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Isoscalar giant monopole, dipole, and quadrupole resonances in 90,92Zr and 92Mo
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The isoscalar giant monopole, dipole, and quadrupole strength distributions have been deduced in 90,92Zr and
92Mo from “background-free” spectra of inelastic α-particle scattering at a beam energy of 385 MeV at extremely
forward angles, including 0◦. These strength distributions were extracted by a multipole-decomposition analysis
based on the expected angular distributions of the respective multipoles. All these strength distributions for the
three nuclei practically coincide with each other, affirming that giant resonances, being collective phenomena,
are not influenced by nuclear shell structure near A ∼ 90, contrary to the claim in a recent measurement.
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I. INTRODUCTION

Giant resonances are high-frequency fundamental modes
of nuclear collective excitation. In particular, the isoscalar
giant monopole (ISGMR) and dipole (ISGDR) resonances
are compressional modes of nuclear density oscillation of the
finite nuclear systems. Direct experimental information on the
nuclear incompressibility of infinite nuclear matter, K∞, can be
obtained only from these “compressional mode” oscillations
of finite nuclei. Nuclear incompressibility characterizes the nu-
clear equation of state (EOS) which in turn provides crucial in-
formation towards the understanding of wide-ranging phenom-
ena such as the radii of neutron stars, the strength of supernova
explosions, transverse flow in relativistic heavy-ion collisions,
and the nuclear skin thickness [1,2]. The centroid energies
of the compressional modes, EISGMR and EISGDR, are directly
related to the nuclear incompressibility of the finite nucleus;
in the scaling model, these relationships are expressed as [3,4]

EISGMR = h̄

√

KA

m〈r2〉0
, (1)

EISGDR = h̄

√

7KA + 27
25εF

3m〈r2〉0
, (2)

where KA is the incompressibility of a finite nucleus with
mass number A, 〈r2〉0 is the ground-state mean square radius

*Present address: Physics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37380.

of the nucleus, m is the nucleon mass, and εF is the Fermi
energy [3]. The determination of K∞ from KA is achieved
within a framework of self-consistent RPA calculations,
using the widely accepted method described by Blaizot [5].
Because the compressional modes are collective phenomena,
the determination of K∞ is believed to be independent of the
choice of the nucleus, provided that approximately 100% of
the energy weighted sum rule (EWSR) is exhausted in a single
giant resonance peak; this condition is satisfied for sufficiently
heavy nuclei (A � 90) [1]. The presently accepted value of
K∞, determined from ISGMR in “standard” nuclei such as
90Zr and 208Pb, is 240 ± 20 MeV [6–9].

Experimental determination of EISGMR and EISGDR is not
straightforward primarily due to the overlap with the isoscalar
giant quadrupole resonance (ISGQR) and the isoscalar high-
energy octupole resonance (ISHEOR), respectively. The
“bimodal strength distribution” of the ISGDR further com-
plicates this situation [10–13]. Nevertheless, with data of high
quality and careful analyses, it has been shown that the KA

determined from ISGDR is consistent with that from ISGMR
[10,11].

Study of these “compressional modes” has been carried out
for a variety of nuclei during the last two decades. One of the
major thrusts of these studies in recent years has been to de-
termine the asymmetry component of the nuclear incompress-
ibility, Kτ . ISGMR data in the isotopic chains of Sn and Cd
have yielded a consistent value of Kτ = −550 ± 100 MeV.
Most intriguingly, Sn and Cd isotopes have been observed to
be “soft” in sharp contrast to the “standard” doubly magic
nuclei, and the question,“why are the Sn and Cd isotopes so
soft?” remains unanswered. It has been cited as one of the open
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problems in nuclear structure physics [14–22]. Experimentally
determined KA values for these “soft” elements, however, vary
quite smoothly over the wide isotopic chains [15–17].

Recently, the Texas A&M group has reported isoscalar giant
resonance strength distributions for L � 3 in several isotopes
of Zr and Mo [23–26]. Their results were rather unexpected in
that the extracted ISGMR strengths varied in a very dramatic
manner in these nuclei. In particular, the A = 92 nuclei, 92Zr
and 92Mo, emerged quite disparate from the others: the ISGMR
energies (EISGMR) for 92Zr and 92Mo were observed to be,
respectively, 1.22 and 2.80 MeV higher than that of 90Zr.
Consequently, the KA values determined for 92Zr and 92Mo
were, respectively, ∼27 MeV and ∼56 MeV higher than the
KA for 90Zr. These results, if correct, imply significant nuclear
structure contribution to the nuclear incompressibility in this
mass region. Such nuclear structure effects have not been
observed in any of the investigations of ISGMR going back
to its first identification in the late 1970s [27,28] and, indeed,
would be contrary to the standard hydrodynamical picture
associated with this mode of collective oscillation [29].

Very recently, we have shown unambiguously that ISGMR
response in the 90,92Zr and 92Mo nuclei is virtually identical
[30]. In the present article, we report on detailed investigations
for the isoscalar giant monopole, dipole and quadrupole reso-
nances (ISGMR, ISGDR, and ISGQR) in the 90,92Zr and 92Mo
nuclei from inelastic α-scattering measurements. It is shown
that not only the ISGMR, but also the other “compressional
mode”, ISGDR, and the ISGQR response as well are almost
identical in these nuclei, revealing no influence of open and/or
closed shells for protons and/or neutrons on the collective
modes of nuclear excitations.

II. EXPERIMENTAL PROCEDURES

Inelastic scattering of 385-MeV α particles was measured at
the ring cyclotron facility of the Research Center for Nuclear
Physics (RCNP), Osaka University. Self-supporting foils of
highly enriched targets (97.70%, 95.13%, and 97.37% for 90Zr,
92Zr, and 92Mo, respectively) were used, with thicknesses rang-
ing from 4.0 to 5.4 mg/cm2. Inelastically scattered α particles
were momentum analyzed with the high-resolution magnetic
spectrometer “Grand Raiden” [31], and their horizontal and
vertical positions were measured with a focal-plane detector
system composed of two position-sensitive multi-wire drift
chambers (MWDCs) and two plastic scintillators [12]. These
detectors enabled particle identification and reconstruction of
the trajectories of scattered particles.

The vertical-position spectrum obtained in the double-
focusing mode of the spectrometer was exploited to elimi-
nate the instrumental background [11,12]. A typical vertical-
position spectrum measured at the spectrometer angle of θ =
0◦ for 90Zr is shown in Fig. 1, where the central region repre-
sents true+background (instrumental) events and the off-center
regions represent only background (instrumental) events. The
background shapes are almost identical on both sides of the
true+background peak. The true events were obtained by sub-
tracting background events from the true+background events.
Figure 2(a)–2(c) shows the instrumental background, and
excitation-energy spectra before and after the background
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FIG. 1. A vertical position spectrum measured at the spectrometer
angle of θ = 0◦ (average angle 0.7◦ in the laboratory frame). The cen-
tral region represents true+instrumental background events. The off-
center regions represent only instrumental background events. The
true events were obtained by subtracting instrumental background
events from the true+instrumental background events.

subtraction, as measured at the spectrometer angle θ = 0◦ for
the three nuclei. One sees in Fig. 2 that the instrumental back-
ground is almost constant in the entire excitation energy range.
The instrumental background is observed to be maximum in
the 0◦ measurement and reduces quite significantly at higher
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FIG. 2. Excitation-energy spectra for the (α,α′) reaction at Eα =
385 MeV at the spectrometer angle of θ = 0◦ (average angle 0.7◦

in the laboratory frame) for 90Zr, 92Zr, and 92Mo in (a), (b), and
(c), respectively. In each panel, the blue hatched region represents
the instrumental background. The solid red and green histograms
show the energy spectra before and after the instrumental-background
subtraction, respectively.
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angles (except at 6◦, where it increases somewhat because of
the presence of a Faraday cup inside the scattering chamber).
The behavior of instrumental background is almost identical
for all three nuclei considered in the present work.

Inelastic scattering measurements were performed at very
forward central angles of the spectrometer (from 0◦ to 9.5◦) and
at magnetic-field settings corresponding to excitation energies
in the range Ex = 9.5–32.5 MeV. The scattering angles were
averaged over the acceptance of Grand Raiden. Ray-tracing
technique was used to reconstruct the horizontal scattering
angle and the effective angular width of 1.6◦ for each central
angle was divided into four equal regions in the offline data
analysis. Thus, measurements at one angle setting of the
Grand Raiden provided four data points. Data were also taken
with a 12C target at each setting, providing a precise energy
calibration. Energy losses in the target foils for the incident
beam and outgoing α particles were duly taken into account.

III. DATA ANALYSIS

The excitation-energy spectra at the spectrometer angle of
θ = 0◦ (average angle 0.7◦ in the laboratory frame) for the three
nuclei are overlaid in Fig. 3(a). The spectra near 0◦ scattering
angle exhibit predominantly the monopole strength, and the
0.7◦ spectra for the three nuclei, shown in Fig. 3(a), are very
similar; in particular, for excitation energies beyond 20 MeV,
these are nearly identical whereas the results in Refs. [23–25]
had shown marked differences in the extracted ISGMR strength
in this excitation-energy region. The minor differences in the
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FIG. 3. (a) Excitation-energy spectra measured at the spectrom-
eter angle of θ = 0◦ (average angle 0.7◦ in the laboratory frame) for
the three nuclei, 90Zr (solid blue), 92Zr (red dashed), and 92Mo (green
dash-dotted). (b) Difference spectra of average angles 0.7◦ and 2.0◦

for the three nuclei, 90Zr (solid blue), 92Zr (red dashed), and 92Mo
(green dash-dotted). The difference spectra comprise essentially the
monopole strength (see text).

low-energy part of the spectra (below 16 MeV) are primarily
due to the different shapes of the ISGMR at low energy and
could also be partly due to the different contributions from the
noncompressional L = 1 strength, as discussed later.
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FIG. 4. Typical angular distributions for inelastic α scattering from 90Zr. The solid line (black) through the data shows the sum of various
multipole components obtained from MDA. The dash-dotted (red), dashed (blue), dash-double-dotted (green), and dotted (magenta) curves
indicate contributions from L = 0, 1, 2, and 3, respectively, with the transferred angular momentum L indicated for each of the curves. The
solid gray line shows the IVGDR contribution.
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FIG. 5. Typical angular distributions for inelastic α scattering from 92Mo. The solid line (black) through the data shows the sum of various
multipole components obtained from MDA. The dash-dotted (red), dashed (blue), dash-double-dotted (green), and dotted (magenta) curves
indicate contributions from L = 0, 1, 2, and 3, respectively, with the transferred angular momentum L indicated for each of the curves. The
solid gray line shows the IVGDR contribution.

The “difference-spectrum”, obtained from subtracting the
inelastic scattering spectrum at the first minimum of the
expected ISGMR angular distribution from that at 0◦ (where
the ISGMR strength is maximal), essentially represents only
the ISGMR strength. This is a consequence of the fact that
all other multipolarities have relatively flat distributions in this
angular region and, thus, are subtracted out in the “difference-
spectrum” (see Ref. [32]). The difference spectra for average
angles of 0.7◦ (maximal ISGMR strength) and 2.0◦ (first
minimum of ISGMR strength) for all the three nuclei are
also almost identical, as shown in Fig. 3(b), again indicating
similar ISGMR response in the three nuclei. In particular, the
difference spectra beyond Ex = 20 MeV fully coincide with
each other, again quite different from the extracted ISGMR
strengths in Refs. [23–25].

We have employed the standard multipole-decomposition
analysis (MDA) procedure [16,33] to extract the giant res-
onance strengths for different multipolarities. Experimental
cross-sections were binned into 1-MeV intervals. The labora-
tory angular distributions for each excitation-energy bin were
converted to the center-of-mass frame using the standard Jaco-
bian and relativistic kinematics. Typical angular distributions
at excitation energies of 15, 20, 25, and 30 MeV for 90Zr
and 92Mo are presented in Figs. 4 and 5, respectively. The
experimental double-differential cross sections are expressed
as linear combinations of calculated double-differential cross
sections associated with different multipoles as follows

[16,33]:

d2σ exp(θc.m.,Ex)

d�dE
=

8
∑

L=0

aL(Ex)
d2σ DWBA

L (θc.m.,Ex)

d�dE
(3)

where aL(Ex) is EWSR fraction for the Lth component and
d2σ DWBA

L

d�dE
(θc.m.,Ex) is the calculated DWBA cross section corre-

sponding to 100% EWSR for the Lth multipole at excitation
energy Ex . The isovector giant dipole resonance (IVGDR)
contribution was subtracted out of the experimental data prior
to the fitting procedure [16,17]. Photonuclear cross-section
data [34] were used in conjunction with DWBA calculations
based on the Goldhaber-Teller model to estimate the IVGDR
differential cross section as a function of scattering angle
[35]. Lorentzian parameters for the photonuclear cross sections
[peak cross section (σm), peak energy (Ephoto

m ), and width

TABLE I. Lorentzian parameters (from Ref. [34]) for the pho-
tonuclear cross sections.

Nucleus σm Ephoto
m �photo

(mb) (MeV) (MeV)

90Zr 185 16.85 4.02
92Zr 184 16.58 4.20
92Mo 162 16.82 4.14
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TABLE II. Fermi-distribution parameters (c and a) from Ref. [40] and optical-model parameters obtained by fitting the elastic scattering
data. Also listed are the excitation energies of the low-lying states (2+, 3−) and the corresponding B(Eλ) values from Refs. [41,42].

Nucleus c a V W RI aI RC [Ex(2+), B(E2)] [Ex(3−), B(E3)]
(fm) (fm) (MeV) (MeV) (fm) (fm) (fm) (MeV, e2b2) (MeV, e2b3)

90Zr 4.9075 0.523 37.6 35.5 6.13 0.623 4.91 [2.186, 0.061] [2.740, 0.056]
92Zr 4.9583 0.523 35.4 38.8 6.02 0.687 4.95 [0.934, 0.083] [2.339, 0.075]
92Mo 4.9754 0.523 32.4 40.4 6.04 0.610 4.98 [1.509, 0.097] [2.849, 0.077]

(�photo)] used in the present work were taken from Ref. [34],
and are presented in Table I.

In order to determine the optical-model parameters (OMPs)
for the DWBA calculations, data for elastic scattering and
inelastic scattering to 2+ and 3− states were taken for each
nucleus in the angular range of 5.0◦ to 26.5◦. The “hybrid”
optical-model potential (OMP) proposed by Satchler and Khoa
[36] was employed. In this procedure, the real part of the OMP
is generated by single folding with a density-dependent Gaus-
sian α-nucleon interaction [16]. A Woods-Saxon potential is
used for the imaginary term of the OMP. Therefore, the total
α-nucleus ground-state potential, U (r), is given by

U (r) = −V (r) − iW/{1 + exp[(r − RI )/aI ]}, (4)

where V (r) is the real single-folding potential obtained using
the computer code SDOLFIN [37] by folding the ground-state
density with the density-dependent α-nucleon interaction:

υDDG(r,r′,ρ) = −υ[1 − βρ(r′)2/3]exp

(

−
|r − r′|2

t2

)

. (5)

Here, υDDG(r,r′,ρ) is the density dependent α-nucleon interac-
tion, |r − r′| is the distance between the center of mass of the α

particle and a target nucleon, ρ(r′) is the ground-state density
of the target nucleus at a position r′ of the target nucleon,
β = 1.9 fm2, and t = 1.88 fm. In Eq. (4), W is the depth of the
Woods-Saxon type imaginary part of the potential, with the
radius RI and diffuseness aI .

The imaginary potential parameters (W , RI , and aI ),
together with the depth of the real part, V , were obtained
for each nucleus by fitting the elastic-scattering cross sections
using the computer code PTOLEMY [38,39]. Radial moments
were obtained by numerical integration of the Fermi mass
distribution using the parameters c and a taken from Ref. [40]
and given in Table II. The best fits to elastic scattering cross-
section data (normalized to the Rutherford cross section) for
90,92Zr and 92Mo, obtained from minimization of χ2, are
shown in Figs. 6(a), 7(a), and 8(a), respectively. Differential
cross sections for the excited states, 2+ and 3− are shown,
respectively, in panels (b) and (c) of Figs. 6, 7, and 8 for
90Zr, 92Zr, and 92Mo, respectively. Elastic scattering data for
90Zr were not measured over the full angular range of 5.0◦ to
26.5◦ primarily because elastic scattering measurements for
90Zr have been performed earlier in the angular range of 2.5◦

to 22.5◦ [10]. Elastic scattering data from the present work for
90Zr join smoothly with those measured earlier [10] as shown
in Fig. 6(a).

The optical-model parameters obtained for each nucleus
are presented in Table II. The charge radii (RC), excitation

energies, and transition probabilities (from literature [41,42])
for the 2+ and 3− states used in the present DWBA calculation
are also shown in Table II. Using these B(E2) and B(E3)
values, and the OMPs thus obtained, the angular distributions
for the 2+ and 3− states for each nucleus were calculated within
the same DWBA framework. Good agreement between the
calculated and experimental angular distributions for the 2+
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FIG. 6. (a) Angular distribution of the ratio of the differential
cross sections for elastic scattering to Rutherford scattering for
385 MeVα particles from 90Zr (solid black circles). Solid gray squares
are from earlier work [10] and the solid red line is the optical-model
fit to the data. In (b) and (c), angular distribution of differential cross
sections for the 2+ state and 3− states are shown, where the solid red
lines show the corresponding results of the DWBA calculations (see
text). The rectangular box in (b) represents the 16O contamination
region in the 90Zr target.
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is the optical-model fit to the data. In (b) and (c), angular distribution
of differential cross sections for the 2+ state and 3− states are shown,
where the solid red lines show the corresponding results of the DWBA
calculations (see text).

and 3− states, as shown in panels (b) and (c) of Figs. 6, 7,
and 8 for 90Zr, 92Zr, and 92Mo, respectively, establishes the
appropriateness of the OMPs.

Starting with the transition densities, the real term of the
transition potential was obtained using the computer code
DOLFIN [37], whereas the imaginary term of the transition
potential was obtained from analytical differentiation of the
Woods-Saxon potential multiplied by the corresponding de-
formation length. DWBA cross sections for each excitation
energy (Ex) were obtained for natural parities of multipolarities
from L = 0 to 8. We used transition densities and sum rules
for various multipolarities as described in Refs. [1,35,43].
To determine the uncertainties in aL(Ex), the python im-
plementation EMCEE for the Markov-Chain Monte Carlo
(MCMC) algorithm of Goodman and Weare was employed
[44,45]. The strength of this algorithm lies in its invariance
to certain linear transformations, as discussed in Ref. [44].
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FIG. 8. Same as Fig. 7, but for 92Mo.

Provided that the algorithm runs until independent sampling
is achieved, the resulting projections of the multidimensional
posterior probability distribution onto the parameter axes are
independent of the probability distributions for the other fit
parameters. In short, this invariance renders the resulting
probability distributions insensitive to covariances within the
parameter space, thus allowing for a reliable and statistically
meaningful extraction of parameter uncertainties.

From the resulting probability distributions for the pa-
rameters, the centroid of the peak was quoted as the central
value with the 68% confidence interval quoted as the ±34%
bounds in the parameter range. The probability distributions
are roughly normal, and hence the bounds of all reported un-
certainties should be interpreted as the 1σ confidence intervals
of quantities in question.

The strength distributions are obtained from the
experimentally-determined EWSR fraction (aL) using the
relations provided in Ref. [1]. It should be noted that although
we employed calculated DWBA cross sections up to L = 8
in the MDA, the strengths could be reliably obtained only
up to L = 3 due to the limited angular range. Typical MDA
fits for energy bins of 15, 20, 25, and 30 MeV are shown in
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FIG. 9. ISGMR strength distributions for 90Zr, 92Zr, and 92Mo
[(a), (b), (c), respectively]. The solid line in each panel is the
Lorentzian fit to the data.

Figs. 4 and 5 for 90Zr and 92Mo, respectively, along with the
contributions from the L = 0, 1, 2, and 3 multipoles.

IV. RESULTS AND DISCUSSION

We have extracted strength distributions for L = 0, 1, and 2
over the excitation energy range of 9.5 to 32.5 MeV in all three
nuclei investigated in this work. ISGMR strength distributions,
each consisting of a single and broad peak at around Ex ∼
16.5 MeV, are displayed in Fig. 9. The finite strength at higher
excitation energies has been observed also previously in many
nuclei, including in the Texas A&M work [10,16,17,24,25],
and is attributable to the mimicking of the L = 0 angular
distribution by components of the nuclear continuum from the
three-body channels, such as the forward-peaked knock-out
process wherein protons and neutrons are knocked out by the
incoming α projectiles [32]. The ISGMR strength distributions

are fitted with Lorentzian curves [34]:

σ (E) =
σm

1 +
(

E2 − E2
m

)2
/E2�2

, (6)

where Em and � are the peak energy and width of the
resonance. The Lorentzian curve for each nucleus is shown
by a solid line in Fig. 9. The Lorentzian parameters associated
with the ISGMR (EL=0

m and �L=0) for the three nuclei are very
similar, as shown in Table III.

Three sum rules are generally used to quantify the giant-
resonance strengths [3]: (i) the polarizability sum rule (m−1);
(ii) the energy-weighted sum rule (EWSR, m1); and (iii)
the cubic energy-weighted sum rule (m3), where mk =
∫

Ek
xS(Ex)dEx and S(Ex) is the underlying strength distri-

bution. The ratio of these different sum rules,
√

m3/m1 (in
generalized scaling model) and

√
m1/m−1 (in hydrodynam-

ical model), connects well with the centroid energy (or the
collective frequency) of the compressional modes. Different
moment ratios for the ISGMR strength distributions, calculated
over the Ex range 10–30 MeV are presented in Table III.
The quoted EWSR fractions have been calculated over the
excitation-energy range 10–22 MeV, encompassing the main
ISGMR peak. The quoted uncertainties in %EWSR values are
only statistical and do not include the systematic uncertainties
(up to ∼20%) arising from DWBA calculations, including
those attributable to the choice of OM parameters (see, e.g.,
Ref. [16]). Within the experimental uncertainties, different
moment ratios for the three nuclei investigated in the present
work are also nearly the same. The compressional modulus,
KA, determined within the scaling model (

√
m3/m1) using

Eq. (1) is also observed to be the same (∼195 MeV) for all
three nuclei (see Table III). It should be noted that the %EWSR
values shown here are a bit lower than those presented in
Ref. [30]. This is a consequence of a more accurate accounting
of the IVGDR contributions in the present analysis. The
conclusions presented in that work remain unaffected in every
manner, however. We also note that all three moment ratios
for 92Zr and 92Mo deduced in the TAMU work, also included
in Table III, overlap with those of present work, but the
TAMU values for ISGMR in 90Zr are significantly lower. These
differences are discussed later in the paper.

ISGDR strength distributions, each consisting of two peaks,
one at ∼15 MeV and another at ∼27 MeV, are shown in Fig. 10
for all the three nuclei investigated in the present work. This
bimodal pattern for the ISGDR has been observed in all nuclei
investigated so far in both the RCNP and the TAMU measure-
ments. The nature of the “low-energy” (LE) peak at ∼15 MeV
is not fully understood and has been suggested to correspond
to “toroidal” [46,47] or “vortex” modes [48,49]. The centroid
energy of this LE component of L = 1 strength is independent
of the nuclear incompressibility. The “higher-energy” (HE)
peak at ∼27 MeV corresponds to the 3h̄ω component of the
L = 1 compressional mode. The centroid energy of this HE
component is directly related to the nuclear incompressibility,
KA, through Eq. (2). The Lorentzian parameters of the HE
component of the L = 1 compressional mode, EL=1

m and
�L=1, are presented in Table IV. One can see that, within the
experimental uncertainties, both EL=1

m and �L=1 are nearly the
same for all the three nuclei. Also, except for 92Zr, the peak
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TABLE III. Lorentzian parameters and moment ratios for the ISGMR strength distributions in 90,92Zr and 92Mo, where mk =
∫

Ek
xS(Ex)dEx

is the kth moment of the strength distribution. The results from TAMU (Refs. [24,25]) are provided for comparison.

Nucleus EL=0
m �L=0 EWSR m1/m0

√
m1/m−1

√
m3/m1 KA Reference

(MeV) (MeV) (%) (MeV) (MeV) (MeV) (MeV)

90Zr 16.76 ± 0.12 4.96+0.31
−0.32 74.7 ± 9 19.17+0.21

−0.20 18.65+0.17
−0.17 20.87+0.34

−0.33 191.4 ± 6.1 Present worka

90Zr 17.1 4.4 106 ± 12 17.88+0.13
−0.11 17.58+0.06

−0.04 18.86+0.23
−0.14 TAMUb

92Zr 16.25 ± 0.10 5.33+0.12
−0.20 78.9 ± 7 18.51+0.17

−0.17 17.95+0.15
−0.15 20.32+0.27

−0.27 184.5 ± 4.9 Present work a

92Zr 16.6 4.4 103 ± 12 18.23+0.15
−0.13 17.71+0.09

−0.07 20.09+0.31
−0.22 TAMUb

92Mo 16.85 ± 0.10 4.44+0.26
−0.25 64.2 ± 6 19.49+0.18

−0.17 19.00+0.15
−0.15 21.09+0.27

−0.26 199.8 ± 5.0 Present work a

92Mo 16.8 4.0 107 ± 13 19.62+0.28
−0.19 21.68+0.53

−0.33 TAMUb

aThe moment ratios and EWSRs have been obtained over the Ex ranges 10–30 MeV and 10–22 MeV (comprising the ISGMR peak), respectively.
bThe TAMU work shows two-peak structure for the ISGMR strength distribution. Peak positions and widths (FWHM) correspond to the
Gaussian fits of the low-energy peak. Moment ratios and EWSRs correspond to the Ex range 10–35 MeV.
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FIG. 10. ISGDR strength distributions for 90Zr, 92Zr, and 92Mo
[(a), (b), (c), respectively]. The solid line in each panel is the
two-peak fit to the data. The dashed and dash-dotted lines in each
panel, respectively, represent the “low-energy” and “high-energy”
components of the “bimodal” ISGDR strength distribution.

values for the HE components in the TAMU work, also shown
in Table IV, are not inconsistent with those in the present work.
For 92Zr, however, the HE component of ISGDR in the TAMU
work is ∼2 MeV higher than the other two nuclei; the reasons
for this difference are not readily apparent.

The ISGMR and ISGDR strength distributions for the three
nuclei are overlaid in Figs. 11(a) and 11(b). One can see
that the strength distributions of the three nuclei coincide
with each other within experimental uncertainties for both
the compressional modes, the ISGMR [Fig. 11(a)] and the
HE component of the ISGDR [Fig. 11(b)]. In the higher
excitation energy region (Ex = 20–30 MeV), where the results
in Refs. [23–25] had shown marked deviations for the three
nuclei, the strength distributions for 92Zr and 92Mo observed
in the present work are identical to that in 90Zr, not only for
the ISGMR but also for the ISGDR. The LE component of
the ISGDR, however, shows marked differences for the three
nuclei; in particular, 92Zr shows more LE strength than the
remaining two. This might provide input to the theoretical
studies of “toroidal” [46,47] or “vortex” modes [48,49], which
have not been conclusively established in experiments yet.

The ISGQR strength distributions for the three nuclei, each
consisting of a broad peak at ∼13.5 MeV, are shown in the
Fig. 12, where the solid line in each panel represents the

TABLE IV. Lorentzian parameters for the HE component of the
ISGDR strength distributions in 90,92Zr and 92Mo. The results from
TAMU (Refs. [24,25]) are provided for comparison. The EWSR
fractions are calculated over the Ex range 20–35 MeV. In the TAMU
work, peak positions and widths (FWHM) correspond to Gaussian
fits.

Nucleus EL=1
m �L=1 EWSR Reference

(MeV) (MeV) (%)

90Zr 27.76+0.98
−0.78 11.28+2.42

−2.70 68.7+12.0
−12.0 Present work

90Zr 27.4 ± 0.5 10.1 ± 2.0 49 ± 6 TAMU work
92Zr 27.53+1.04

−0.86 12.09+1.99
−2.59 74.3+13.0

−13.0 Present work
92Zr 30.0 ± 0.7 12.9 ± 2.0 51 ± 7 TAMU work
92Mo 28.16+0.94

−0.82 11.92+2.07
−2.57 65.4+10.0

−11.0 Present work
92Mo 27.6 ± 0.5 10.2 ± 2.0 59 ± 7 TAMU work
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FIG. 11. ISGMR (a) and ISGDR (b) strength distributions for 90Zr
(blue circles), 92Zr (red squares), and 92Mo (green triangles). The solid
line in (a) represents the Lorentzian fit to the data for 90Zr. In (b), the
solid line is the two-peak Lorentzian fit to the data, the dashed and
dash-double-dotted lines, respectively, represent the “low-energy”
and “high-energy” components of the “bimodal” ISGDR strength
distribution for 90Zr (see text).

Lorentzian fit to the data. The fit parameters, EL=2
m and �L=2

are presented in Table V. The EWSR fraction and moment ratio
m1/m0 for each nucleus are determined in the Ex range 10–20
MeV, comprising the full ISGQR peak. The moment ratio
m1/m0 for the three nuclei coincide within the experimental
uncertainties. The EWSR fraction for the ISGQR is obtained
to be ∼100% for all the three nuclei. So, the ISGQR strengths,
although not related to nuclear compressibility, coincide as
well for the three nuclei within the experimental uncertainties.
For this mode, the TAMU results are very similar to those
obtained in this work.

Thus, we observe qualitatively, from the zero degree and
difference spectra, as well as quantitatively, from ISGMR,
ISGDR, and ISGQR strength distributions, that nuclei in-
vestigated in the present work behave in a nearly identical
manner, as far as the collective excitations are concerned. In
fact, there had been no report prior to the results presented
in Refs. [23–25] of any “shell effects” leading to significant
differences between ISGMR energies in nearby nuclei. For
instance, measurements on three Lead isotopes, 204,206,208Pb,
had resulted in very similar ISGMR energies [50]. Further,
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FIG. 12. ISGQR strength distributions for 90Zr, 92Zr, and 92Mo
[(a), (b), (c), respectively]. The solid line in each panel is the
Lorentzian fit to the data.

detailed investigations of the ISGMR over the Sn and Cd
isotopic chains have been performed in recent years [15–17].
Although these nuclei emerged as “soft” in comparison to the
“standard” nuclei, 90Zr and 208Pb, the ISGMR energies varied
quite smoothly over a wide range of the asymmetry parameter
(N − Z)/A [16].

The obvious question is why the present results are so dif-
ferent from those obtained by the Texas A&M group [23–25].
As stated previously in Ref. [30], we believe the answer lies in
the way the background is accounted for in the two approaches.
In the present work, all instrumental background is eliminated
because of the superior optical properties of the Grand Raiden
Spectrometer (see, e.g., Ref. [12] and Fig. 2), leaving only the
physical continuum as part of the excitation-energy spectra. In
the Texas A&M work, an empirical background is subtracted
by assuming that it has the shape of a straight line at high
excitation, joining onto a Fermi shape at low excitation to
model particle threshold effects [51,52]. This process subtracts
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TABLE V. Lorentzian parameters, m1/m0, and EWSR fractions for the ISGQR strength distributions in 90,92Zr and 92Mo. The results from
TAMU (Refs. [24,25]) are provided for comparison.

Nucleus EL=2
m (MeV) �L=2 m1/m0 (MeV) EWSR Reference

90Zr 13.99 ± 0.07 7.44+0.30
−0.28 14.64+0.22

−0.21 107.6 ± 5.0 Present worka

90Zr 14.56 ± 0.20 4.94 ± 0.20 14.09 ± 0.20 92 ± 12 TAMU workb

92Zr 13.75 ± 0.07 7.59+0.32
−0.29 14.52+0.18

−0.18 108.9 ± 5.0 Present worka

92Zr 14.35 ± 0.15 4.8 ± 0.2 14.16 ± 0.21 93 ± 12 TAMU workb

92Mo 13.78 ± 0.07 7.75+0.31
−0.28 14.60+0.18

−0.18 101.1 ± 5.0 Present worka

92Mo 14.51 ± 0.23 4.84 ± 0.35 14.16 ± 0.25 73 ± 13 TAMU worka

am1/m0 and EWSRs are calculated over the Ex range 10–20 MeV (comprising the ISGQR peak).
bm1/m0 and EWSRs are calculated over the Ex range 10–35 MeV. Peak positions and widths (FWHM) in the TAMU work correspond to
Gaussian fits.

the physical continuum as well. It is quite possible, and perhaps
likely, that this background subtraction approach is responsible
for the different ISGMR strengths observed for various nuclei
in their work. Since there is no arbitrariness involved in the
background-subtraction procedure employed in the present
work, it may be argued that our final results are more reliable.

V. SUMMARY

We have investigated the ISGMR, ISGDR, and ISGQR
response in 90,92Zr and 92Mo via inelastic scattering of
385-MeV α particles at extremely forward angles (including
0◦). In contrast with recent reports where significant differ-
ences were observed in the ISGMR strength distributions for
92Zr and 92Mo as compared with that for 90Zr, not only the
ISGMR response of these nuclei but also the ISGDR and
ISGQR responses are found to be practically identical. These

results affirm the standard hydrodynamical picture associated
with collective modes of oscillation, and clearly indicate that
the compression modes ISGMR and ISGDR and, hence, the
nuclear incompressibility, are not influenced by the shell
structure of the nuclei near A ∼ 90.
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