
by a probabilistic model of gaze guidance, especially given
fairly well-known viewing patterns or behavioral contexts.
Examples of such models are especially useful for designing
virtual characters and human-like robots [145, 146, 147]. A
recent example combined a stochastic model of gaze allo-
cation with a heuristic state of behavior to model bidirec-
tional gaze when collaborating over a shared visual space
[38]. The stochastic model of gaze allocation, or guidance,
can be expressed by a transition matrix used to simulate
the probability of making a saccade from one region of
interest to the next. Below, two well-studied viewing pat-
terns exemplify the approach: face scanning and reading.

6.1.1. Modeling Face Scanning
When looking at a human face, Yarbus [2] noted early on

that “an observer usually pays most attention to the eyes,
the lips, and the nose.” This typical triangular scanning
pattern has been replicated many times emerging from the

3Other main sequence variants include Δt = 2.7θ +37 ms [127],
Δt=2.7θ+23 ms [110], and Δt=[2 : 2.7]θ+[20 : 30] ms [125, 143].

wordi-1 wordi wordi+1 wordi+2

10% regressions 20% refixations 50% forward 20% skips

Fig. 14. Reading model (from Rayner [150]).

aggregation of individual scanpaths. However, the scan-
ning pattern varies greatly across individuals [148].

Normoyle et al. [121], see Fig. 13, modeled gaze aversion
to instill trust (or lack thereof) by controlling the propor-
tion of time in which the avatar looked toward or away
from the viewer. When looking at the viewer’s face, they
defined probability distributions aimed at the eye, nose,
and mouth, yielding a 4×4 transition matrix, modeled after
Buchan et al.’s [149] mean fixation duration distributions
when looking at faces under varying task conditions.

Other similar models of face scanning include Lance and
Marsella’s [122] Gaze Warping Transformation model, de-
signed to be expressive of basic emotional categories (in-
cluding anger, disgust, fear, sadness, shame, happiness,
and admiration, based on the the Pleasure, Arousal, and
Dominance, or PAD, model). Their emotional expressivity
was based on modeling saccadic gaze aversion, e.g., looking
away depending on emotional makeup. Their model ad-
dressed saccades, vestibulo-ocular reflex (VOR), and eye-
head coupled gaze movement.

Queiroz et al.’s [123] Gaze Description Language (GDL)
used a stochastic model of gaze distribution, wherein
weights were tempered by a model of internal state, e.g.,
concentration, discomfort, distress, or irony. Peterson and
Eckstein [61] modeled gaze by an ideal Bayesian observer
defined by four free parameters, σnose, σeyes, σchin, and
σmouth, used to set non-uniform prior probabilities of fixa-
tions, which are similar to transition matrix probabilities
expressed by a transition matrix.

6.1.2. Modeling Reading
Reading consists of re-fixations of the current word,

skips forward, or regressions backwards (e.g., see Fig. 14
and Campbell and Maglio [151] for a model used to detect
reading behavior). About 10-15% of saccades are regres-
sions to previously fixated words (or lines, when reading
multi-line text). Some of these are within-word regres-
sions, considered re-fixations of the word [150].

Most models of reading are expressed in terms of reading
span distribution, including fixation durations and saccade
distributions, e.g., refixations, regressions, skips, etc. [152].
Most models also consider lexical content [153], with the
two most prominent being E-Z Reader [154] and SWIFT
[155]. E-Z Reader is a serial attention shift model while
SWIFT is a gradient by attention guidance model [156].
Both are lexically-driven and both are mainly concerned
with matching and/or predicting actual reading behavior,
e.g., as captured by an eye tracker.

Except for Suppes’ [157, 158] stochastic model of read-
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ing, we are not aware of any model of reading being used
for eye movement animation.

6.2. Summary and Further Reading

Realistic eye motion is clearly important for promot-
ing the believability of virtual characters, be they hu-
man(oid), robotic, or something else. There is still much
left to be done to render lifelike eyes and eye movements.
Care should be taken to animate pupil diameter and blinks
[134]. Pupil diameter can also be modeled as a pink noise
procedural simulation of pupil unrest, or hippus [159], aug-
mented with a model of light response [160] or based on
small random variations to light intensity [161]. Blinks,
following Trutoiu’s [162] work, can also be modeled proce-
durally with fast down and slow up phases.

7. Conclusion

Recent research trends suggest that each of the four
forms of gaze-based interaction presented here is very vi-
brant and each offers fertile ground for future work. Gaze-
based diagnostics of programmers is a compelling research
area developing with potential to impact evidence-based
programming language design [163, 164]. Of particular rel-
evance to this work may be estimation of cognitive load,
e.g., via pupillometry [165, 166]. Cognitive load measure-
ment is also impacting active applications, e.g., when inter-
acting with smooth pursuit eye movements [167]. Passive
applications generally involve manipulation of screen con-
tent in response to eye movement. The main applications
are improvement of rendering speed or reduction of visual
discomfort. Saccade endpoint prediction was noted as a
recent notable advancement [111]. Finally, expressive eye
movements are generally important for applications that
feature animated characters, e.g., in film, games, or virtual
reality where conversational agents are employed. A recent
example of where such characters are likely to play an im-
portant role is in virtual reality simulations that make use
of virtual humans. Volonte et al. recently used diagnostic
eye tracking to evaluate the effect of virtual humans on vi-
sual attention in inter-personal simulations [168]. Adding
expressive eye movements to such characters is likely to
enhance the experience of such simulations further still.

Analysis and synthesis of eye movements presents inter-
esting diagnostic and interactive possibilities with exciting
challenges. Gaze opens an additional bidirectional channel
of information to the user. Because gaze is associated with
cognitive processing (e.g., Just and Carpenter’s [169, 170]
eye-mind assumption) and emotional expression [171], it
is a particularly rich source of information.
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