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Abstract

Understanding the relationship between external stimuli and the spiking activity of cortical
populations is a central problem in neuroscience. Dense recurrent connectivity in local
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networks, which is derived in a limit where excitatory and inhibitory synaptic currents pre-
cisely balance on average. However, balanced network theory is not applicable to some bio-
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neurons tend to balance each other in many brain areas. This balance is achieved under a
class of computational models called “balanced networks.” However, previous approaches
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between excitation and inhibition is necessarily broken and the resulting imbalance causes
some stimulus features to be amplified. This “imbalanced amplification” of stimuli can
explain several observations from recordings in mouse somatosensory and visual cortical
circuits and provides fundamental insights into the relationship between connectivity
structure and neural responses in cortical circuits.

Introduction

Information about a sensory stimulus is passed along a hierarchy of neural populations, from
subcortical areas to the cerebral cortex where it propagates through multiple cortical areas and
layers. Within each layer, lateral synaptic connectivity shapes the response to synaptic input
from upstream layers and populations. In a similar manner, lateral connectivity shapes the
response of cortical populations to artificial, optogenetic stimuli. The densely recurrent struc-
ture of local cortical circuits can lead to counter-intuitive response properties [1-5], making it
difficult to predict or interpret a population’s response to natural or artificial stimuli. This
raises the question of whether there are underlying arithmetical principles through which

one can understand the relationship between a local circuit’s connectivity structure and its
response properties.

In principle this relationship could be deduced from detailed computer simulations of the
neurons and synapses that comprise the circuit. In practice, such detailed simulations can be
computationally expensive, depend on a large number of unconstrained physiological parame-
ters, and their complexity can make it difficult to pinpoint mechanisms underlying observed
phenomena. In many cases, however, one is not interested in how the response of each neuron
is related to the detailed connectivity between every pair of neurons. Relevant questions are
often more macroscopic in nature, e.g. “How does increased excitation to population A affect
the average firing rate of neurons in population B?” For such questions, it is sufficient to estab-
lish a relationship between macroscopic connectivity structure and macroscopic response
properties.

One such approach is provided by the mean-field theory of balanced networks [6-10],
which is derived in the limit of a large number of neurons and a resulting precise balance of
strong excitation with strong inhibition. This notion of precise balance implies a simple rela-
tionship between the macroscopic structure of connectivity and firing rates, and balanced
network models naturally produce the asynchronous, irregular spiking activity that is charac-
teristic of cortical recordings [6, 7, 11, 12]. However, classical balanced network theory has
some critical limitations. While cortical circuits do appear to balance excitation with inhibi-
tion, this balance is not always as precise and spike trains are not as asynchronous as the theory
predicts [13-19]. Moreover, precise balance is mathematically impossible under some biologi-
cally relevant connectivity structures [8-10], implying that the classical theory of balanced net-
works is limited in its ability to model the complexity of real cortical circuits.

We show that cortical circuits with structure that is incompatible with balance are suscepti-
ble to an amplification mechanism arising when excitatory-inhibitory balance is broken at the
level of local subpopulations, but maintained at a global level. This mechanism of “imbalanced
amplification” can be quantified by a linear, finite-size correction to the classical mean field
theory of balanced networks that accounts for imperfect balance and local imbalance. Through
several examples, we show that imbalanced amplification explains several experimentally
observed cortical responses to natural and artificial stimuli.
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Results
The arithmetic of imprecise balance in cortical circuits

We begin by reviewing and demonstrating the classical mean-field theory of balanced net-
works and a linear correction to the large network limit that the theory depends on. A typical
cortical neuron receives synaptic projections from thousands of neurons in other cortical lay-
ers, cortical areas or thalamus. These long range projections are largely excitatory and provide
enough excitation for the postsynaptic neuron to spike at a much higher rate than the sparse
spiking typically observed in cortex. The notion that excitation to cortical populations can be
excessively strong has been posed in numerous studies and is typically resolved by accounting
for local, lateral synaptic input that is net-inhibitory and partially cancels the strong, net-excit-
atory external synaptic input [2, 6, 20-23]. Balanced network theory takes this cancellation to
its extreme by considering the limit of large external, feedforward synaptic input that is can-
celed by similarly large local, recurrent synaptic input. In this limit, a linear mean-field analysis
determines population-averaged firing rates in terms of the macroscopic connectivity struc-
ture of the network [6, 7].

To demonstrate these notions, we first simulated a recurrent network of Ny = 4000 excit-
atory (population E) and N; = 1000 inhibitory spiking neurons (population I) receiving synap-
tic connections from an “external” population (X) of Ny = 4000 excitatory neurons modeled as
Poisson processes. Cortical circuits are often probed using optogenetic methods to stimulate
or suppress targeted neuronal sub-populations [24, 25]. As a simple model of optogenetic
stimulation of cortical pyramidal neurons, we added an extra inward current to all neurons in
population E halfway through the simulation (Fig la). Neurons in the local population (E and
I) were modeled using the adaptive exponential integrate-and-fire (AdEx) model, which
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Fig 1. Imprecise balance under optogenetic stimulation. a) Schematic. A population of recurrently connected
excitatory (red) and inhibitory (blue) spiking neuron models receive synaptic input from an external population (X;
green) of Poisson-spiking neurons. Optogenetic stimulation of excitatory neurons was modeled by an extra inward
current to the excitatory population at 5s. b) Spike rasters from 50 randomly selected excitatory (red) and inhibitory
(blue) neurons from recurrent network. ¢) Average firing rate of excitatory (red) and inhibitory (blue) neurons in the
recurrent network from simulations (light solid), from the balanced network approximation (Eq (3); solid dark) and
from the corrected approximation (Eq (4); dashed). d) Mean synaptic currents to 200 randomly selected excitatory
neurons in the recurrent network from external inputs (X; green), from the local population (E + I; purple) and the
total synaptic current (black). Currents are measured in units of the neurons’ rheobase (rheobase/C,, = 10.5 V/s). e)
Mean firing rates plotted against mean input currents to all neurons in populations E and I (gray dots) and a rectified
linear fit to their relationship (black line). f) Mean firing rates from identical simulations without stimulation except
the total number of neurons, N, in the recurrent network was modulated while scaling synaptic weights and
connection probabilities so that € ~ 1/+/N (see Methods). Solid light curves are from simulations, solid dark from Eq
(3), and dashed from Eq (4).

https://doi.org/10.1371/journal.pcbi.1006048.g001
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accurately captures the responses of real cortical neurons [26-28]. Connectivity was random
with each neuron receiving 800 synaptic inputs on average and postsynaptic potential ampli-
tudes between 0.19 and 1.0 mV in amplitude. The recurrent network produced asynchronous,
irregular spiking (Fig 1b), similar to that observed in cortical recordings [11, 21, 29, 30]. Firing
rates in populations E and I were similar in magnitude to those in population X and were
increased by optogenetic stimulation (Fig 1c). As predicted by balanced network theory, local
synaptic input (from E and I combined) was net-inhibitory and approximately canceled the
external input from population X and artificial stimulation combined (Fig 1d).

A review of the mean field theory of balanced networks. To capture the notion that the
net external synaptic input to neurons is strong, we define the small number,

1
Kooy’

where Kgx = pex Nx is the average number of external synaptic projections received by each
neuron in E from all neurons in X, pgx is connection probability, and Jgx is the synaptic
strength of each connection. Specifically, Jiy is the total postsynaptic current induced in a post-
synaptic neuron in E by a single spike in a presynaptic neuron in X. Hence, 1/e quantifies the
synaptic current that would be induced in each neuron in E (on average) if every neuron in X
spiked once simultaneously. For the simulations in Fig la-1e and in Fig 2, € = 0.0027 mV.
Using this convention, the mean synaptic input to each neuron in populations E and I from all
sources can be written in vector form as

1
I=—[Wr+X] (1)
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Fig 2. Imbalanced amplification and suppression under partial optogenetic stimulation. Same as Fig. 2a-d except
the inward current was only provided to 20% of the excitatory neurons, modeling ChR2-expressing pyramidal cells. a)
Schematic. A population of recurrently connected excitatory (red) and inhibitory (blue) spiking neuron models receive
synaptic input from an external population (X; green) of Poisson-spiking neurons. Optogenetic stimulation of
excitatory neurons was modeled by an extra inward current to 20% of the excitatory population at 5s. b) Spike rasters
from 10 randomly selected ChR2-expressing and 40 non-expressing excitatory (red) neurons and 50 inhibitory (blue)
neurons from the recurrent network. ) Average firing rate of ChR2-expressing excitatory neurons from simulations
(light solid) and from the corrected approximation (Eq (4); dashed). d) Mean synaptic currents to 200 randomly
selected ChR2-expressing excitatory neurons from external inputs (X; green), from the local population (E + I; purple)
and the total synaptic current (black). e) Same as ¢, but for non-expressing excitatory neurons (red) and inhibitory
neurons (blue). f) Same as d, but for non-expressing excitatory postsynaptic neurons. g) Same as ¢ and d, but averaged
over all excitatory neurons (expressing and non-expressing). Currents are measured in units of the neurons’ rheobase
(rheobase/C,, = 10.5 V/s). Firing rates predicted by Eq (3) are not shown in ¢ and e because Eq (3) is not applicable to
those cases.

https://doi.org/10.1371/journal.pchi.1006048.9002
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where I = [I; I;]” (superscript T denotes the transpose) is the vector of mean synaptic input to
neurons in each population and similarly for their mean rates, r = [rg 7] T The rescaled exter-
nal synaptic input, X = [Xg Xj] T is given by

s
X = Wyry +

0

where ry is the average rate of neurons in population X and s/€ is the strength of the inward
current induced by optogenetic stimulation (s = 0 when stimulation is off). The recurrent and
feedforward mean-field connectivity matrices are given by

Wgg Wi Wex
W[ ] and WX[ ] (2)

WIE WII WIX

respectively where w,, = Ky, Juu/(Kgx Jex) quantifies the relative number, K, = pa, Ny, and
strength, ], of synaptic connections from population b to a. To achieve moderate firing rates
when e is small, local input, Wr, must be net-inhibitory and partially cancel the strong external
excitation, X, in Eq (1).

Balanced network theory [6, 7] takes this cancellation to its extreme by considering the
limit of large number of neurons, N = Ng + Nj, while scaling connection strengths and proba-
bilities in such a way that ¢ ~ O(1/4/N) — 0. Under this scaling, Eq (1) would seem to imply
that mean synaptic currents diverge in the limit, but this divergence is avoided in balanced net-
works by a precise cancellation between external and recurrent synaptic input. To achieve this
cancellation, firing rates must satisfy the mean-field balance equation,

Wr+X=0

in the large N limit, so that [6-10]

r=—-WIX (3)

Hence, balanced network theory provides a closed form, linear expression for firing rates in
the large network limit. Generally speaking, the firing rate of a neuron depends nonlinearly on
the mean and variance of its input current [22, 31, 32]. Notably, however, the derivation of the
fixed point in Eq (3) did not require us to specify the exact form of this dependence. Instead,
Eq (3) represents the unique fixed point firing rates for which synaptic currents remain
bounded as N — oo. More specifically, if Eq (3) is not satisfied as N — oo then ||I|| — oo
(where || - || is the Euclidean norm). The existence of this fixed point does not guarantee that it
is stable. Precise, general conditions on the accuracy of Eq (3) for spiking network models are
not known and the investigation of such conditions is outside the scope of this study. How-
ever, the approximation tends to be accurate in the N — oo limit whenever all eigenvalues of
W have negative real part, the solution in Eq (3) is strictly positive, and inhibitory synaptic
kinetics are sufficiently fast [6-10, 32, 33]. Indeed, Eq (3) provides a reasonable, but imperfect
approximation to firing rates in our spiking network simulation (Fig 1¢, compare light and
dark solid).

Balanced network theory has some critical limitations. Local cortical circuits are, of course,
finite in size so the N — oo (equivalently e — 0) limit may not be justified. Moreover, excita-
tion and inhibition in cortex may not be as perfectly balanced and spike trains not as asynchro-
nous as predicted by balanced network theory [13-19, 34]. More importantly, under many
biologically relevant connectivity structures, precise cancellation cannot be realized so Eq (3)
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cannot even be applied [8-10]. We next review a simple, linear correction to Eq (4) that par-
tially resolves these issues.

A linear correction to precise balance. A correction to Eq (3) can be obtained by consid-
ering e non-zero, but this requires making assumptions on the relationship between neurons’
input statistics and firing rates. A simple approximation is obtained by assuming that popula-
tion-averaged firing rates, r, depend only on population-averaged mean inputs, I, yielding the
fixed points problem r = f{I) = ([ Wr + X]/e) where fis the population-level f-I curve. When f
is an increasing function over relevant ranges of I, this fixed point equation can be re-written
as

Wr+X = ef ' (r).

Hence, in strongly coupled networks (e small), the shape of f-I curves has a small effect on
steady-state firing rates under such an approximation. Indeed, in the € — 0 limit, the f-I curve
has no effect and firing rates are determined by Eq (3). This conclusion easily generalizes to
the case where falso depends on the average temporal variance of neurons’ inputs.

A simple case of this approximation is obtained by using a rectified linear approximation,
r = g[I], where [-], denotes the positive part. We fit such a function to the relationship
between neurons’ mean synaptic inputs and firing rates from our spiking network simulation
(Fig 1e). Assuming that the average firing rates of all populations are positive, this rectified lin-
ear approximation produces a linear rate model [35] with mean firing rates given by solving
Wr + X = €/gr to obtain

r=[eD—- WX (4)

l /g 0 ]

D= .

0 1/g

The AdEx neuron model used in our simulations has a nonlinear {-I curve (Fig le; gray dots)
and its firing rate depends on all statistics of its input, not just the mean [26, 36]. Nevertheless,
the linear approximation in Eq (4) was accurate in predicting firing rates in our simulations
(Fig Lc, dashed), outperforming the balanced network approximation from Eq (3). This can be
explained by the fact that the balanced approximation in Eq (3) is already somewhat accurate
and the linear approximation in Eq (4) corrects for some of the error introduced by imperfect
balance, even though the true dependence of r on I is nonlinear.

To further investigate the relative accuracy of Eqs (3) and (4), we repeated the spiking
network simulations from Fig la-1d while proportionally scaling the number of neurons
(Ng, Ny, and Ny) in each population and scaling connection weights and probabilities in
such a way that € ~ 1/v/N (see Methods). As predicted by balanced network theory,
excitatory and inhibitory firing rates increased toward the limit in Eq (3) (Fig 1f, compare
light and dark solid lines). The linear correction in Eq (4) tracks this increase in firing rates
and is more accurate than the approximation in Eq (3), particularly for smaller N (Fig 1f,
dashed). It is worth noting that, in applying Eq (4) to obtain the dashed curve in Fig 1f, we
fixed the value of g to the one obtained from the simulation in Fig la-1e. Hence, a single
estimate of the gain yields an accurate approximation even under different parameter

where

values.
The predictive power of Eq (4) in these examples is, of course, limited by the fact that it was
only applied after estimating the gain of the neurons using firing rates obtained in simulations.
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Moreover, highly nonlinear f-I curves could introduce additional error. However, the purpose
of Eq (4) in this work is to provide a first-order approximation to and general understanding
of firing rates in networks under which Eq (3) cannot be applied. For these purposes, Eq (4) is
sufficient.

Imbalanced amplification under partial optogenetic stimulation

We next show that a more realistic model of optogenetic stimulation breaks the classical bal-
anced state, providing a demonstrative and experimentally relevant example of imbalanced
amplification and suppression that explains phenomena observed in recordings from mouse
somatosensory cortex.

Firing rates are increased by stimulating fewer neurons. The model of optogenetic
stimulation considered in Fig 1 is somewhat inaccurate since optogenetic stimulation of
excitatory neurons is often incomplete. For example, only a fraction of cortical pyramidal
neurons express the channelrhodopsin 2 (ChR2) protein targeted in many optogenetic
experiments [3, 24, 37, 38]. To more accurately model optogenetic stimulation, we modified
the example above so the extra inward current was provided to a randomly chosen 20% of
the excitatory neurons (Fig 2a), modeling ChR2-expressing pyramidal cells. This change
produced surprising results. The ChR2-expressing neurons increased their firing rates by a
larger amount than they did when all excitatory neurons received the current (Fig 2b and 2¢;
compare to Fig 1b and 1c). Hence, counterintuitively, stimulating fewer neurons actually
amplifies the effects of stimulation on the targeted cells. In contrast, non-expressing excit-
atory neurons were suppressed during stimulation and inhibitory neurons increased their
rates, but by a smaller amount than they did under complete stimulation (Fig 2e; compare to
Fig 1¢).

Similar effects were observed in experiments by Adesnik and Scanziani [3]. In that study,
pyramidal neurons in layers (L) 2/3 of mouse somatosensory cortex (S1) were stimulated opto-
genetically, but only about 23% of the pyramidal neurons expressed ChR2. During stimulation,
non-expressing L2/3 pyramidal neurons were suppressed and inhibitory synaptic currents
increased, implying an increase in inhibitory neuron firing rates.

To understand these effects, we first extended the mean-field theory above to account for
multiple subpopulations by defining

to be the vector of average firing rates for the ChR2-expressing (exp), non-expressing (nexp)
excitatory neurons and inhibitory (I) neurons. The vector of average input to the network is
again given by Eq (1) where

X=Wyry+ 0],
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and g = 0.2 represents the proportion of neurons that express ChR2.

Importantly, W is singular (i.e., not invertible), so classical balanced network theory fails
for this example since Eq (3) cannot be evaluated. More specifically, it is impossible for I in Eq
(1) to remain finite as € — 0 since there is no vector, r, such that Wr = —X. Intuitively, this
can be understood by noting that expressing and non-expressing excitatory neurons receive
the same local input on average (Fig 2d and 2f, purple), since local connectivity is not specific
to ChR2 expression, but they receive different external input during stimulation (Fig 2d and
2f, green). Therefore, local synaptic input cannot simultaneously cancel the external input
to both sub-populations, so the precise cancellation required by classical balanced network
theory cannot be achieved (Fig 2d and 2f, black). A similar mechanism has been used to
explain a lack of cancellation between positive and negative correlations in balanced networks
[12, 39].

Amplification in the nullspace: A general analysis. We now give a general analysis of
network responses when W is singular. The example of partial optogenetic stimulation is then
considered as a special case. If W is a singular matrix then only vectors, X, that are in the col-
umn space of W admit solutions to Wr + X = 0. The column space of W is defined as the linear
space of all vectors, u, such that u = Wr for some r. The column space of a matrix, W, is the
orthogonal complement of the nullspace of W'. We can therefore decompose

X=X, +X,

where X, = proj y,,r) X is the projection of X onto the nullspace of W' and X, = projcw X
is the projection onto the column space of W. Moreover, note that proj -, Wr = 0 since Wr
is in the column space of W. Therefore, the projection of the total input onto the nullspace of
whis
) . 1 1
Proj ywn)I = Proj vy - [Wr+X] = EXU' (5)

Hence, the projection of the total synaptic input onto the nullspace of W" is O(1/¢) whenever
X has an O(1) component in the nullspace of W”. Note that, despite the 1/ term in Eq (1), the
total synaptic input, I, is O(1) when balance is realized due to cancellation (as in Fig 1d).
Hence, the singularity of W introduces large, O(1/¢) synaptic currents where they would
not occur if W was non-singular. In other words, external input in the nullspace of W’ pro-
duces strong synaptic currents in the network. Importantly, this conclusion does not rely on
any assumptions about neurons’ f-I curves or other properties. This result is a fundamental
property of balanced networks or, more generally, networks receiving strong feedforward
input.

To understand the implications of this result on firing rates in the network, however, we
must specify an f-I curve. We again consider the linear rate approximation quantified by
Eq (4). Importantly, unlike Eq (3) from classical balanced network theory, the approximation
in Eq (4) is applicable to this example because it accounts for imperfect cancellation between
local and external inputs. Specifically, the regularized matrix, eD — W, is invertible so Eq (4)
can be evaluated even though Eq (3) cannot. The resulting firing rate solution from Eq (4)
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agrees well with spiking network simulations (Fig 2c and 2e). Hence, Eq (4) provides an accu-
rate approximation to firing rates in networks to which classical balanced network theory is
not applicable at all.

Eq (4) also provides a concise mathematical quantification of firing rates when W is singu-
lar. Namely, if X, X, ~ O(1) then firing rates can be expanded as

1
r:zr0+rl (6)

where ry is in the nullspace of W and ry, r; ~ O(1). To derive this result, first note that Eq (4)
can be rewritten as

Wr + X = eDr. (7)

If X has components in the nullspace of W then we can project both sides of this equation
onto this nullspace to obtain

proj y(wr)X = € proj yyn Dr.

where we again used the fact that proj y,, -y Wr = 0 since Wr is in the column space of W.
Since X, = proj v, X and D are assumed O(1), this equation is only consistent when

r ~ O(1/€). We can therefore decompose r = (1/€)r, + r; where ry, r, ~ O(1). We next show
that ry is in the nullspace of W. From Eq (7), we have

1 1
W{—r0 —&-rl} +X= eD{—rU —1-1‘1].
€ €

Isolating the O(1/¢) terms gives Wr, = 0 and therefore ry is in the nullspace of W. In sum-
mary, components of external input in the nullspace of W partially break balance to evoke
amplified firing rates in the nullspace of W.

In the special case that W has a one-dimensional nullspace, a more precise characterization
of ry is possible. Let v, be in the nullspace of W with ||v,|| = 1. Note that W also has a one-
dimensional nullspace (since W is a square matrix). Let v, be in the nullspace of W” with
|lv2|| = 1. Since ry is in the nullspace of W, we can write r, = av, for some scalar, a. Now, dot
product both sides of Eq (7) by v, to obtain

v,-X =e¢v, Dr

=V, D[r, + er,]

where we have used that v, - Wr = 0 since v;, is in the nullspace of W7, which is orthogonal to
Wr in the column space of W. Keeping only O(1) terms and making the substitution rq = avy,

we get
v, X
a =
v, - Dv,
so that
v, X
r,=——V,, 8
1= oy Y (8)

yielding a concise expression for the amplified component of firing rates when W has a one-
dimensional nullspace. Note that v, is in the nullspace of W, so this result is consistent with
the more general conclusions above.
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Amplification in the nullspace under partial optogenetic stimulation. For the specific
example of partial optogenetic stimulation considered in Fig 2, the nullspace of W is spanned

byv, = (1/v/2)[1 — 1 0]" and the projection of X onto the nullspace of W is X, = [s/2 — s/2
0]”. The nullspace of W is spanned by v, = (1/1/q? + (1 — 9)*)[1 —q —q 0]". We there-
fore have r = (1/€)ry + r; where Eq (8) gives
l—q
r,=gs| —¢q
0

Hence, ChR2-expressing neurons are amplified and non-expressing neurons are suppressed
by optogenetic stimulation, as observed in simulations. A more precise result is given by
expanding the full approximation from Eq (4) to obtain

l—q q
S
= eS| —q [+00)| q | +00. ©)
0 qc

Here, O(s) is a constant proportional to s, ¢ = |wys/wyy| and rog is the vector of firing rates in
the balanced, € — 0, limit when stimulation is off (s = 0). Specifically, r, is the unique vector
that satisfies Wrog + Wy,x = 0, which is solvable even though W is singular because W rx is in
the column space of W, so balance can be maintained when s = 0.

The gs/e term in Eq (9) quantifies the amplification and suppression observed in simula-
tions: Non-expressing neurons are suppressed by stimulation since —q < 0 and the response of
ChR2-expressing neurons is amplified since 1 — g > 0 and s/e is large. Stimulating fewer excit-
atory neurons (g smaller), increases the rate of the stimulated neurons, as indicated by the
1 — g factor. The O(s) term shows why inhibitory neurons increase their rates by a smaller
amount. In summary, the optogenetically induced suppression observed experimentally by
Adesnik and Scanziani [3] is a generic feature of balanced or strongly coupled networks under
partial stimulation.

Local imbalance with global balance explains intralaminar suppression and interlami-
nar facilitation. Interestingly, despite the break of balance at the level of ChR2-expressing
and non-expressing subpopulations, global balance is maintained in this example. This can be
understood by repeating the mean-field analysis above without partitioning neurons into
ChR2-expressing and non-expressing sub-populations, thereby quantifying the global average
of firing rate of all excitatory neurons. In particular, the average synaptic input, I = [I; I;] ", to
excitatory and inhibitory neurons is given by Eq (1) where W and Wy are as in Eq (2), and

5q
X=W,r,+

0

to account for the fact that only a proportion ¢ of the excitatory neurons receive the inward
current from optogenetic stimulation. In this case, W is non-singular so the balanced solution
in Eq (3) is applicable. Indeed, the average firing rates of all excitatory neurons in our spiking
network simulation is close to the prediction from Eq (3) and even closer to the prediction
from Eq (4) (Fig 2g; compare to Fig 1c). The average feedforward input to all excitatory
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neurons is canceled by net-inhibitory local input (Fig 2h; compare to Fig 1d). Hence, balance
is maintained globally even though the network is imbalanced at the level of ChR2-expressing
and non-expressing populations.

In the same study by Adesnik and Scanziani considered above [3], recordings were made in
L5, which was not directly stimulated optogenetically, but receives synaptic input from L2/3.
Interestingly, despite the fact that most excitatory neurons in L2/3 were suppressed during
stimulation, firing rates in L5 increased.

To model these experiments, we interpreted the recurrent network from Fig 2 as a local
neural population in L2/3, which sends synaptic projections to L5 (Fig 3a). We modeled a neu-
ral population in L5 identically to the L2/3 population, except its feedforward input came from
excitatory neurons in the L2/3 network, instead of from Poisson-spiking neurons. As in exper-
iments [3], L5 neurons increased their firing rates during stimulation (Fig 3b) and approxi-
mate balance was maintained (Fig 3c). This can be understood by noting that, in our model,
L5 receives synaptic input sampled from all excitatory neurons in L2/3. Hence, the feedforward
excitatory current to L5 neurons increases proportionally to the average excitatory firing rates
in L2/3 during stimulation. As we showed above, this average rate increases (Fig 2¢), despite
the fact that most excitatory neurons in L2/3 are suppressed by stimulation. Hence, the combi-
nation of intralaminar suppression and interlaminar facilitation observed during optogenetic
stimulation in experiments [3] results from the fact that the stimulated layer is locally imbal-
anced, but globally balanced during partial stimulation. These conclusions rely on an assump-
tion that synaptic projections to L5 come from both ChR2-expressing and non-expressing
excitatory neurons in L2/3.

Imbalanced amplification of weak stimuli. Sufficiently small € or large s would introduce
negative rates in Eq (9), representing a regime in which non-expressing neurons cease spiking

a Layer 5
b_15
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82) = xR sl
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Fig 3. Interlaminar facilitation despite intralaminar suppression under optogenetic stimulation. a) Multi-layer
network schematic. L2/3 was identical to the recurrent network in Fig 2 and provided external excitatory input to L5,
which had the same internal structure as the L2/3 model. b) Average firing rates of excitatory (red) and inhibitory
(blue) neurons in L5 from simulations (light solid) and from the corrected approximation (Eq (4); dashed). ¢) Mean
synaptic currents to 200 randomly selected excitatory neurons in L5 from external inputs (X; green), from the local

population (E + I; purple) and the total synaptic current (black). Currents are measured in units of the neurons’
rheobase (rheobase/C,, = 10.5 V/s).

https://doi.org/10.1371/journal.pchi.1006048.9003
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and the firing rate of ChR2-expressing neurons saturate at a high value. In this sense, firing
rates do not truly have a O(1/¢) component for € very small. However, smaller values of ¢
allow weak stimuli (small s) to be strongly amplified. Strictly speaking, if one takes s ~ O(e),
then under the linear approximation in Eq (4), partial optogenetic stimulation would have an
O(1) effect on the average firing rate of stimulated and unstimulated subpopulations, but an
O(e) effect on globally averaged firing rates. In practical terms, this means that, in strongly
coupled networks (e small), partial optogenetic stimuli can have a moderate effect on the firing
rates of stimulated neurons while having a negligible effect on the average firing rates of all
excitatory neurons.

To demonstrate this idea, we repeated the simulations from Fig 2 in a network with four
times as many neurons (N = 2 x 10*) where synaptic weights and probabilities were scaled so
that € ~ 1/+/N (as in Fig 1f) and we reduced stimulus strength, s, as well. In this simulation,
ChR2-expressing neurons’ firing rates nearly doubled (Fig 4a) and non-expressing neurons
were noticeably suppressed (Fig 4b). However, the change in the average firing rate of all excit-
atory neurons was nearly imperceptible (Fig 4c) and similarly for the firing rates of inhibitory
neurons (Fig 4b and 4c). As a result, the firing rates in a downstream layer were unnoticeably
modulated during stimulation (Fig 4d; compare to Fig 3). This effect could mask the effects of
optogenetic stimulation in recordings.

Imbalanced amplification with nearly singular connectivity matrices. An apparent lim-
itation of the results above is that they rely on the singularity of the connectivity matrix, W.
Singularity is a fragile property of matrices that arises from structural symmetries. In the exam-
ple above, singularity arises from our implicit assumption that local synaptic connectivity is
independent of whether neurons express ChR2. Even a slight difference in connectivity to or
from ChR2-expressing neurons would make W non-singular so that its nullspace would be

ChR2-expressing ¢ Non-expressing

b
N
==
% 5
®
(o))
£
=
[T

[
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Stimulated
layer

Downstream
layer
Firing rate (Hz) o

0 5 10 "0 5 10
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Fig 4. Imbalanced amplification of weak stimuli. Same simulations as Figs 2 and 3 except with N increased by a
factor of four, € decreased by a factor of two, and a weaker stimulus. a) Schematic. A recurrent network (stimulated
layer), which receives external input from Poisson-spiking neurons (green X) and from partial optogenetic
stimulation, sends excitatory synaptic input to an identical network (downstream layer). b) Average firing rate of
ChR2-expressing excitatory neurons in the stimulated layer from simulations (light solid) and from the corrected
approximation (Eq (4); dashed). c¢) Same as b, but for non-expressing excitatory (red) and inhibitory (blue) neurons in
the stimulated layer. d) Same as b, but averaged over all excitatory neurons in the stimulated layer. e) Same as d, but for
the downstream layer. Mean firing rates from simulations of the stimulated layer changed from 5.8 Hz before
stimulation to 10.0 Hz during stimulation for ChR2-expressing neurons, from 5.9 to 5.1 Hz for non-expressing
excitatory neurons, from 5.9 to 6.1 Hz averaged over all excitatory neurons, and from 7.8 to 8.0 Hz for inhibitory
neurons. Mean firing rates from simulations of the downstream layer changed from 7.2 Hz to 8.1 Hz for excitatory
neurons and from 8.5 Hz to 9.5 Hz for inhibitory neurons.

https://doi.org/10.1371/journal.pcbi.1006048.9004
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empty, rendering Eq (6) vacuous. We now show that Eq (6) and the surrounding analysis natu-
rally extends to connectivity matrices that are approximately singular, with similar overall
conclusions.

A matrix, W, is singular if it has A = 0 as an eigenvalue. A matrix can therefore be consid-
ered approximately singular if it has an eigenvalue with small magnitude. Specifically, let A be
an eigenvalue of W with [A| < 1. Note that A is also an eigenvalue of W”. Now let v be the asso-
ciated eigenvector so that W' v = Av and assume that ||v|| = 1 without loss of generality. Take
the projection of each term in Eq (7) onto the subspace spanned by v to get

proj, [Wr] + proj X = eproj, [Dr].
Now note that proj,[Wr] = A proj, r. Hence,
Aproj r + proj X = eproj [Dr].
If proj, X ~ O(1) and projy[Dr] ~ proj, r then this implies
(2] + €) proj, r ~ proj, X.

Hence,

r= Sro +r,
where § = |A| + e. This generalizes Eq (6) to the case where W is only approximately singular.
In summary, the mechanism of imbalanced amplification is a general property of strongly cou-
pled networks with singular or nearly singular connection matrices.

We next show that networks with connection probabilities that depend on continuous
quantities like distance or tuning preference necessarily have singular or nearly singular con-
nectivity kernels and are therefore naturally susceptible to the amplification and suppression
mechanisms described above.

Imbalanced amplification and suppression in continuously indexed
networks

So far we considered networks with discrete subpopulations. Connectivity in many cortical
circuits depends on continuous quantities like distance in physical or tuning space. To under-
stand how the amplification and suppression mechanisms discussed above extend to such con-
nectivity structures, we next considered a model of a visual cortical circuit. We arranged

2 x 10° AdEx model neurons (80% excitatory and 20% inhibitory) on a square domain, model-
ing a patch of L2/3 in mouse primary visual cortex (V1). Neurons received external input from
a similarly arranged layer of 1.6 x 10° Poisson-spiking neurons, modeling a parallel patch of
L4 (Fig 5a). We additionally assigned a random orientation preference to each neuron, model-
ing the “salt-and-pepper” distribution of orientation preferences in mouse V1. Connectivity
was probabilistic and, as in cortex [40-42], inter- and intralaminar connections were more
numerous between nearby and similarly tuned neurons. Specifically, connection probability
decayed like a Gaussian as a function of distance in physical and orientation space (Fig 5b),
where distance in both spaces was measured using periodic boundaries, i.e. wrapped Gaussians
were used in place of regular Gaussians.

Amplification and suppression in simulations with spatially narrow stimuli. An ori-
ented stimulus localized in the animal’s visual field (Fig 5¢) was modeled by imposing firing
rate profiles in L4 that were peaked at the associated location in physical and tuning space,
again with a Gaussian profile (Fig 5d and 5e). This produced external input to L2/3 that was
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Fig 5. Response properties of a continuously indexed network. a) Network diagram. Poisson spiking neurons in L4 (X) provide
external synaptic input to 2 x 10° recurrently connected excitatory and inhibitory AdEx model neurons (E and I) in L2/3. The spatial
width of synaptic projections from population a = X, E, I is given by f3,. b) Neurons are assigned random orientations and connection
probability also depends on the difference, df, between neurons’ preferred orientation. ¢) An oriented stimulus in the animal’s visual
field. d,e) The location of the stimulus is modeled by firing rates in L4 that are peaked at the location of the stimulus in physical and
orientation space. f,g) Synaptic current to neurons in population E from the external network (green), the local network (purple) and
total (black) as a function distance from the receptive field center and as a function of neurons’ preferred orientation. h,i) Firing rate
profiles of excitatory (red) and inhibitory (blue) neurons in the local network from simulations (light curves), classical balanced network
theory (solid, dark curves; from Eq (13)) and under the linear correction (dashed; from Eq (17)) in physical and orientation space. j-0)
Same as (d-i) except for a smaller visual stimulus, modeled by a narrower spatial firing rate profile in L4. Firing rates from Eq (13) are not
shown in panels n and o because balance cannot be realized and Eq (13) cannot be applied when external input is narrower than
recurrent connectivity (see main text, S1 Text, and [8]).

https://doi.org/10.1371/journal.pcbi.1006048.g005

similarly peaked, but was nearly perfectly canceled by net-inhibitory lateral input (Fig 5f and
5g). Excitatory and inhibitory firing rate profiles in L2/3 were also peaked at the associated
location in physical and tuning space (Fig 5h and 5i), demonstrating that neurons in L2/3 were
appropriately tuned to the stimulus.

A smaller visual stimulus was modeled by shrinking the spatial profile of firing rates in L4
while leaving the orientation-dependence of L4 rates unchanged (Fig 5j and 5k). As above,
synaptic inputs and firing rate profiles were appropriately peaked in physical and orientation
tuning space (Fig 51-50). However, the smaller stimulus produced a surprising change to firing
rates in L2/3. Despite the fact that L2/3 neurons at all locations received less excitation from L4
(Fig 51), peak firing rates in L2/3 increased and a surround suppression dynamic emerged (Fig
5n). Hence, a more localized external input produced an amplification and suppression
dynamic similar to the one observed in our model of optogenetic stimulation (compare to Fig
2). On the other hand, responses in orientation tuning space were mostly unchanged by the
smaller stimulus size (Fig 5m and 50).

Mean-field theory of balance in two-dimensional spatial networks with orientation-tun-
ing-specific connectivity. The mean-field theory of balanced networks was previously
extended to continuously indexed networks in one and two dimensions [8, 12, 43]. We now
review a straightforward extension to two spatial dimensions and one orientation dimension.
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Eq (1) generalizes naturally to
1
I=—Vr+X| (10)

where r(x, 0) = [rg(x, 0) r(x, 6)]” is the vector of mean firing rates of excitatory and inhibitory
L2/3 neurons near spatial coordinates x = (x, y) with preferred orientation near 6, and similarly
for the neurons’ external input, X(x, 0), and total input, I(x, 8). The external input is given by
X = W,ry where rx(x, 0) is the profile of firing rates in L4 The connectivity kernels, WW and
Wy are convolution integral operators defined by

Wep % T + Wy * 17
Wr =

Wy k1, + Wy k1,

and

Wy * Ty
Wyry = .

Wix ¥ I'y

Here, w,(x, 0) is the mean-field connection strength between neurons separated by x in physi-
cal space and 0 in orientation space (see Methods), and [w,, * 1,] (%, 6) denotes circular convo-
lution with respect to x and 6, i.e., convolution with periodic boundaries. These convolution
operators implement low-pass filters in orientation and physical space, capturing the effects of
synaptic divergence and tuning-specific connection probabilities. Similar filters describe feed-
forward connectivity in artificial convolutional neural networks used for image recognition
[44].

Taking e — 0 in Eq (10) shows that that firing rates must satisfy

Wr+X=0. (11)

This is an analogue to Eq (7) for spatial networks. From here, one may be tempted to invert
the integral operator WV to obtain a spatial analogue of Eq (3). However, integral operators are
never invertible [45]. Specifically, since Eq (11) is an integral equation of the first kind, there
necessarily exist external input profiles, X(x, 8), for which Eq (11) does not admit a solution so
that the classical balanced state cannot be realized [8]. This implies that there always exist
inputs that prevent a continuously indexed network from maintaining excitatory-inhibitory
balance. To better understand why this is the case, we follow previous work [8, 12, 43, 46, 47]
in transitioning to the spatial Fourier domain to rewrite Eq (11) as

WT+X=0. (12)

Here, ¥(n, k) = [F,(n, k) 7,(n, k)}T is a Fourier coefficient of r(x, 6) and similarly for

X(n, k) = W(n, k)7, (n, k) where n = (1, n,) is the two-dimensional spatial Fourier mode
and k is the Fourier mode in tuning space. Importantly, the convolution operators above
become ordinary matrices in the Fourier domain. Specifically,

— 1/T/EE i;{/EI
W =

WIE WII
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and

—~ WEX
Wy =
WIX

where w_, (n, k) is a Fourier coefficient of w,(x, 8). Note that going from Eq (11) to Eq (12)
requires that V is a convolution operator and that the boundaries of the network are treated
periodically, i.e., the convolutions are circular.

Solving Eq (12) gives an analogue to Eq (3) for spatial networks in the Fourier domain,

F=-W'X. (13)

This equation gives all Fourier coefficients, r(n, k). However, this solution is only viable when
the inverse transform exists, i.e., when the Fourier series of ¥(n, k) converges, which in turn

requires that || X (n, k) || converges to zero faster than || W (n, k) || as n — 0 and k — 0. More
specifically, ¥(n, k) in Eq (13) must be square-summable. Hence, balance can only be realized
when recurrent connectivity, quantified by W (n, k), has more power at high spatial frequen-
cies than external input, )~((n7 k). In other words, for balance to be realized, external input, X
(x, 0), cannot have “sharper” spatial features than the recurrent connectivity kernels, w,(x, 6)
fora,b=E, I

The use of Fourier series to solve Eq (11) relies on the translation invariance of the integral
operator, W, but the existence of external input profiles for which Eq (11) does not admit a
solution is a more general feature that is true for any integral operators with Hilbert-Schmidt
kernels. Specifically, the convolutions, w,;, * 3, that define YW and W, can be replaced by inte-
grals of the form f wap(u, v)rp(v)dv and the result that there exist X(u) for which Eq (11) does
not admit a solution is still true whenever the kernels, w,;,(u, v) are finite (no delta functions)
and square-integrable [45].

Balance and imbalance in networks with Gaussian-shaped connectivity kernels. A
more intuitive understanding of when and why balance is broken is provided by considering
the Gaussian-shaped connectivity profiles used in our spiking network simulations. This
explanation applies equally to the spatial profile of firing rates and connectivity in physical and
orientation space, so we do not distinguish between the two in this discussion. Similar calcula-
tions were performed previously for spatial networks [8], so we only review the results here
and discuss some of their implications here. Details of the calculations are provided in S1 Text.

When L4 firing rates and all connectivity kernels are Gaussian-shaped, all firing rates and
synaptic input profiles are also Gaussian-shaped in the balanced state (see [8] and S1 Text), so
the analysis can be performed solely in terms of the widths of each of these profiles.

Let 0, be the width of the firing rate profile in population g, ¢, the width of outgoing synap-
tic connections from the presynaptic neurons in population a, and 3, the width of the spatial
profile of synaptic input from population a = X, E, I (Fig 5a, 5d, 5f and 5h). Since L4 is the feed-
forward population in this context, we use X subscripts for L4 and E, I for L2/3 neurons.

Synaptic divergence broadens the profile of synaptic currents so that

=0+ o2 (14)

for a = E, I, X. This is due to the Gaussian shape of firing rates and connectivity, as well as the
convolution that describes the resulting mean-field synaptic inputs (the convolution of a
Gaussian with a Gaussian is Gaussian). For balance to be maintained, feedforward synaptic
input from L4 must be precisely canceled by lateral synaptic input in L2/3. This, in turn,
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requires that
Be = B, = Px-

Combined with Eq (14), this implies that balance requires the widths of firing rate profiles in
L2/3 to satisfy [8]

o= a2

U

(15)

This approximation accurately predicted firing rate profiles in our first spiking network simu-
lation (Fig 5h and 51, solid, dark curves have widths given by Eq (15)). Hence, by Eq (15), the
requirement of cancellation in balanced networks implies that recurrent connectivity sharpens
neurons’ tuning, both in physical and orientation space.

Interestingly, Eq (15) implies that the amount by which excitatory and inhibitory firing rate
profiles are sharpened in balanced networks is determined by the width of their outgoing syn-
aptic projections. Pyramidal neurons in L2/3 of mouse V1 preferentially target similarly tuned
neurons in L2/3, but the tuning of these lateral connection probabilities is much broader than
the tuning of pyramidal neurons’ firing rates [41] (o > 0% in orientation space). This observa-
tion is consistent with Eq (15): Excitatory neuron tuning curves are sharpened precisely
because their outgoing connections are broadly tuned. Hence, sharpening of excitatory neuron
tuning curves in L2/3 is naturally achieved in balanced networks with lateral excitation, with-
out requiring lateral inhibition. Following the same line of reasoning, the broader orientation
tuning of inhibitory neurons [40] (o7 larger) suggests that they project more locally in orienta-
tion tuning space than pyramidal neurons (o; < o in orientation space).

Eq (15) also clarify when and why balanced network theory fails for continuously indexed
networks. If external inputs are sharper than lateral connectivity (8x < ag or fx < ;) in physi-
cal or orientation space, then Eq (15) do not yield solutions for ox or ¢;. In other words, bal-
ance requires that

oy < By and o < By

because Eq (11) does not admit a solution when these inequalities are broken (see [8] and S1
Text). Intuitively, when the inequalities above are broken, recurrent connectivity paints with
too broad a brush to cancel the sharper feedforward input, so balance cannot be realized. As a
result, balanced network theory cannot be applied to the example in Fig 5j-50 with a smaller
visual stimulus.

A linear correction to balance quantifies amplification and suppression in continuously
indexed networks. We next derive a linear correction to Eq (13) that accounts for imperfect
cancellation and, in doing so, gives firing rate approximations where classical balanced net-
work theory fails. Specifically, we generalize the derivation of Eq (4) to continuously indexed
networks. Under this linear approximation, firing rate profiles are given by solving

Wr + X = egr. (16)
This is an integral equation of the second kind, which generically admits firing rate solutions,

r, even when Eq (11) does not [45]. We again transition to the Fourier domain so Eq (16)
becomes

;:Fp_ﬂj”x. (17)

From Eq (17), firing rates, ¥(x, 8), can be computed numerically through an inverse transform
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(the Fourier series over n and k), yielding an accurate approximation to firing rates from spik-
ing network simulations even where classical balanced network theory fails (Fig 5n and 50).
Interestingly, the linear correction is slightly less accurate at predicting firing rates than the
classical theory in Fig 5i. However, the main purpose of the corrected theory is not increased
accuracy, but that it is applicable in situations where the classical theory is not.

The amplification and suppression caused by the smaller visual stimulus can be roughly
explained by the balanced amplification mechanism discussed previously. Since WV is a low-
pass filter, it approximately cancels high frequency components of firing rate profiles. Hence,
high frequency components are in the approximate nullspace of the local connectivity opera-
tor, W, and are therefore amplified by the network through the same mechanism discussed for
discrete networks previously.

A more precise explanation is given by first averaging firing rates over orientation prefer-
ence by setting k = 0 in Eq (17) to give ¥(n) that depends only on spatial frequency, and simi-
larly for X (n) and W(n) The convolution operator, JV, implements a low-pass filter, so W(n)
is O(1) in magnitude at low spatial frequencies and converges to zero at higher frequencies

(large ||n|)). The regularized inverse, [eD — W (n)] ", is therefore O(1) in magnitude at low
frequencies and O(1/¢) at higher frequencies (Fig 6a, purple). When external input, X(x), has

sharp features, X (n) has power at higher spatial frequencies (Fig 6a, green), which are ampli-

fied by the O(1/€) component of [eD — W (n)] ™" while low frequencies remain O(1). The
result is that the magnitude of ¥(n) has a O(1/¢) peak at a non-zero spatial frequency (Fig 6a,
black), introducing a high-amplitude, non-monotonic rate profile (as in Fig 5n; see [47] for a

similar analysis). When X(x) has spatially broad features, X (n) has little power at high spatial
frequencies so that this amplification dynamic is weak or absent (as in Fig 5h). An identical
argument applies in orientation space. In summary, high-frequency components of external
input profiles are transmitted more strongly than low-frequency components in strongly cou-
pled networks, and the cutoft frequency is determined by the width (o or a) of lateral synap-
tic projections.

It is worth noting that the average firing rates (over all orientations and spatial positions)
are given by the zero Fourier coefficient ¥(0, 0). When balance is broken by sharp external
input features, the zero Fourier mode is not affected as long as mean firing rates, r(x, ),

a g b —E c d
ﬁ %‘ 50 — § 50
5] = =
£ o ©
1] ®© ©
% ® 25 > 25
N B
kel - -
2 ﬁ X
50 30 S0 0
s 0 5 10 o O 0.1 0.2 a O 0.1 0.2 0 0.1 0.2
= Spatial frequency L4 rate width (Oy) L4 rate width (O,) L4 rate width (O,)

Fig 6. Spatial filtering of external input and the dependence of suppression on outgoing synaptic projection
width. a) The magnitude of the spatial filter, [¢D — W (n)] ', imposed by recurrent connections (purple), the external
input (X (), green) and the resulting firing rate profile (¥(n), black) as a function of the spatial frequency,

|[n||= v/m? + n?, from the simulation in Fig 5j-50. Magnitude is measured by the Frobenius norm for

[eD — W (n)]™". Curves normalized by their peaks. b) Firing rates of excitatory (red) and inhibitory (blue) neurons
with receptive fields at the center of a grating stimulus plotted as the width of the stimulus increases (represented by
increasing o) using parameters from Fig 5j-50. ¢) Same as b, but the excitatory rate is plotted for different widths of
the excitatory synaptic projection width, ag. d) Same as ¢, but firing rates in L4 are shaped like a disc with radius oy
instead of a Guassian with width parameter oy.

https://doi.org/10.1371/journal.pcbi.1006048.9006
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remain non-zero at all locations and orientations. Hence, sharp input features can break bal-
ance locally without breaking global, network-averaged, balance. This is analogous to the
global balance obtained in the optogenetic example when local balance was broken at the level
of subpopulations (Fig 2).

Implications of imbalanced amplification on receptive field tuning. We next consid-
ered a study by Adesnik et al. [48] in which drifting grating stimuli of varying sizes were pre-
sented to mice while recording from neurons in L2/3 of V1. In that study, pyramidal neurons’
firing rates first increased then decreased as the stimulus size was increased. On the other
hand, somatostatin-expressing (SOM) neuron’s firing rates increased monotonically with
stimulus size. Intracellular recordings combined with optogenetic stimulation in that study
showed that SOM neurons project locally and pyramidal neurons form longer range
projections.

To test our model against these findings, we applied Eq (17) to a network with local inhibi-
tion and longer-range excitation (org > o) with increasing size of a visual stimulus (increasing
0x). Our results are consistent with recordings in Adesnik et al., 2012 [48]: Excitatory neuron
firing rates changed non-monotonically with stimulus size, while inhibitory neuron firing
rates monotonically increased (Fig 6b). The non-monotonic dependence of excitatory firing
rates on stimulus size in Fig 6b is explained by the mechanism of imbalanced amplification.
When oy is sufficiently small, balance is broken so imbalanced amplification introduces a large
peak firing rate surrounded by suppression (as in Fig 5n). However, the total amount of exter-
nal excitation introduced by the stimulus is proportional to the size of the stimulus, so a very
small oy introduces very little excitation and peak firing rates are small. As oy increases, more
excitation is recruited and the network is still imbalanced, which leads to increasingly large
peak firing rates (as in Fig 5n). Once ox becomes large, balance begins to be restored and the
peak excitatory firing rate decreases to moderate values (as in Fig 5h).

The degree to which excitatory neurons suppress depends on the spatial width, o, of lateral
excitatory projections (Fig 6¢) and suppression of inhibitory neurons similarly depends on the
spatial width, oy, of lateral inhibition (not pictured). Specifically, suppression occurs when lat-
eral connectivity is broader than feedforward input (o > By or a; > Bx) because this is when
the balanced solution in Eq (15) disappears. When a sub-population’s lateral connectivity is
more localized than feedforward connectivity from L4 (ay < ax as in the lightest gray curve in
Fig 6¢; or aj < o), that sub-population cannot exhibit suppression since feedforward input
width (% = o + ¢2) is always larger than lateral connectivity, regardless of the stimulus size
(0x).

A similar line of reasoning explains why peak inhibitory neuron firing rates increase
monotonically with stimulus size in Fig 6b. Inhibitory neurons in that example project locally
(07 = ax), so the inequality a; < fx is always satisfied because ff, = /02 + 02 > o, whenever
o7 < ax. Whenever a; < fix, inhibitory firing rates reflect their balanced state values which
increase monotonically with the increase in total excitation induced by a larger stimulus.

Unlike SOM neurons, parvalbumin-expressing (PV) neurons were found to exhibit sup-
pression by Adesnik et al., 2012 [48]. Hence, our theory predicts that PV neurons project more
broadly in space than SOM neurons. Indeed, PV interneurons in L2/3 are primarily basket
cells whose axons project to larger lateral distances than other inhibitory neuron subtypes such
as Martinotti cells that comprise most SOM neurons [49].

We observed a unimodal dependence of firing rate on stimulus size (Fig 6c¢, all curves have
a single peak). However, Rubin, et al. [47] observed a multi-modal, oscillatory dependence of
firing rate on stimulus size in recordings and in a computational model. In that study, the
drifting grating stimuli were disc-shaped with a sharp cutoff of contrast at the edges of the
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disc. Above, we considered a Gaussian-shaped contrast profile with soft edges (Fig 6¢, inset).
Repeating our calculations with a sharp-edged, disc-shaped stimulus (Fig 6d, inset) produced
an oscillatory dependence of firing rate on stimulus size (Fig 6d), as observed by Rubin et al..
This oscillation only arose when lateral synaptic projections were narrower than the stimulus
size (o small). The oscillation results from a Gibbs phenomenon: The sharp edge in the
stimulus produces high-frequency power in X, which passes through the high-pass filter

[eD — W] ' when ay is small.

We next explored the functional consequences of these results on receptive field tuning. We
first considered a disc-shaped grating stimulus (Fig 7a), producing a disc-shaped firing rate
profile in L4 (Fig 7b). Synaptic divergence causes the profile of synaptic input from L4 to L2/3
to be “blurred” at the edges (Fig 7c), as quantified by the low-pass filter, WW,. This illustrates a
fundamental problem in receptive field tuning: Synaptic divergence from one layer to another
implements a low-pass filter that blurs sharp features. This problem is resolved by our observa-
tion above that lateral, recurrent connectivity implements a high-pass filter. If the width of lat-
eral, excitatory connections in L2/3 is similar to that of feedforward connections from L4, the
high-pass filter implemented by the recurrent network cancels the low-pass filter implemented
by feedforward connectivity, effectively implementing a deconvolution that can recover the
sharpness of firing rate profiles in L4 (Fig 7d-7f). Hence, counterintuitively, broader lateral
excitation actually sharpens receptive field tuning. Broadening lateral connections further
increases the sharpness of the firing rate profiles, but introduce oscillatory, Gibbs phenomena
near sharp features (Fig 7f). These points are illustrated more clearly in an example with an
asymmetrically shaped stimulus (Fig 7g-71). Hence, the high-pass filter described above cor-
rects the blurring caused by synaptic divergence between layers in V1.

In summary, imbalanced amplification and linear rate models provide a concise and parsi-
monious theoretical basis for understanding how suppression, amplification and tuning
depends on the profile of neuron’s incoming and outgoing synaptic projections in physical
and orientation tuning space.

L2/3 Rate L2/3 Rate L2/3 Rate
(0g<ay) (a>0a)

= P

Fig 7. Imbalanced amplification and suppression reverse the blurring introduced by interlaminar synaptic
divergence. a) A disc-shaped grating stimulus gives rise to b) a disc-shaped firing rate profile, rx(x), in L4 with slightly
blurred edges (achieved by convolving contrast from a with a Gaussian kernel). ¢) Input, Xx(x), from L4 to excitatory
neurons in L2/3 is blurred by synaptic divergence, which effectively applies a low-pass filter, JV,, to the L4 rates. d)
Excitatory firing rates in L2/3 are sharper than external input when lateral excitation is similar, but smaller, in width
than interlaminar excitation (o = 0.85¢y). €) Same as ¢, but lateral excitation is exactly as broad as interlaminar
excitation (o = ary), which sharpens the edges further, making firing rates in L2/3 similar to those in L4. f) Same as c,
but lateral excitation is broader than interlaminar excitation (o = 1.1ax), which sharpens the edges even further, but
also introduced suppressed regions due to Gibbs phenomena. g-1) Same as a-f, but contrast was determined by the
brightness of a photograph. Horizontal and vertical axes are neurons’ receptive fields.

https://doi.org/10.1371/journal.pchi.1006048.9007

Stimulus L4 Rate Input from L4
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Discussion

We described a theory of amplification in cortical circuits arising from a local imbalance that
occurs when recurrent connectivity structure cannot cancel feedforward input. We showed
that this imbalanced amplification is evoked by optogenetic stimuli in somatosensory cortex
and sensory stimuli in visual cortex, since these stimuli cannot be canceled by the connectivity
structure in those areas. Our theoretical analysis of imbalanced amplification explains several
observations from cortical recordings in those areas.

Even though firing rates in balanced networks in the large N limit do not depend on neu-
rons’ f-I curves (see Eq (3)), quantifying firing rates under imbalanced amplification relies on
a finite size correction that requires an assumption on how firing rates depend on neurons’
input. For simplicity, we used an approximation that assumes populations’ mean firing rates
depend linearly on their average input currents, giving rise to Eqs (4) and (17). In reality, neu-
rons’ firing rates depend nonlinearly on their mean input currents, and also depend on higher
moments of their input currents. However, the salient effects of imbalanced amplification are
not sensitive to our assumption of linearity. For instance, Eq (5), which quantifies the strong
synaptic currents evoked under imbalanced amplification, does not depend on any assump-
tion about neurons’ f-I curves. However, the precise value of the firing rates elicited by this
strong input does depend on neurons’ {-I curves. We found that the linear approximation to f-
I curves in Eqs (4) and (17) performed well at approximating firing rates in our spiking net-
work simulations and also explained several observations from cortical recordings. This may
be partly explained due to the fact that our spiking network simulations used neuron models
that exhibit spike frequency adaptation, which is known to linearize f-I curves [50, 51] and
help networks maintain balance [10]. However, the linear approximation we used cannot
explain some phenomena that rely on thresholding and other nonlinear transfer properties
[47, 52]. The notion of imbalanced amplification extends naturally to models with nonlinear
transfer functions and future work will consider the implications of nonlinearities.

Balanced networks are related to, but distinct from, inhibitory stabilized networks (ISNs)
[2, 47, 53] and stabilized supralinear networks that can transition between ISN and non-ISN
regimes [47]. The primary distinction is that ISNs are defined by moderately strong recurrent
excitation (strong E — E) whereas balanced networks are defined by very strong external, feed-
forward excitation (strong X — E) canceled by similarly strong net-inhibitory recurrent con-
nectivity. Classical balanced networks are necessarily inhibitory stabilized at sufficiently large
N (small €) unless wgg = 0. However, strongly coupled (approximately balanced) networks can
be non-ISN at moderately large N (small €) if wgg is small. Cat V1 is believed to be inhibitory
stabilized, which can be used to explain its surround suppression dynamic [2]. However, evi-
dence from optogenetic and electrophysiological studies, suggests that mouse L2/3 V1 might
not be inhibitory stabilized: Lateral connection probability is small between pyramidal neu-
rons (small wgg) [49], stimulation of PV neurons does not produce the paradoxical effects that
characterize ISNs [54], and modulating pyramidal neuron firing rates only weakly modulates
excitatory synaptic currents in local pyramidal neurons [48, 54]. Nonetheless, pyramidal neu-
rons and PV neurons in mouse V1 exhibit surround suppression [48], which we showed is
explained by imbalanced amplification.

Despite the similarity in their names, the mechanism of imbalanced amplification studied
here is fundamentally different from the mechanism of balanced amplification [55]. First,
imbalanced amplification is related to steady-state firing rates, while balanced amplification is
a dynamical phenomenon. Moreover, balanced amplification is intrinsic to the local, recurrent
circuit: It produces large firing rate transients when local, recurrent inhibition is inefficient at
canceling local, recurrent excitation. Imbalanced amplification, on the other hand, produces
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large steady state firing rates when local, recurrent input is unable to effectively cancel feedfor-
ward, external excitation.

The analysis of our spatially extended network model relied on an assumption of periodic
boundaries in space, which are not biologically realistic, but approximate networks with more
realistic boundary conditions [8]. Without periodic boundary conditions, the integral egs (10),
(11) and (16) are equally valid, but the integrals are defined by regular convolutions in space
instead of circular convolutions. As a result, the spatial Fourier modes do not de-couple, so
Eqs (12), (13) and (17) are no longer valid, though they should still offer a good approximation
when connectivity is much narrower than the the spatial domain [8]. In addition, anisotropic
connectivity statistics, arising for example from tuning dependent connectivity in visual corti-
cal circuits with coherent orientation maps [56], would prevent the integral operator in Eqs
(10), (11) and (16) from being a convolution operator, and therefore preclude the use of Fou-
rier series for the solution. Future work will consider the effects of non-periodic boundaries
and non-convolutional connectivity kernels on spatially extended balanced networks.

We only considered neuron models with current-based synaptic input. In S2 Text, we show
that our numerical results and analysis extend naturally to models with more realistic conduc-
tance-based synapses. The analysis makes use of an approximation that relates a conductance-
based model to a current-based model with similar membrane potential statistics [57-59].

We focused on firing rates, but sensory coding also depends on variability and correlations
in neurons’ spike trains. Our previous work derived the structure of correlated variability in
heterogeneous and spatially extended balanced networks when connectivity structure prevents
positive and negative correlations from cancelling, effectively providing an analogous theory
of imbalanced amplification of correlated variability [12]. Combining those findings with the
theory of steady-state firing rates presented here could yield a more complete theory of neural
coding in cortical circuits and the effects of imbalanced amplification on coding.

Materials and methods

We modeled recurrently connected networks with N neurons, composed of N = 0.8N excit-
atory and N; = 0.2N inhibitory neurons. The recurrent network receives external input from a
network of Nx neurons that drive the recurrent network. The membrane potential of neuron j
from the excitatory (a = E) or inhibitory (a = I) population has Adaptive Exponential inte-
grate-and-fire dynamics,

dve

CMT; =—g,(V—E) +gAexp[(V—V,)/A] + I]f”(t) —-w
daw _

Tw—dt = w.

Whenever Vj“(t) > V., a spike is recorded, the membrane potential is held for a refractory
period 7,.¢then reset to a fixed value V., and w is incremented by B. Neuron model parameters
for all simulations were 7, = C,,/g; = 15ms, E; = -72mV, V= -60mV, Vy, = -15mV, Ay =
1.5mV, V.. = -72mV, T,e¢ = 1lms, 7,, = 150ms and B = C,,,0.267 mV/ms. We write all currents
in terms of C,,,, so C,, can be any constant. Membrane potentials were also bounded below by
Vi, = —100mV. Synaptic input currents were defined by

I(t) = [X7 (1) + R (1)]C, (18)

J

where X?(t) is the feedforward input and R/ (t) the recurrent input to neuron j in population
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a =E, I. The recurrent input was defined by

B0 =T S e

b=EI k=1

where t* is the nth spike time of neuron k in population b = E, I. The external input to the
recurrent network is defined similarly by

Xe(e) = 3OS e - £, (19)

Xk
tn

where ¢* is the nth spike time of neuron k = 1, . . ., Nx in population X. Each coefficient, ].“kb ,

represents the synaptic weight from presynaptic neuron k in population b to postsynaptic
neuron j in population a. For all simulations, we modeled synaptic kinetics using ,(t) =
exp(—t/1p)/Ty for t > 0 where 7z = 8ms, 17 = 4ms, and 7x = 10ms. Note that the integral of 1,(t)
over time is equal to 1 for all three kernels, so the choice of time constant, 7,, does not effect
time-averaged synaptic currents. We used 7; < 75 < Ty to prevent excessive synchronous
events that break the balanced state. While inhibition may be faster than excitation in many
cortical circuits, excitatory neurons are more likely to contact distal dendrites and inhibitory
neurons are more likely to contact the soma [60, 61], which could make inhibition functionally
faster than excitation. In any case, using fast inhibition is common practice in spiking network
simulations with strong or dense connectivity [11, 12, 47, 62, 63] and a complete resolution of
this issue is outside the scope of this study.

In Figs 1,2 and 3 an extra term, S = 2 mV/ms, was added to X (t) for stimulated neurons
during the second half of the simulation to model optogenetic stimulation. We used Ny =
4000, N; = 1000 and Ny = 4000 (so N = 5000) except for Fig 1f where all Nj, values were scaled.
Connections were drawn randomly with connection probabilities pgg = pip = prx = 0.1, pgr =
P = Pex = 0.2. Specifically, for each neuron in presynaptic population b = E, I, X, we sampled
Pap N, postsynaptic targets from population a = E, I randomly and uniformly with replace-
ment. Since outgoing connections were sampled with replacement, some neurons connected
multiple times to other neurons. Synaptic weights were then defined by

W = (# of contacts) x J,,

where Jgp = 0.4mV, Jip =0.83 mV, J;; = Jpr= -1.67 mV, Jgx = J;x = 0.47 mV. This gives postsyn-
aptic potential amplitudes between 0.19 and 1.0 mV. For Figs 1f and 4, the values of ], and the
values of p,;, were each multiplied by (5000/N)"* so that they were unchanged at N = 5000 and
so that € ~ 1/+/N. This is slightly different from the more common practice of fixing small
connection probabilities and scaling J;, like 1/v/N. We instead fixed a relatively dense connec-
tivity at N = 5000 and the network became increasingly sparse and weakly connected at
increased N. Both approaches have the same mean-field (since the mean-field only depends on
the product of p,;, and J,;), but our approach prevents excessively small synaptic weights at
large N and prevents dense connectivity at large N, which is computationally expensive and
susceptible to oscillatory and synchronous spiking.

Spike times in the external population were modeled as independent Poisson processes
with ry = 5 Hz. In Fig 3, external input to the L5 population was created using the spike times
of excitatory neurons from the simulations in Fig 2. Simulations for Fig 4 were identical to
those in Figs 2 and 3 except there were N = 2 x 10 neurons in the L.2/3 model, synaptic weights

to neurons in that population were multiplied by 1/+/2, and connections probabilities were
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also multiplied by 1//2. Hence, in relation to Fig 2, N was increased by a factor of four and e
was halved.

Simulations for Fig 5 used algorithms adapted from previous work [12]. The recurrent net-
work (L2/3) contained N = 2 x 10° AdEx model neurons, Ny = 1.6 x 10° of which were excit-
atory and N; = 4 x 10* inhibitory. Excitatory and inhibitory neurons in 1.2/3 were arranged on
a uniform grid covering the unit square [0, 1] x [0, 1] (arbitrary spatial units). The external
population (L4) contained N = 1.6 x 10° neurons arranged on an identical, parallel square.
Each neuron in each population was assigned a preferred orientation chosen randomly and
uniformly from 0 to 180°. Connections were chosen randomly as above, but connection prob-
abilities depended on the neurons’ distances in physical and orientation tuning space. Specifi-
cally, the connection probability from a neuron in population b = E, I, X at coordinates x = (x1,
X,) to a neuron in population a = E, I at coordinates y = (y;, y,) was

Pu(x—y,d0) = p,G(x —y;,)g(d0/180%; o, )

where d0 is the difference between neurons’ preferred orientation,

1 X, —u2 o2
glusa) = —— > e

Ly —_

is a one-dimensional wrapped Gaussian and G(u; o) = g(u;; @)g(u,; @) is a two dimensional
wrapped Gaussian. The connection probability averaged over all distances is p,, which were
chosen to be the same as in previous figures, p,, = p,; = p,x = 0.1 and p,, = p,; = ppx = 0.2.
As above, outgoing connections were chosen with replacement, so some neurons made multi-
ple contacts onto other neurons. Connection widths in physical space were oy = 0.15 and

o7 = oy = 0.04 (as measured on the unit square). Connection widths in orientation space were
opg=0gge=0.1and axg=0.125 (corresponding to widths of 18" and 22.5° when measured in
degrees). Connection strengths, J,;, were the same as in Figs 1, 2 and 3 except multiplied by a
factor of 1.2. Each neuron in L4 was modeled as a Poisson process with rate given by

ry(x,0) = Ty ry (%) (0)
where x is the location of the neuron, 6 is its preferred orientation,
rxe(X) = ¢+ (1 = 0)G(x — x; 0x)

and
rxfo(e) =¢)+ (1 —¢g([0 - 90]/18005 O-X,{))‘

This models a stimulus with orientation 6, = 0.5 (representing 90°) and centered at spatial
coordinates xy = (0.5, 0.5). The parameters ox and ox ¢ quantify the width of L4 firing rates in
physical and orientation space. For all panels in Fig 5, we used ox 9 = 0.1 (width 18”) and ¢y =
0.75. We used oy = 0.2 for Fig 5d-5i and oy = 0.06 for Fig 5j-50. In both cases, we chose 7,
and c so that the minimum and maximum of ry ,(x) were 10 and 20 Hz respectively.

For the spatially extended network, the connectivity kernels, YW and W,, are defined in
Results where wp(x, 0) = JapNipap(X, 0)/(JexpexNx). The Fourier series in physical and orienta-
tion tuning space is defined by

u(n, k) = // u(x, 0)e =) dxdo

where the triple integral is over the two dimensions of physical space and one dimensional
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orientation space. The Fourier series of the convolution kernels defined above turns
convolution into multiplication in the Fourier domain, from which Eq (10)

gives T = (1/€)[WF + X] where X, W, and W, are defined in Results with

W,(n, k) =w,, exp [_2”2(|n|2°‘z + k2o )]s Wy = W4 (0,0) = Jupoy N, / JexPrx Ny )> and
|n||> = n} + n2. Using the linear approximation, r = gI then gives Eq (17). Firing rates for
dashed curves in Fig 5 and all firing rates in Figs 6 and 7 were obtained by first computing
Eq (17), then inverting the Fourier transform numerically using an inverse fast Fourier
transform. Solid curves in Fig 5 were computed similarly, except using Eq (13) in place of
Eq (17).

All simulations and numerical computations were performed on a MacBook Pro running
0OS X 10.9.5 with a 2.3 GHz Intel Core i7 processor. All simulations were written in a combina-
tion of C and Matlab (Matlab R 2015b, MathWorks). The differential equations defining the
neuron model were solved using a forward Euler method with time step 0.1 ms.

Supporting information

S1 Text. Derivation of firing rates in balanced networks with Gaussian-shaped connectiv-
ity kernels. This supplementary text contains details of the analysis of balanced networks with
connection probabilities that decay like a Gaussian with distance in physical and orientation
space.

(PDF)

S2 Text. Balance and imbalanced amplification in a model with conductance-based synap-
tic and optogenetic inputs. This supplementary text contains simulations and analysis of bal-
ance and imbalanced amplification in a network model with conductance-based synapses.
(PDF)
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