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Abstract

Understanding the relationship between external stimuli and the spiking activity of cortical

populations is a central problem in neuroscience. Dense recurrent connectivity in local

cortical circuits can lead to counterintuitive response properties, raising the question of

whether there are simple arithmetical rules for relating circuits’ connectivity structure to their

response properties. One such arithmetic is provided by the mean field theory of balanced

networks, which is derived in a limit where excitatory and inhibitory synaptic currents pre-

cisely balance on average. However, balanced network theory is not applicable to some bio-

logically relevant connectivity structures. We show that cortical circuits with such structure

are susceptible to an amplification mechanism arising when excitatory-inhibitory balance is

broken at the level of local subpopulations, but maintained at a global level. This amplifica-

tion, which can be quantified by a linear correction to the classical mean field theory of bal-

anced networks, explains several response properties observed in cortical recordings and

provides fundamental insights into the relationship between connectivity structure and neu-

ral responses in cortical circuits.

Author summary

Understanding how the brain represents and processes stimuli requires a quantitative

understanding of how signals propagate through networks of neurons. Developing such

an understanding is made difficult by the dense interconnectivity of neurons, especially in

the cerebral cortex. One approach to quantifying neural processing in the cortex is derived

from observations that excitatory (positive) and inhibitory (negative) interactions between

neurons tend to balance each other in many brain areas. This balance is achieved under a

class of computational models called “balanced networks.” However, previous approaches

to the mathematical analysis of balanced network models is not possible under some bio-

logically relevant connectivity structures. We show that, under these structures, balance
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between excitation and inhibition is necessarily broken and the resulting imbalance causes

some stimulus features to be amplified. This “imbalanced amplification” of stimuli can

explain several observations from recordings in mouse somatosensory and visual cortical

circuits and provides fundamental insights into the relationship between connectivity

structure and neural responses in cortical circuits.

Introduction

Information about a sensory stimulus is passed along a hierarchy of neural populations, from

subcortical areas to the cerebral cortex where it propagates through multiple cortical areas and

layers. Within each layer, lateral synaptic connectivity shapes the response to synaptic input

from upstream layers and populations. In a similar manner, lateral connectivity shapes the

response of cortical populations to artificial, optogenetic stimuli. The densely recurrent struc-

ture of local cortical circuits can lead to counter-intuitive response properties [1–5], making it

difficult to predict or interpret a population’s response to natural or artificial stimuli. This

raises the question of whether there are underlying arithmetical principles through which

one can understand the relationship between a local circuit’s connectivity structure and its

response properties.

In principle this relationship could be deduced from detailed computer simulations of the

neurons and synapses that comprise the circuit. In practice, such detailed simulations can be

computationally expensive, depend on a large number of unconstrained physiological parame-

ters, and their complexity can make it difficult to pinpoint mechanisms underlying observed

phenomena. In many cases, however, one is not interested in how the response of each neuron

is related to the detailed connectivity between every pair of neurons. Relevant questions are

often more macroscopic in nature, e.g. “How does increased excitation to population A affect

the average firing rate of neurons in population B?” For such questions, it is sufficient to estab-

lish a relationship between macroscopic connectivity structure and macroscopic response

properties.

One such approach is provided by the mean-field theory of balanced networks [6–10],

which is derived in the limit of a large number of neurons and a resulting precise balance of

strong excitation with strong inhibition. This notion of precise balance implies a simple rela-

tionship between the macroscopic structure of connectivity and firing rates, and balanced

network models naturally produce the asynchronous, irregular spiking activity that is charac-

teristic of cortical recordings [6, 7, 11, 12]. However, classical balanced network theory has

some critical limitations. While cortical circuits do appear to balance excitation with inhibi-

tion, this balance is not always as precise and spike trains are not as asynchronous as the theory

predicts [13–19]. Moreover, precise balance is mathematically impossible under some biologi-

cally relevant connectivity structures [8–10], implying that the classical theory of balanced net-

works is limited in its ability to model the complexity of real cortical circuits.

We show that cortical circuits with structure that is incompatible with balance are suscepti-

ble to an amplification mechanism arising when excitatory-inhibitory balance is broken at the

level of local subpopulations, but maintained at a global level. This mechanism of “imbalanced

amplification” can be quantified by a linear, finite-size correction to the classical mean field

theory of balanced networks that accounts for imperfect balance and local imbalance. Through

several examples, we show that imbalanced amplification explains several experimentally

observed cortical responses to natural and artificial stimuli.

Imbalanced amplification
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Results

The arithmetic of imprecise balance in cortical circuits

We begin by reviewing and demonstrating the classical mean-field theory of balanced net-

works and a linear correction to the large network limit that the theory depends on. A typical

cortical neuron receives synaptic projections from thousands of neurons in other cortical lay-

ers, cortical areas or thalamus. These long range projections are largely excitatory and provide

enough excitation for the postsynaptic neuron to spike at a much higher rate than the sparse

spiking typically observed in cortex. The notion that excitation to cortical populations can be

excessively strong has been posed in numerous studies and is typically resolved by accounting

for local, lateral synaptic input that is net-inhibitory and partially cancels the strong, net-excit-

atory external synaptic input [2, 6, 20–23]. Balanced network theory takes this cancellation to

its extreme by considering the limit of large external, feedforward synaptic input that is can-

celed by similarly large local, recurrent synaptic input. In this limit, a linear mean-field analysis

determines population-averaged firing rates in terms of the macroscopic connectivity struc-

ture of the network [6, 7].

To demonstrate these notions, we first simulated a recurrent network of NE = 4000 excit-

atory (population E) and NI = 1000 inhibitory spiking neurons (population I) receiving synap-

tic connections from an “external” population (X) of NX = 4000 excitatory neurons modeled as

Poisson processes. Cortical circuits are often probed using optogenetic methods to stimulate

or suppress targeted neuronal sub-populations [24, 25]. As a simple model of optogenetic

stimulation of cortical pyramidal neurons, we added an extra inward current to all neurons in

population E halfway through the simulation (Fig 1a). Neurons in the local population (E and

I) were modeled using the adaptive exponential integrate-and-fire (AdEx) model, which

Fig 1. Imprecise balance under optogenetic stimulation. a) Schematic. A population of recurrently connected

excitatory (red) and inhibitory (blue) spiking neuron models receive synaptic input from an external population (X;

green) of Poisson-spiking neurons. Optogenetic stimulation of excitatory neurons was modeled by an extra inward

current to the excitatory population at 5s. b) Spike rasters from 50 randomly selected excitatory (red) and inhibitory

(blue) neurons from recurrent network. c) Average firing rate of excitatory (red) and inhibitory (blue) neurons in the

recurrent network from simulations (light solid), from the balanced network approximation (Eq (3); solid dark) and

from the corrected approximation (Eq (4); dashed). d) Mean synaptic currents to 200 randomly selected excitatory

neurons in the recurrent network from external inputs (X; green), from the local population (E + I; purple) and the

total synaptic current (black). Currents are measured in units of the neurons’ rheobase (rheobase/Cm = 10.5 V/s). e)

Mean firing rates plotted against mean input currents to all neurons in populations E and I (gray dots) and a rectified

linear fit to their relationship (black line). f) Mean firing rates from identical simulations without stimulation except

the total number of neurons, N, in the recurrent network was modulated while scaling synaptic weights and

connection probabilities so that � � 1=
ffiffiffiffi
N

p
(see Methods). Solid light curves are from simulations, solid dark from Eq

(3), and dashed from Eq (4).

https://doi.org/10.1371/journal.pcbi.1006048.g001
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accurately captures the responses of real cortical neurons [26–28]. Connectivity was random

with each neuron receiving 800 synaptic inputs on average and postsynaptic potential ampli-

tudes between 0.19 and 1.0 mV in amplitude. The recurrent network produced asynchronous,

irregular spiking (Fig 1b), similar to that observed in cortical recordings [11, 21, 29, 30]. Firing

rates in populations E and I were similar in magnitude to those in population X and were

increased by optogenetic stimulation (Fig 1c). As predicted by balanced network theory, local

synaptic input (from E and I combined) was net-inhibitory and approximately canceled the

external input from population X and artificial stimulation combined (Fig 1d).

A review of the mean field theory of balanced networks. To capture the notion that the

net external synaptic input to neurons is strong, we define the small number,

� ¼
1

KEXJEX
;

where KEX = pEX NX is the average number of external synaptic projections received by each

neuron in E from all neurons in X, pEX is connection probability, and JEX is the synaptic

strength of each connection. Specifically, JEX is the total postsynaptic current induced in a post-

synaptic neuron in E by a single spike in a presynaptic neuron in X. Hence, 1/� quantifies the

synaptic current that would be induced in each neuron in E (on average) if every neuron in X
spiked once simultaneously. For the simulations in Fig 1a–1e and in Fig 2, � = 0.0027 mV.

Using this convention, the mean synaptic input to each neuron in populations E and I from all

sources can be written in vector form as

I ¼
1

�
½Wr þ X�: ð1Þ

Fig 2. Imbalanced amplification and suppression under partial optogenetic stimulation. Same as Fig. 2a-d except

the inward current was only provided to 20% of the excitatory neurons, modeling ChR2-expressing pyramidal cells. a)

Schematic. A population of recurrently connected excitatory (red) and inhibitory (blue) spiking neuron models receive

synaptic input from an external population (X; green) of Poisson-spiking neurons. Optogenetic stimulation of

excitatory neurons was modeled by an extra inward current to 20% of the excitatory population at 5s. b) Spike rasters

from 10 randomly selected ChR2-expressing and 40 non-expressing excitatory (red) neurons and 50 inhibitory (blue)

neurons from the recurrent network. c) Average firing rate of ChR2-expressing excitatory neurons from simulations

(light solid) and from the corrected approximation (Eq (4); dashed). d) Mean synaptic currents to 200 randomly

selected ChR2-expressing excitatory neurons from external inputs (X; green), from the local population (E + I; purple)

and the total synaptic current (black). e) Same as c, but for non-expressing excitatory neurons (red) and inhibitory

neurons (blue). f) Same as d, but for non-expressing excitatory postsynaptic neurons. g) Same as c and d, but averaged

over all excitatory neurons (expressing and non-expressing). Currents are measured in units of the neurons’ rheobase

(rheobase/Cm = 10.5 V/s). Firing rates predicted by Eq (3) are not shown in c and e because Eq (3) is not applicable to

those cases.

https://doi.org/10.1371/journal.pcbi.1006048.g002
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where I = [IE II]T (superscript T denotes the transpose) is the vector of mean synaptic input to

neurons in each population and similarly for their mean rates, r = [rE rI]T. The rescaled exter-

nal synaptic input, X = [XE XI]
T, is given by

X ¼ WXrX þ
s

0

" #

:

where rX is the average rate of neurons in population X and s/� is the strength of the inward

current induced by optogenetic stimulation (s = 0 when stimulation is off). The recurrent and

feedforward mean-field connectivity matrices are given by

W ¼
wEE wEI

wIE wII

" #

and WX ¼
wEX

wIX

" #

: ð2Þ

respectively where wab = Kab Jab/(KEX JEX) quantifies the relative number, Kab = pab Nb, and

strength, Jab, of synaptic connections from population b to a. To achieve moderate firing rates

when � is small, local input, Wr, must be net-inhibitory and partially cancel the strong external

excitation, X, in Eq (1).

Balanced network theory [6, 7] takes this cancellation to its extreme by considering the

limit of large number of neurons, N = NE + NI, while scaling connection strengths and proba-

bilities in such a way that � � Oð1=
ffiffiffiffi
N

p
Þ ! 0. Under this scaling, Eq (1) would seem to imply

that mean synaptic currents diverge in the limit, but this divergence is avoided in balanced net-

works by a precise cancellation between external and recurrent synaptic input. To achieve this

cancellation, firing rates must satisfy the mean-field balance equation,

Wr þ X ¼ 0

in the large N limit, so that [6–10]

r ¼ �W�1X: ð3Þ

Hence, balanced network theory provides a closed form, linear expression for firing rates in

the large network limit. Generally speaking, the firing rate of a neuron depends nonlinearly on

the mean and variance of its input current [22, 31, 32]. Notably, however, the derivation of the

fixed point in Eq (3) did not require us to specify the exact form of this dependence. Instead,

Eq (3) represents the unique fixed point firing rates for which synaptic currents remain

bounded as N ! 1. More specifically, if Eq (3) is not satisfied as N ! 1 then kIk ! 1

(where k � k is the Euclidean norm). The existence of this fixed point does not guarantee that it

is stable. Precise, general conditions on the accuracy of Eq (3) for spiking network models are

not known and the investigation of such conditions is outside the scope of this study. How-

ever, the approximation tends to be accurate in the N ! 1 limit whenever all eigenvalues of

W have negative real part, the solution in Eq (3) is strictly positive, and inhibitory synaptic

kinetics are sufficiently fast [6–10, 32, 33]. Indeed, Eq (3) provides a reasonable, but imperfect

approximation to firing rates in our spiking network simulation (Fig 1c, compare light and

dark solid).

Balanced network theory has some critical limitations. Local cortical circuits are, of course,

finite in size so the N ! 1 (equivalently � ! 0) limit may not be justified. Moreover, excita-

tion and inhibition in cortex may not be as perfectly balanced and spike trains not as asynchro-

nous as predicted by balanced network theory [13–19, 34]. More importantly, under many

biologically relevant connectivity structures, precise cancellation cannot be realized so Eq (3)

Imbalanced amplification
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cannot even be applied [8–10]. We next review a simple, linear correction to Eq (4) that par-

tially resolves these issues.

A linear correction to precise balance. A correction to Eq (3) can be obtained by consid-

ering � non-zero, but this requires making assumptions on the relationship between neurons’

input statistics and firing rates. A simple approximation is obtained by assuming that popula-

tion-averaged firing rates, r, depend only on population-averaged mean inputs, I, yielding the

fixed points problem r = f(I) = f([Wr + X]/�) where f is the population-level f-I curve. When f
is an increasing function over relevant ranges of I, this fixed point equation can be re-written

as

Wr þ X ¼ �f �1ðrÞ:

Hence, in strongly coupled networks (� small), the shape of f-I curves has a small effect on

steady-state firing rates under such an approximation. Indeed, in the � ! 0 limit, the f-I curve

has no effect and firing rates are determined by Eq (3). This conclusion easily generalizes to

the case where f also depends on the average temporal variance of neurons’ inputs.

A simple case of this approximation is obtained by using a rectified linear approximation,

r = g[I]+ where [�]+ denotes the positive part. We fit such a function to the relationship

between neurons’ mean synaptic inputs and firing rates from our spiking network simulation

(Fig 1e). Assuming that the average firing rates of all populations are positive, this rectified lin-

ear approximation produces a linear rate model [35] with mean firing rates given by solving

Wr + X = �/g r to obtain

r ¼ ½�D � W�
�1

X ð4Þ

where

D ¼
1=g 0

0 1=g

" #

:

The AdEx neuron model used in our simulations has a nonlinear f-I curve (Fig 1e; gray dots)

and its firing rate depends on all statistics of its input, not just the mean [26, 36]. Nevertheless,

the linear approximation in Eq (4) was accurate in predicting firing rates in our simulations

(Fig 1c, dashed), outperforming the balanced network approximation from Eq (3). This can be

explained by the fact that the balanced approximation in Eq (3) is already somewhat accurate

and the linear approximation in Eq (4) corrects for some of the error introduced by imperfect

balance, even though the true dependence of r on I is nonlinear.

To further investigate the relative accuracy of Eqs (3) and (4), we repeated the spiking

network simulations from Fig 1a–1d while proportionally scaling the number of neurons

(NE, NI, and NX) in each population and scaling connection weights and probabilities in

such a way that � � 1=
ffiffiffiffi
N

p
(see Methods). As predicted by balanced network theory,

excitatory and inhibitory firing rates increased toward the limit in Eq (3) (Fig 1f, compare

light and dark solid lines). The linear correction in Eq (4) tracks this increase in firing rates

and is more accurate than the approximation in Eq (3), particularly for smaller N (Fig 1f,

dashed). It is worth noting that, in applying Eq (4) to obtain the dashed curve in Fig 1f, we

fixed the value of g to the one obtained from the simulation in Fig 1a–1e. Hence, a single

estimate of the gain yields an accurate approximation even under different parameter

values.

The predictive power of Eq (4) in these examples is, of course, limited by the fact that it was

only applied after estimating the gain of the neurons using firing rates obtained in simulations.

Imbalanced amplification
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Moreover, highly nonlinear f-I curves could introduce additional error. However, the purpose

of Eq (4) in this work is to provide a first-order approximation to and general understanding

of firing rates in networks under which Eq (3) cannot be applied. For these purposes, Eq (4) is

sufficient.

Imbalanced amplification under partial optogenetic stimulation

We next show that a more realistic model of optogenetic stimulation breaks the classical bal-

anced state, providing a demonstrative and experimentally relevant example of imbalanced

amplification and suppression that explains phenomena observed in recordings from mouse

somatosensory cortex.

Firing rates are increased by stimulating fewer neurons. The model of optogenetic

stimulation considered in Fig 1 is somewhat inaccurate since optogenetic stimulation of

excitatory neurons is often incomplete. For example, only a fraction of cortical pyramidal

neurons express the channelrhodopsin 2 (ChR2) protein targeted in many optogenetic

experiments [3, 24, 37, 38]. To more accurately model optogenetic stimulation, we modified

the example above so the extra inward current was provided to a randomly chosen 20% of

the excitatory neurons (Fig 2a), modeling ChR2-expressing pyramidal cells. This change

produced surprising results. The ChR2-expressing neurons increased their firing rates by a

larger amount than they did when all excitatory neurons received the current (Fig 2b and 2c;

compare to Fig 1b and 1c). Hence, counterintuitively, stimulating fewer neurons actually

amplifies the effects of stimulation on the targeted cells. In contrast, non-expressing excit-

atory neurons were suppressed during stimulation and inhibitory neurons increased their

rates, but by a smaller amount than they did under complete stimulation (Fig 2e; compare to

Fig 1c).

Similar effects were observed in experiments by Adesnik and Scanziani [3]. In that study,

pyramidal neurons in layers (L) 2/3 of mouse somatosensory cortex (S1) were stimulated opto-

genetically, but only about 23% of the pyramidal neurons expressed ChR2. During stimulation,

non-expressing L2/3 pyramidal neurons were suppressed and inhibitory synaptic currents

increased, implying an increase in inhibitory neuron firing rates.

To understand these effects, we first extended the mean-field theory above to account for

multiple subpopulations by defining

r ¼

rexp

rnexp

rI

2

6
6
6
4

3

7
7
7
5

to be the vector of average firing rates for the ChR2-expressing (exp), non-expressing (nexp)

excitatory neurons and inhibitory (I) neurons. The vector of average input to the network is

again given by Eq (1) where

X ¼ WXrX þ

s

0

0

2

6
6
6
4

3

7
7
7
5

;
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WX = [wEX wEX wIX]T,

W ¼

qwEE ð1 � qÞwEE wEI

qwEE ð1 � qÞwEE wEI

qwIE ð1 � qÞwIE wII

2

6
6
6
4

3

7
7
7
5

and q = 0.2 represents the proportion of neurons that express ChR2.

Importantly, W is singular (i.e., not invertible), so classical balanced network theory fails

for this example since Eq (3) cannot be evaluated. More specifically, it is impossible for I in Eq

(1) to remain finite as � ! 0 since there is no vector, r, such that Wr = −X. Intuitively, this

can be understood by noting that expressing and non-expressing excitatory neurons receive

the same local input on average (Fig 2d and 2f, purple), since local connectivity is not specific

to ChR2 expression, but they receive different external input during stimulation (Fig 2d and

2f, green). Therefore, local synaptic input cannot simultaneously cancel the external input

to both sub-populations, so the precise cancellation required by classical balanced network

theory cannot be achieved (Fig 2d and 2f, black). A similar mechanism has been used to

explain a lack of cancellation between positive and negative correlations in balanced networks

[12, 39].

Amplification in the nullspace: A general analysis. We now give a general analysis of

network responses when W is singular. The example of partial optogenetic stimulation is then

considered as a special case. If W is a singular matrix then only vectors, X, that are in the col-

umn space of W admit solutions to Wr + X = 0. The column space of W is defined as the linear

space of all vectors, u, such that u = Wr for some r. The column space of a matrix, W, is the

orthogonal complement of the nullspace of WT. We can therefore decompose

X ¼ X0 þ X1

where X0 ¼ proj NðWT Þ X is the projection of X onto the nullspace of WT and X1 = projC(W) X

is the projection onto the column space of W. Moreover, note that proj NðWT ÞWr ¼ 0 since Wr

is in the column space of W. Therefore, the projection of the total input onto the nullspace of

WT is

proj NðWT ÞI ¼ proj NðWT Þ

1

�
½Wr þ X� ¼

1

�
X0: ð5Þ

Hence, the projection of the total synaptic input onto the nullspace of WT is Oð1=�Þ whenever

X has an Oð1Þ component in the nullspace of WT. Note that, despite the 1/� term in Eq (1), the

total synaptic input, I, is Oð1Þ when balance is realized due to cancellation (as in Fig 1d).

Hence, the singularity of W introduces large, Oð1=�Þ synaptic currents where they would

not occur if W was non-singular. In other words, external input in the nullspace of WT pro-

duces strong synaptic currents in the network. Importantly, this conclusion does not rely on

any assumptions about neurons’ f-I curves or other properties. This result is a fundamental

property of balanced networks or, more generally, networks receiving strong feedforward

input.

To understand the implications of this result on firing rates in the network, however, we

must specify an f-I curve. We again consider the linear rate approximation quantified by

Eq (4). Importantly, unlike Eq (3) from classical balanced network theory, the approximation

in Eq (4) is applicable to this example because it accounts for imperfect cancellation between

local and external inputs. Specifically, the regularized matrix, �D −W, is invertible so Eq (4)

can be evaluated even though Eq (3) cannot. The resulting firing rate solution from Eq (4)

Imbalanced amplification
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agrees well with spiking network simulations (Fig 2c and 2e). Hence, Eq (4) provides an accu-

rate approximation to firing rates in networks to which classical balanced network theory is

not applicable at all.

Eq (4) also provides a concise mathematical quantification of firing rates when W is singu-

lar. Namely, if X0, X1 � Oð1Þ then firing rates can be expanded as

r ¼
1

�
r0 þ r1

ð6Þ

where r0 is in the nullspace of W and r0, r1 � Oð1Þ. To derive this result, first note that Eq (4)

can be rewritten as

Wr þ X ¼ �Dr: ð7Þ

If X has components in the nullspace of WT then we can project both sides of this equation

onto this nullspace to obtain

proj NðWT ÞX ¼ � proj NðWT ÞDr:

where we again used the fact that proj NðWT ÞWr ¼ 0 since Wr is in the column space of W.

Since X0 ¼ proj NðWT ÞX and D are assumed Oð1Þ, this equation is only consistent when

r � Oð1=�Þ. We can therefore decompose r = (1/�)r0 + r1 where r0, r1 � Oð1Þ. We next show

that r0 is in the nullspace of W. From Eq (7), we have

W
1

�
r0 þ r1

� �

þ X ¼ �D
1

�
r0 þ r1

� �

:

Isolating the Oð1=�Þ terms gives Wr0 = 0 and therefore r0 is in the nullspace of W. In sum-

mary, components of external input in the nullspace of WT partially break balance to evoke

amplified firing rates in the nullspace of W.

In the special case that W has a one-dimensional nullspace, a more precise characterization

of r0 is possible. Let v0 be in the nullspace of W with kv0k = 1. Note that WT also has a one-

dimensional nullspace (since W is a square matrix). Let v2 be in the nullspace of WT with

kv2k = 1. Since r0 is in the nullspace of W, we can write r0 = av0 for some scalar, a. Now, dot

product both sides of Eq (7) by v2 to obtain

v2 � X ¼ �v2 � Dr

¼ v2 � D½r0 þ �r1�

where we have used that v2 � Wr = 0 since v2 is in the nullspace of WT, which is orthogonal to

Wr in the column space of W. Keeping only Oð1Þ terms and making the substitution r0 = av0,

we get

a ¼
v2 � X
v2 � Dv0

so that

r0 ¼
v2 � X
v2 � Dv0

v0; ð8Þ

yielding a concise expression for the amplified component of firing rates when W has a one-

dimensional nullspace. Note that v0 is in the nullspace of W, so this result is consistent with

the more general conclusions above.
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Amplification in the nullspace under partial optogenetic stimulation. For the specific

example of partial optogenetic stimulation considered in Fig 2, the nullspace of WT is spanned

by v2 ¼ ð1=
ffiffiffi
2

p
Þ½1 � 1 0�

T
and the projection of X onto the nullspace of WT is X0 = [s/2 − s/2

0]T. The nullspace of W is spanned by v0 ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ ð1 � qÞ
2

q

Þ½1 � q � q 0�
T
. We there-

fore have r = (1/�)r0 + r1 where Eq (8) gives

r0 ¼ gs

1 � q

�q

0

2

6
6
6
4

3

7
7
7
5

:

Hence, ChR2-expressing neurons are amplified and non-expressing neurons are suppressed

by optogenetic stimulation, as observed in simulations. A more precise result is given by

expanding the full approximation from Eq (4) to obtain

ron ¼ roff þ
gs
�

1 � q

�q

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ OðsÞ

q

q

qc

2

6
6
6
6
6
4

3

7
7
7
7
7
5

þ Oð�Þ: ð9Þ

Here, OðsÞ is a constant proportional to s, c = |wIE/wII| and roff is the vector of firing rates in

the balanced, � ! 0, limit when stimulation is off (s = 0). Specifically, roff is the unique vector

that satisfies Wroff + WXrX = 0, which is solvable even though W is singular because WX rX is in

the column space of W, so balance can be maintained when s = 0.

The gs/� term in Eq (9) quantifies the amplification and suppression observed in simula-

tions: Non-expressing neurons are suppressed by stimulation since −q < 0 and the response of

ChR2-expressing neurons is amplified since 1 − q > 0 and s/� is large. Stimulating fewer excit-

atory neurons (q smaller), increases the rate of the stimulated neurons, as indicated by the

1 − q factor. The OðsÞ term shows why inhibitory neurons increase their rates by a smaller

amount. In summary, the optogenetically induced suppression observed experimentally by

Adesnik and Scanziani [3] is a generic feature of balanced or strongly coupled networks under

partial stimulation.

Local imbalance with global balance explains intralaminar suppression and interlami-

nar facilitation. Interestingly, despite the break of balance at the level of ChR2-expressing

and non-expressing subpopulations, global balance is maintained in this example. This can be

understood by repeating the mean-field analysis above without partitioning neurons into

ChR2-expressing and non-expressing sub-populations, thereby quantifying the global average

of firing rate of all excitatory neurons. In particular, the average synaptic input, I = [IE II]T, to

excitatory and inhibitory neurons is given by Eq (1) where W and WX are as in Eq (2), and

X ¼ WXrX þ
sq

0

" #

to account for the fact that only a proportion q of the excitatory neurons receive the inward

current from optogenetic stimulation. In this case, W is non-singular so the balanced solution

in Eq (3) is applicable. Indeed, the average firing rates of all excitatory neurons in our spiking

network simulation is close to the prediction from Eq (3) and even closer to the prediction

from Eq (4) (Fig 2g; compare to Fig 1c). The average feedforward input to all excitatory
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neurons is canceled by net-inhibitory local input (Fig 2h; compare to Fig 1d). Hence, balance

is maintained globally even though the network is imbalanced at the level of ChR2-expressing

and non-expressing populations.

In the same study by Adesnik and Scanziani considered above [3], recordings were made in

L5, which was not directly stimulated optogenetically, but receives synaptic input from L2/3.

Interestingly, despite the fact that most excitatory neurons in L2/3 were suppressed during

stimulation, firing rates in L5 increased.

To model these experiments, we interpreted the recurrent network from Fig 2 as a local

neural population in L2/3, which sends synaptic projections to L5 (Fig 3a). We modeled a neu-

ral population in L5 identically to the L2/3 population, except its feedforward input came from

excitatory neurons in the L2/3 network, instead of from Poisson-spiking neurons. As in exper-

iments [3], L5 neurons increased their firing rates during stimulation (Fig 3b) and approxi-

mate balance was maintained (Fig 3c). This can be understood by noting that, in our model,

L5 receives synaptic input sampled from all excitatory neurons in L2/3. Hence, the feedforward

excitatory current to L5 neurons increases proportionally to the average excitatory firing rates

in L2/3 during stimulation. As we showed above, this average rate increases (Fig 2e), despite

the fact that most excitatory neurons in L2/3 are suppressed by stimulation. Hence, the combi-

nation of intralaminar suppression and interlaminar facilitation observed during optogenetic

stimulation in experiments [3] results from the fact that the stimulated layer is locally imbal-

anced, but globally balanced during partial stimulation. These conclusions rely on an assump-

tion that synaptic projections to L5 come from both ChR2-expressing and non-expressing

excitatory neurons in L2/3.

Imbalanced amplification of weak stimuli. Sufficiently small � or large s would introduce

negative rates in Eq (9), representing a regime in which non-expressing neurons cease spiking

Fig 3. Interlaminar facilitation despite intralaminar suppression under optogenetic stimulation. a) Multi-layer

network schematic. L2/3 was identical to the recurrent network in Fig 2 and provided external excitatory input to L5,

which had the same internal structure as the L2/3 model. b) Average firing rates of excitatory (red) and inhibitory

(blue) neurons in L5 from simulations (light solid) and from the corrected approximation (Eq (4); dashed). c) Mean

synaptic currents to 200 randomly selected excitatory neurons in L5 from external inputs (X; green), from the local

population (E + I; purple) and the total synaptic current (black). Currents are measured in units of the neurons’

rheobase (rheobase/Cm = 10.5 V/s).

https://doi.org/10.1371/journal.pcbi.1006048.g003
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and the firing rate of ChR2-expressing neurons saturate at a high value. In this sense, firing

rates do not truly have a Oð1=�Þ component for � very small. However, smaller values of �

allow weak stimuli (small s) to be strongly amplified. Strictly speaking, if one takes s � Oð�Þ,

then under the linear approximation in Eq (4), partial optogenetic stimulation would have an

Oð1Þ effect on the average firing rate of stimulated and unstimulated subpopulations, but an

Oð�Þ effect on globally averaged firing rates. In practical terms, this means that, in strongly

coupled networks (� small), partial optogenetic stimuli can have a moderate effect on the firing

rates of stimulated neurons while having a negligible effect on the average firing rates of all

excitatory neurons.

To demonstrate this idea, we repeated the simulations from Fig 2 in a network with four

times as many neurons (N = 2 × 104) where synaptic weights and probabilities were scaled so

that � � 1=
ffiffiffiffi
N

p
(as in Fig 1f) and we reduced stimulus strength, s, as well. In this simulation,

ChR2-expressing neurons’ firing rates nearly doubled (Fig 4a) and non-expressing neurons

were noticeably suppressed (Fig 4b). However, the change in the average firing rate of all excit-

atory neurons was nearly imperceptible (Fig 4c) and similarly for the firing rates of inhibitory

neurons (Fig 4b and 4c). As a result, the firing rates in a downstream layer were unnoticeably

modulated during stimulation (Fig 4d; compare to Fig 3). This effect could mask the effects of

optogenetic stimulation in recordings.

Imbalanced amplification with nearly singular connectivity matrices. An apparent lim-

itation of the results above is that they rely on the singularity of the connectivity matrix, W.

Singularity is a fragile property of matrices that arises from structural symmetries. In the exam-

ple above, singularity arises from our implicit assumption that local synaptic connectivity is

independent of whether neurons express ChR2. Even a slight difference in connectivity to or

from ChR2-expressing neurons would make W non-singular so that its nullspace would be

Fig 4. Imbalanced amplification of weak stimuli. Same simulations as Figs 2 and 3 except with N increased by a

factor of four, � decreased by a factor of two, and a weaker stimulus. a) Schematic. A recurrent network (stimulated

layer), which receives external input from Poisson-spiking neurons (green X) and from partial optogenetic

stimulation, sends excitatory synaptic input to an identical network (downstream layer). b) Average firing rate of

ChR2-expressing excitatory neurons in the stimulated layer from simulations (light solid) and from the corrected

approximation (Eq (4); dashed). c) Same as b, but for non-expressing excitatory (red) and inhibitory (blue) neurons in

the stimulated layer. d) Same as b, but averaged over all excitatory neurons in the stimulated layer. e) Same as d, but for

the downstream layer. Mean firing rates from simulations of the stimulated layer changed from 5.8 Hz before

stimulation to 10.0 Hz during stimulation for ChR2-expressing neurons, from 5.9 to 5.1 Hz for non-expressing

excitatory neurons, from 5.9 to 6.1 Hz averaged over all excitatory neurons, and from 7.8 to 8.0 Hz for inhibitory

neurons. Mean firing rates from simulations of the downstream layer changed from 7.2 Hz to 8.1 Hz for excitatory

neurons and from 8.5 Hz to 9.5 Hz for inhibitory neurons.

https://doi.org/10.1371/journal.pcbi.1006048.g004
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empty, rendering Eq (6) vacuous. We now show that Eq (6) and the surrounding analysis natu-

rally extends to connectivity matrices that are approximately singular, with similar overall

conclusions.

A matrix, W, is singular if it has λ = 0 as an eigenvalue. A matrix can therefore be consid-

ered approximately singular if it has an eigenvalue with small magnitude. Specifically, let λ be

an eigenvalue of W with |λ| � 1. Note that λ is also an eigenvalue of WT. Now let v be the asso-

ciated eigenvector so that WT v = λv and assume that kvk = 1 without loss of generality. Take

the projection of each term in Eq (7) onto the subspace spanned by v to get

proj v½Wr� þ proj vX ¼ �proj v½Dr�:

Now note that projv[Wr] = λ projv r. Hence,

l proj vr þ proj vX ¼ � proj v½Dr�:

If projv X � Oð1Þ and projv[Dr] * projv r then this implies

ðjlj þ �Þprojv r � projv X:

Hence,

r ¼
1

d
r0 þ r1

where δ = |λ| + �. This generalizes Eq (6) to the case where W is only approximately singular.

In summary, the mechanism of imbalanced amplification is a general property of strongly cou-

pled networks with singular or nearly singular connection matrices.

We next show that networks with connection probabilities that depend on continuous

quantities like distance or tuning preference necessarily have singular or nearly singular con-

nectivity kernels and are therefore naturally susceptible to the amplification and suppression

mechanisms described above.

Imbalanced amplification and suppression in continuously indexed

networks

So far we considered networks with discrete subpopulations. Connectivity in many cortical

circuits depends on continuous quantities like distance in physical or tuning space. To under-

stand how the amplification and suppression mechanisms discussed above extend to such con-

nectivity structures, we next considered a model of a visual cortical circuit. We arranged

2 × 105 AdEx model neurons (80% excitatory and 20% inhibitory) on a square domain, model-

ing a patch of L2/3 in mouse primary visual cortex (V1). Neurons received external input from

a similarly arranged layer of 1.6 × 105 Poisson-spiking neurons, modeling a parallel patch of

L4 (Fig 5a). We additionally assigned a random orientation preference to each neuron, model-

ing the “salt-and-pepper” distribution of orientation preferences in mouse V1. Connectivity

was probabilistic and, as in cortex [40–42], inter- and intralaminar connections were more

numerous between nearby and similarly tuned neurons. Specifically, connection probability

decayed like a Gaussian as a function of distance in physical and orientation space (Fig 5b),

where distance in both spaces was measured using periodic boundaries, i.e. wrapped Gaussians

were used in place of regular Gaussians.

Amplification and suppression in simulations with spatially narrow stimuli. An ori-

ented stimulus localized in the animal’s visual field (Fig 5c) was modeled by imposing firing

rate profiles in L4 that were peaked at the associated location in physical and tuning space,

again with a Gaussian profile (Fig 5d and 5e). This produced external input to L2/3 that was
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similarly peaked, but was nearly perfectly canceled by net-inhibitory lateral input (Fig 5f and

5g). Excitatory and inhibitory firing rate profiles in L2/3 were also peaked at the associated

location in physical and tuning space (Fig 5h and 5i), demonstrating that neurons in L2/3 were

appropriately tuned to the stimulus.

A smaller visual stimulus was modeled by shrinking the spatial profile of firing rates in L4

while leaving the orientation-dependence of L4 rates unchanged (Fig 5j and 5k). As above,

synaptic inputs and firing rate profiles were appropriately peaked in physical and orientation

tuning space (Fig 5l–5o). However, the smaller stimulus produced a surprising change to firing

rates in L2/3. Despite the fact that L2/3 neurons at all locations received less excitation from L4

(Fig 5l), peak firing rates in L2/3 increased and a surround suppression dynamic emerged (Fig

5n). Hence, a more localized external input produced an amplification and suppression

dynamic similar to the one observed in our model of optogenetic stimulation (compare to Fig

2). On the other hand, responses in orientation tuning space were mostly unchanged by the

smaller stimulus size (Fig 5m and 5o).

Mean-field theory of balance in two-dimensional spatial networks with orientation-tun-

ing-specific connectivity. The mean-field theory of balanced networks was previously

extended to continuously indexed networks in one and two dimensions [8, 12, 43]. We now

review a straightforward extension to two spatial dimensions and one orientation dimension.

Fig 5. Response properties of a continuously indexed network. a) Network diagram. Poisson spiking neurons in L4 (X) provide

external synaptic input to 2 × 105 recurrently connected excitatory and inhibitory AdEx model neurons (E and I) in L2/3. The spatial

width of synaptic projections from population a = X, E, I is given by βa. b) Neurons are assigned random orientations and connection

probability also depends on the difference, dθ, between neurons’ preferred orientation. c) An oriented stimulus in the animal’s visual

field. d,e) The location of the stimulus is modeled by firing rates in L4 that are peaked at the location of the stimulus in physical and

orientation space. f,g) Synaptic current to neurons in population E from the external network (green), the local network (purple) and

total (black) as a function distance from the receptive field center and as a function of neurons’ preferred orientation. h,i) Firing rate

profiles of excitatory (red) and inhibitory (blue) neurons in the local network from simulations (light curves), classical balanced network

theory (solid, dark curves; from Eq (13)) and under the linear correction (dashed; from Eq (17)) in physical and orientation space. j-o)

Same as (d-i) except for a smaller visual stimulus, modeled by a narrower spatial firing rate profile in L4. Firing rates from Eq (13) are not

shown in panels n and o because balance cannot be realized and Eq (13) cannot be applied when external input is narrower than

recurrent connectivity (see main text, S1 Text, and [8]).

https://doi.org/10.1371/journal.pcbi.1006048.g005
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Eq (1) generalizes naturally to

I ¼
1

�
Wr þ X½ � ð10Þ

where r(x, θ) = [rE(x, θ) rI(x, θ)]T is the vector of mean firing rates of excitatory and inhibitory

L2/3 neurons near spatial coordinates x = (x, y) with preferred orientation near θ, and similarly

for the neurons’ external input, X(x, θ), and total input, I(x, θ). The external input is given by

X ¼ WXrX where rX(x, θ) is the profile of firing rates in L4 The connectivity kernels, W and

WX , are convolution integral operators defined by

Wr ¼
wEE � rE þ wEI � rI

wIE � rE þ wII � rI

" #

and

WXrX ¼
wEX � rX

wIX � rX

" #

:

Here, wab(x, θ) is the mean-field connection strength between neurons separated by x in physi-

cal space and θ in orientation space (see Methods), and [wab
� rb](x, θ) denotes circular convo-

lution with respect to x and θ, i.e., convolution with periodic boundaries. These convolution

operators implement low-pass filters in orientation and physical space, capturing the effects of

synaptic divergence and tuning-specific connection probabilities. Similar filters describe feed-

forward connectivity in artificial convolutional neural networks used for image recognition

[44].

Taking � ! 0 in Eq (10) shows that that firing rates must satisfy

Wr þ X ¼ 0: ð11Þ

This is an analogue to Eq (7) for spatial networks. From here, one may be tempted to invert

the integral operator W to obtain a spatial analogue of Eq (3). However, integral operators are

never invertible [45]. Specifically, since Eq (11) is an integral equation of the first kind, there

necessarily exist external input profiles, X(x, θ), for which Eq (11) does not admit a solution so

that the classical balanced state cannot be realized [8]. This implies that there always exist

inputs that prevent a continuously indexed network from maintaining excitatory-inhibitory

balance. To better understand why this is the case, we follow previous work [8, 12, 43, 46, 47]

in transitioning to the spatial Fourier domain to rewrite Eq (11) as

fW er þ eX ¼ 0: ð12Þ

Here, erðn; kÞ ¼ ½erEðn; kÞ erIðn; kÞ�
T

is a Fourier coefficient of r(x, θ) and similarly for

eXðn; kÞ ¼ fWXðn; kÞerXðn; kÞ where n = (n1, n2) is the two-dimensional spatial Fourier mode

and k is the Fourier mode in tuning space. Importantly, the convolution operators above

become ordinary matrices in the Fourier domain. Specifically,

fW ¼
ewEE ewEI

ewIE ewII

" #
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and

fWX ¼
ewEX

ewIX

" #

where ewabðn; kÞ is a Fourier coefficient of wa(x, θ). Note that going from Eq (11) to Eq (12)

requires that W is a convolution operator and that the boundaries of the network are treated

periodically, i.e., the convolutions are circular.

Solving Eq (12) gives an analogue to Eq (3) for spatial networks in the Fourier domain,

er ¼ �fW�1 eX: ð13Þ

This equation gives all Fourier coefficients, erðn; kÞ. However, this solution is only viable when

the inverse transform exists, i.e., when the Fourier series of erðn; kÞ converges, which in turn

requires that k eXðn; kÞk converges to zero faster than k fWðn; kÞk as n ! 0 and k ! 0. More

specifically, erðn; kÞ in Eq (13) must be square-summable. Hence, balance can only be realized

when recurrent connectivity, quantified by fWðn; kÞ, has more power at high spatial frequen-

cies than external input, eXðn; kÞ. In other words, for balance to be realized, external input, X

(x, θ), cannot have “sharper” spatial features than the recurrent connectivity kernels, wab(x, θ)

for a, b = E, I.
The use of Fourier series to solve Eq (11) relies on the translation invariance of the integral

operator, W, but the existence of external input profiles for which Eq (11) does not admit a

solution is a more general feature that is true for any integral operators with Hilbert-Schmidt

kernels. Specifically, the convolutions, wab
� rb, that define W and WX can be replaced by inte-

grals of the form
R
wab(u, v)rb(v)dv and the result that there exist X(u) for which Eq (11) does

not admit a solution is still true whenever the kernels, wab(u, v) are finite (no delta functions)

and square-integrable [45].

Balance and imbalance in networks with Gaussian-shaped connectivity kernels. A

more intuitive understanding of when and why balance is broken is provided by considering

the Gaussian-shaped connectivity profiles used in our spiking network simulations. This

explanation applies equally to the spatial profile of firing rates and connectivity in physical and

orientation space, so we do not distinguish between the two in this discussion. Similar calcula-

tions were performed previously for spatial networks [8], so we only review the results here

and discuss some of their implications here. Details of the calculations are provided in S1 Text.

When L4 firing rates and all connectivity kernels are Gaussian-shaped, all firing rates and

synaptic input profiles are also Gaussian-shaped in the balanced state (see [8] and S1 Text), so

the analysis can be performed solely in terms of the widths of each of these profiles.

Let σa be the width of the firing rate profile in population a, αa the width of outgoing synap-

tic connections from the presynaptic neurons in population a, and βa the width of the spatial

profile of synaptic input from population a = X, E, I (Fig 5a, 5d, 5f and 5h). Since L4 is the feed-

forward population in this context, we use X subscripts for L4 and E, I for L2/3 neurons.

Synaptic divergence broadens the profile of synaptic currents so that

b
2

a ¼ s2
a þ a2

a ð14Þ

for a = E, I, X. This is due to the Gaussian shape of firing rates and connectivity, as well as the

convolution that describes the resulting mean-field synaptic inputs (the convolution of a

Gaussian with a Gaussian is Gaussian). For balance to be maintained, feedforward synaptic

input from L4 must be precisely canceled by lateral synaptic input in L2/3. This, in turn,
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requires that

bE ¼ bI ¼ bX:

Combined with Eq (14), this implies that balance requires the widths of firing rate profiles in

L2/3 to satisfy [8]

s2
E ¼ b

2

X � a2
E

s2
I ¼ b

2

X � a2
I :

ð15Þ

This approximation accurately predicted firing rate profiles in our first spiking network simu-

lation (Fig 5h and 5i, solid, dark curves have widths given by Eq (15)). Hence, by Eq (15), the

requirement of cancellation in balanced networks implies that recurrent connectivity sharpens

neurons’ tuning, both in physical and orientation space.

Interestingly, Eq (15) implies that the amount by which excitatory and inhibitory firing rate

profiles are sharpened in balanced networks is determined by the width of their outgoing syn-

aptic projections. Pyramidal neurons in L2/3 of mouse V1 preferentially target similarly tuned

neurons in L2/3, but the tuning of these lateral connection probabilities is much broader than

the tuning of pyramidal neurons’ firing rates [41] (αE > σE in orientation space). This observa-

tion is consistent with Eq (15): Excitatory neuron tuning curves are sharpened precisely

because their outgoing connections are broadly tuned. Hence, sharpening of excitatory neuron

tuning curves in L2/3 is naturally achieved in balanced networks with lateral excitation, with-

out requiring lateral inhibition. Following the same line of reasoning, the broader orientation

tuning of inhibitory neurons [40] (σI larger) suggests that they project more locally in orienta-

tion tuning space than pyramidal neurons (αI < αE in orientation space).

Eq (15) also clarify when and why balanced network theory fails for continuously indexed

networks. If external inputs are sharper than lateral connectivity (βX < αE or βX < αI) in physi-

cal or orientation space, then Eq (15) do not yield solutions for σE or σI. In other words, bal-

ance requires that

aE < bX and aI < bX

because Eq (11) does not admit a solution when these inequalities are broken (see [8] and S1

Text). Intuitively, when the inequalities above are broken, recurrent connectivity paints with

too broad a brush to cancel the sharper feedforward input, so balance cannot be realized. As a

result, balanced network theory cannot be applied to the example in Fig 5j–5o with a smaller

visual stimulus.

A linear correction to balance quantifies amplification and suppression in continuously

indexed networks. We next derive a linear correction to Eq (13) that accounts for imperfect

cancellation and, in doing so, gives firing rate approximations where classical balanced net-

work theory fails. Specifically, we generalize the derivation of Eq (4) to continuously indexed

networks. Under this linear approximation, firing rate profiles are given by solving

Wr þ X ¼ �gr: ð16Þ

This is an integral equation of the second kind, which generically admits firing rate solutions,

r, even when Eq (11) does not [45]. We again transition to the Fourier domain so Eq (16)

becomes

er ¼ �D � fW
h i�1

eX: ð17Þ

From Eq (17), firing rates, r(x, θ), can be computed numerically through an inverse transform
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(the Fourier series over n and k), yielding an accurate approximation to firing rates from spik-

ing network simulations even where classical balanced network theory fails (Fig 5n and 5o).

Interestingly, the linear correction is slightly less accurate at predicting firing rates than the

classical theory in Fig 5i. However, the main purpose of the corrected theory is not increased

accuracy, but that it is applicable in situations where the classical theory is not.

The amplification and suppression caused by the smaller visual stimulus can be roughly

explained by the balanced amplification mechanism discussed previously. Since W is a low-

pass filter, it approximately cancels high frequency components of firing rate profiles. Hence,

high frequency components are in the approximate nullspace of the local connectivity opera-

tor, W, and are therefore amplified by the network through the same mechanism discussed for

discrete networks previously.

A more precise explanation is given by first averaging firing rates over orientation prefer-

ence by setting k = 0 in Eq (17) to give erðnÞ that depends only on spatial frequency, and simi-

larly for eXðnÞ and fWðnÞ. The convolution operator, W, implements a low-pass filter, so fWðnÞ

is Oð1Þ in magnitude at low spatial frequencies and converges to zero at higher frequencies

(large knk). The regularized inverse, ½�D � fWðnÞ�
�1

, is therefore Oð1Þ in magnitude at low

frequencies and Oð1=�Þ at higher frequencies (Fig 6a, purple). When external input, X(x), has

sharp features, eXðnÞ has power at higher spatial frequencies (Fig 6a, green), which are ampli-

fied by the Oð1=�Þ component of ½�D � fWðnÞ�
�1

while low frequencies remain Oð1Þ. The

result is that the magnitude of erðnÞ has a Oð1=�Þ peak at a non-zero spatial frequency (Fig 6a,

black), introducing a high-amplitude, non-monotonic rate profile (as in Fig 5n; see [47] for a

similar analysis). When X(x) has spatially broad features, eXðnÞ has little power at high spatial

frequencies so that this amplification dynamic is weak or absent (as in Fig 5h). An identical

argument applies in orientation space. In summary, high-frequency components of external

input profiles are transmitted more strongly than low-frequency components in strongly cou-

pled networks, and the cutoff frequency is determined by the width (αE or αI) of lateral synap-

tic projections.

It is worth noting that the average firing rates (over all orientations and spatial positions)

are given by the zero Fourier coefficient erð0; 0Þ. When balance is broken by sharp external

input features, the zero Fourier mode is not affected as long as mean firing rates, r(x, θ),

Fig 6. Spatial filtering of external input and the dependence of suppression on outgoing synaptic projection

width. a) The magnitude of the spatial filter, ½�D � fW ðnÞ�
�1

, imposed by recurrent connections (purple), the external

input (eXðnÞ, green) and the resulting firing rate profile (erðnÞ, black) as a function of the spatial frequency,

knk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, from the simulation in Fig 5j–5o. Magnitude is measured by the Frobenius norm for

½�D � fW ðnÞ�
�1

. Curves normalized by their peaks. b) Firing rates of excitatory (red) and inhibitory (blue) neurons

with receptive fields at the center of a grating stimulus plotted as the width of the stimulus increases (represented by

increasing σX) using parameters from Fig 5j–5o. c) Same as b, but the excitatory rate is plotted for different widths of

the excitatory synaptic projection width, αE. d) Same as c, but firing rates in L4 are shaped like a disc with radius σX
instead of a Guassian with width parameter σX.

https://doi.org/10.1371/journal.pcbi.1006048.g006
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remain non-zero at all locations and orientations. Hence, sharp input features can break bal-

ance locally without breaking global, network-averaged, balance. This is analogous to the

global balance obtained in the optogenetic example when local balance was broken at the level

of subpopulations (Fig 2).

Implications of imbalanced amplification on receptive field tuning. We next consid-

ered a study by Adesnik et al. [48] in which drifting grating stimuli of varying sizes were pre-

sented to mice while recording from neurons in L2/3 of V1. In that study, pyramidal neurons’

firing rates first increased then decreased as the stimulus size was increased. On the other

hand, somatostatin-expressing (SOM) neuron’s firing rates increased monotonically with

stimulus size. Intracellular recordings combined with optogenetic stimulation in that study

showed that SOM neurons project locally and pyramidal neurons form longer range

projections.

To test our model against these findings, we applied Eq (17) to a network with local inhibi-

tion and longer-range excitation (αE > αI) with increasing size of a visual stimulus (increasing

σX). Our results are consistent with recordings in Adesnik et al., 2012 [48]: Excitatory neuron

firing rates changed non-monotonically with stimulus size, while inhibitory neuron firing

rates monotonically increased (Fig 6b). The non-monotonic dependence of excitatory firing

rates on stimulus size in Fig 6b is explained by the mechanism of imbalanced amplification.

When σX is sufficiently small, balance is broken so imbalanced amplification introduces a large

peak firing rate surrounded by suppression (as in Fig 5n). However, the total amount of exter-

nal excitation introduced by the stimulus is proportional to the size of the stimulus, so a very

small σX introduces very little excitation and peak firing rates are small. As σX increases, more

excitation is recruited and the network is still imbalanced, which leads to increasingly large

peak firing rates (as in Fig 5n). Once σX becomes large, balance begins to be restored and the

peak excitatory firing rate decreases to moderate values (as in Fig 5h).

The degree to which excitatory neurons suppress depends on the spatial width, αE, of lateral

excitatory projections (Fig 6c) and suppression of inhibitory neurons similarly depends on the

spatial width, αI, of lateral inhibition (not pictured). Specifically, suppression occurs when lat-

eral connectivity is broader than feedforward input (αE > βX or αI > βX) because this is when

the balanced solution in Eq (15) disappears. When a sub-population’s lateral connectivity is

more localized than feedforward connectivity from L4 (αE < αX as in the lightest gray curve in

Fig 6c; or αI < αX), that sub-population cannot exhibit suppression since feedforward input

width (b
2

X ¼ a2
X þ s2

X) is always larger than lateral connectivity, regardless of the stimulus size

(σX).

A similar line of reasoning explains why peak inhibitory neuron firing rates increase

monotonically with stimulus size in Fig 6b. Inhibitory neurons in that example project locally

(αI = αX), so the inequality αI < βX is always satisfied because bX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
X þ s2

X

p
> aI whenever

αI � αX. Whenever αI < βX, inhibitory firing rates reflect their balanced state values which

increase monotonically with the increase in total excitation induced by a larger stimulus.

Unlike SOM neurons, parvalbumin-expressing (PV) neurons were found to exhibit sup-

pression by Adesnik et al., 2012 [48]. Hence, our theory predicts that PV neurons project more

broadly in space than SOM neurons. Indeed, PV interneurons in L2/3 are primarily basket

cells whose axons project to larger lateral distances than other inhibitory neuron subtypes such

as Martinotti cells that comprise most SOM neurons [49].

We observed a unimodal dependence of firing rate on stimulus size (Fig 6c, all curves have

a single peak). However, Rubin, et al. [47] observed a multi-modal, oscillatory dependence of

firing rate on stimulus size in recordings and in a computational model. In that study, the

drifting grating stimuli were disc-shaped with a sharp cutoff of contrast at the edges of the
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disc. Above, we considered a Gaussian-shaped contrast profile with soft edges (Fig 6c, inset).

Repeating our calculations with a sharp-edged, disc-shaped stimulus (Fig 6d, inset) produced

an oscillatory dependence of firing rate on stimulus size (Fig 6d), as observed by Rubin et al..
This oscillation only arose when lateral synaptic projections were narrower than the stimulus

size (αE small). The oscillation results from a Gibbs phenomenon: The sharp edge in the

stimulus produces high-frequency power in eX , which passes through the high-pass filter

½�D � fW �
�1

when αE is small.

We next explored the functional consequences of these results on receptive field tuning. We

first considered a disc-shaped grating stimulus (Fig 7a), producing a disc-shaped firing rate

profile in L4 (Fig 7b). Synaptic divergence causes the profile of synaptic input from L4 to L2/3

to be “blurred” at the edges (Fig 7c), as quantified by the low-pass filter, WX . This illustrates a

fundamental problem in receptive field tuning: Synaptic divergence from one layer to another

implements a low-pass filter that blurs sharp features. This problem is resolved by our observa-

tion above that lateral, recurrent connectivity implements a high-pass filter. If the width of lat-

eral, excitatory connections in L2/3 is similar to that of feedforward connections from L4, the

high-pass filter implemented by the recurrent network cancels the low-pass filter implemented

by feedforward connectivity, effectively implementing a deconvolution that can recover the

sharpness of firing rate profiles in L4 (Fig 7d–7f). Hence, counterintuitively, broader lateral

excitation actually sharpens receptive field tuning. Broadening lateral connections further

increases the sharpness of the firing rate profiles, but introduce oscillatory, Gibbs phenomena

near sharp features (Fig 7f). These points are illustrated more clearly in an example with an

asymmetrically shaped stimulus (Fig 7g–7l). Hence, the high-pass filter described above cor-

rects the blurring caused by synaptic divergence between layers in V1.

In summary, imbalanced amplification and linear rate models provide a concise and parsi-

monious theoretical basis for understanding how suppression, amplification and tuning

depends on the profile of neuron’s incoming and outgoing synaptic projections in physical

and orientation tuning space.

Fig 7. Imbalanced amplification and suppression reverse the blurring introduced by interlaminar synaptic

divergence. a) A disc-shaped grating stimulus gives rise to b) a disc-shaped firing rate profile, rX(x), in L4 with slightly

blurred edges (achieved by convolving contrast from a with a Gaussian kernel). c) Input, XE(x), from L4 to excitatory

neurons in L2/3 is blurred by synaptic divergence, which effectively applies a low-pass filter, WX , to the L4 rates. d)

Excitatory firing rates in L2/3 are sharper than external input when lateral excitation is similar, but smaller, in width

than interlaminar excitation (αE = 0.85αX). e) Same as c, but lateral excitation is exactly as broad as interlaminar

excitation (αE = αX), which sharpens the edges further, making firing rates in L2/3 similar to those in L4. f) Same as c,

but lateral excitation is broader than interlaminar excitation (αE = 1.1αX), which sharpens the edges even further, but

also introduced suppressed regions due to Gibbs phenomena. g-l) Same as a-f, but contrast was determined by the

brightness of a photograph. Horizontal and vertical axes are neurons’ receptive fields.

https://doi.org/10.1371/journal.pcbi.1006048.g007
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Discussion

We described a theory of amplification in cortical circuits arising from a local imbalance that

occurs when recurrent connectivity structure cannot cancel feedforward input. We showed

that this imbalanced amplification is evoked by optogenetic stimuli in somatosensory cortex

and sensory stimuli in visual cortex, since these stimuli cannot be canceled by the connectivity

structure in those areas. Our theoretical analysis of imbalanced amplification explains several

observations from cortical recordings in those areas.

Even though firing rates in balanced networks in the large N limit do not depend on neu-

rons’ f-I curves (see Eq (3)), quantifying firing rates under imbalanced amplification relies on

a finite size correction that requires an assumption on how firing rates depend on neurons’

input. For simplicity, we used an approximation that assumes populations’ mean firing rates

depend linearly on their average input currents, giving rise to Eqs (4) and (17). In reality, neu-

rons’ firing rates depend nonlinearly on their mean input currents, and also depend on higher

moments of their input currents. However, the salient effects of imbalanced amplification are

not sensitive to our assumption of linearity. For instance, Eq (5), which quantifies the strong

synaptic currents evoked under imbalanced amplification, does not depend on any assump-

tion about neurons’ f-I curves. However, the precise value of the firing rates elicited by this

strong input does depend on neurons’ f-I curves. We found that the linear approximation to f-

I curves in Eqs (4) and (17) performed well at approximating firing rates in our spiking net-

work simulations and also explained several observations from cortical recordings. This may

be partly explained due to the fact that our spiking network simulations used neuron models

that exhibit spike frequency adaptation, which is known to linearize f-I curves [50, 51] and

help networks maintain balance [10]. However, the linear approximation we used cannot

explain some phenomena that rely on thresholding and other nonlinear transfer properties

[47, 52]. The notion of imbalanced amplification extends naturally to models with nonlinear

transfer functions and future work will consider the implications of nonlinearities.

Balanced networks are related to, but distinct from, inhibitory stabilized networks (ISNs)

[2, 47, 53] and stabilized supralinear networks that can transition between ISN and non-ISN

regimes [47]. The primary distinction is that ISNs are defined by moderately strong recurrent

excitation (strong E ! E) whereas balanced networks are defined by very strong external, feed-

forward excitation (strong X ! E) canceled by similarly strong net-inhibitory recurrent con-

nectivity. Classical balanced networks are necessarily inhibitory stabilized at sufficiently large

N (small �) unless wEE = 0. However, strongly coupled (approximately balanced) networks can

be non-ISN at moderately large N (small �) if wEE is small. Cat V1 is believed to be inhibitory

stabilized, which can be used to explain its surround suppression dynamic [2]. However, evi-

dence from optogenetic and electrophysiological studies, suggests that mouse L2/3 V1 might

not be inhibitory stabilized: Lateral connection probability is small between pyramidal neu-

rons (small wEE) [49], stimulation of PV neurons does not produce the paradoxical effects that

characterize ISNs [54], and modulating pyramidal neuron firing rates only weakly modulates

excitatory synaptic currents in local pyramidal neurons [48, 54]. Nonetheless, pyramidal neu-

rons and PV neurons in mouse V1 exhibit surround suppression [48], which we showed is

explained by imbalanced amplification.

Despite the similarity in their names, the mechanism of imbalanced amplification studied

here is fundamentally different from the mechanism of balanced amplification [55]. First,

imbalanced amplification is related to steady-state firing rates, while balanced amplification is

a dynamical phenomenon. Moreover, balanced amplification is intrinsic to the local, recurrent

circuit: It produces large firing rate transients when local, recurrent inhibition is inefficient at

canceling local, recurrent excitation. Imbalanced amplification, on the other hand, produces
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large steady state firing rates when local, recurrent input is unable to effectively cancel feedfor-

ward, external excitation.

The analysis of our spatially extended network model relied on an assumption of periodic

boundaries in space, which are not biologically realistic, but approximate networks with more

realistic boundary conditions [8]. Without periodic boundary conditions, the integral eqs (10),

(11) and (16) are equally valid, but the integrals are defined by regular convolutions in space

instead of circular convolutions. As a result, the spatial Fourier modes do not de-couple, so

Eqs (12), (13) and (17) are no longer valid, though they should still offer a good approximation

when connectivity is much narrower than the the spatial domain [8]. In addition, anisotropic

connectivity statistics, arising for example from tuning dependent connectivity in visual corti-

cal circuits with coherent orientation maps [56], would prevent the integral operator in Eqs

(10), (11) and (16) from being a convolution operator, and therefore preclude the use of Fou-

rier series for the solution. Future work will consider the effects of non-periodic boundaries

and non-convolutional connectivity kernels on spatially extended balanced networks.

We only considered neuron models with current-based synaptic input. In S2 Text, we show

that our numerical results and analysis extend naturally to models with more realistic conduc-

tance-based synapses. The analysis makes use of an approximation that relates a conductance-

based model to a current-based model with similar membrane potential statistics [57–59].

We focused on firing rates, but sensory coding also depends on variability and correlations

in neurons’ spike trains. Our previous work derived the structure of correlated variability in

heterogeneous and spatially extended balanced networks when connectivity structure prevents

positive and negative correlations from cancelling, effectively providing an analogous theory

of imbalanced amplification of correlated variability [12]. Combining those findings with the

theory of steady-state firing rates presented here could yield a more complete theory of neural

coding in cortical circuits and the effects of imbalanced amplification on coding.

Materials and methods

We modeled recurrently connected networks with N neurons, composed of NE = 0.8N excit-

atory and NI = 0.2N inhibitory neurons. The recurrent network receives external input from a

network of NX neurons that drive the recurrent network. The membrane potential of neuron j
from the excitatory (a = E) or inhibitory (a = I) population has Adaptive Exponential inte-

grate-and-fire dynamics,

Cm

dVa
j

dt
¼ �gLðV � ELÞ þ gLDTexp½ðV � VTÞ=DT � þ Iaj ðtÞ � w

tw
dw
dt

¼ �w:

Whenever Va
j ðtÞ > Vth, a spike is recorded, the membrane potential is held for a refractory

period τref then reset to a fixed value Vre, and w is incremented by B. Neuron model parameters

for all simulations were τm = Cm/gL = 15ms, EL = −72mV, VT = −60mV, Vth = −15mV, ΔT =

1.5mV, Vre = −72mV, τref = 1ms, τw = 150ms and B = Cm0.267 mV/ms. We write all currents

in terms of Cm, so Cm can be any constant. Membrane potentials were also bounded below by

Vlb = −100mV. Synaptic input currents were defined by

Iaj ðtÞ ¼ ½Xa
j ðtÞ þ Ra

j ðtÞ�Cm ð18Þ

where Xa
j ðtÞ is the feedforward input and Ra

j ðtÞ the recurrent input to neuron j in population
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a = E, I. The recurrent input was defined by

Ra
j ðtÞ ¼

X

b¼E;I

XNb

k¼1

Jabjk
X

n

Zbðt � tb;k
n Þ

where tb;k
n is the nth spike time of neuron k in population b = E, I. The external input to the

recurrent network is defined similarly by

Xa
j ðtÞ ¼

XNX

k¼1

JaXjk
X

n

ZXðt � tX;k
n Þ: ð19Þ

where tX;k
n is the nth spike time of neuron k = 1, . . ., NX in population X. Each coefficient, Jabjk ,

represents the synaptic weight from presynaptic neuron k in population b to postsynaptic

neuron j in population a. For all simulations, we modeled synaptic kinetics using ηb(t) =

exp(−t/τb)/τb for t > 0 where τE = 8ms, τI = 4ms, and τX = 10ms. Note that the integral of ηb(t)
over time is equal to 1 for all three kernels, so the choice of time constant, τb, does not effect

time-averaged synaptic currents. We used τI < τE < τX to prevent excessive synchronous

events that break the balanced state. While inhibition may be faster than excitation in many

cortical circuits, excitatory neurons are more likely to contact distal dendrites and inhibitory

neurons are more likely to contact the soma [60, 61], which could make inhibition functionally

faster than excitation. In any case, using fast inhibition is common practice in spiking network

simulations with strong or dense connectivity [11, 12, 47, 62, 63] and a complete resolution of

this issue is outside the scope of this study.

In Figs 1, 2 and 3 an extra term, S = 2 mV/ms, was added to XE
j ðtÞ for stimulated neurons

during the second half of the simulation to model optogenetic stimulation. We used NE =

4000, NI = 1000 and NX = 4000 (so N = 5000) except for Fig 1f where all Nb values were scaled.

Connections were drawn randomly with connection probabilities pEE = pIE = pIX = 0.1, pEI =

pII = pEX = 0.2. Specifically, for each neuron in presynaptic population b = E, I, X, we sampled

pab Na postsynaptic targets from population a = E, I randomly and uniformly with replace-

ment. Since outgoing connections were sampled with replacement, some neurons connected

multiple times to other neurons. Synaptic weights were then defined by

Jabjk ¼ ð# of contactsÞ � Jab

where JEE = 0.4mV, JIE = 0.83 mV, JII = JEI = −1.67 mV, JEX = JIX = 0.47 mV. This gives postsyn-

aptic potential amplitudes between 0.19 and 1.0 mV. For Figs 1f and 4, the values of Jab and the

values of pab were each multiplied by (5000/N)1/4 so that they were unchanged at N = 5000 and

so that � � 1=
ffiffiffiffi
N

p
. This is slightly different from the more common practice of fixing small

connection probabilities and scaling Jab like 1=
ffiffiffiffi
N

p
. We instead fixed a relatively dense connec-

tivity at N = 5000 and the network became increasingly sparse and weakly connected at

increased N. Both approaches have the same mean-field (since the mean-field only depends on

the product of pab and Jab), but our approach prevents excessively small synaptic weights at

large N and prevents dense connectivity at large N, which is computationally expensive and

susceptible to oscillatory and synchronous spiking.

Spike times in the external population were modeled as independent Poisson processes

with rX = 5 Hz. In Fig 3, external input to the L5 population was created using the spike times

of excitatory neurons from the simulations in Fig 2. Simulations for Fig 4 were identical to

those in Figs 2 and 3 except there were N = 2 × 104 neurons in the L2/3 model, synaptic weights

to neurons in that population were multiplied by 1=
ffiffiffi
2

p
, and connections probabilities were
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also multiplied by 1=
ffiffiffi
2

p
. Hence, in relation to Fig 2, N was increased by a factor of four and �

was halved.

Simulations for Fig 5 used algorithms adapted from previous work [12]. The recurrent net-

work (L2/3) contained N = 2 × 105 AdEx model neurons, NE = 1.6 × 105 of which were excit-

atory and NI = 4 × 104 inhibitory. Excitatory and inhibitory neurons in L2/3 were arranged on

a uniform grid covering the unit square [0, 1] × [0, 1] (arbitrary spatial units). The external

population (L4) contained NX = 1.6 × 105 neurons arranged on an identical, parallel square.

Each neuron in each population was assigned a preferred orientation chosen randomly and

uniformly from 0 to 180˚. Connections were chosen randomly as above, but connection prob-

abilities depended on the neurons’ distances in physical and orientation tuning space. Specifi-

cally, the connection probability from a neuron in population b = E, I, X at coordinates x = (x1,

x2) to a neuron in population a = E, I at coordinates y = (y1, y2) was

pabðx � y; dyÞ ¼ �pabGðx � y; abÞgðdy=180�; ab;yÞ

where dθ is the difference between neurons’ preferred orientation,

gðu; aÞ ¼
1
ffiffiffiffiffiffi
2p

p
a

X1

k¼�1

e�u2=ð2a2Þ

is a one-dimensional wrapped Gaussian and G(u; α) = g(u1; α)g(u2; α) is a two dimensional

wrapped Gaussian. The connection probability averaged over all distances is �pab, which were

chosen to be the same as in previous figures, �pEE ¼ �pIE ¼ �pIX ¼ 0:1 and �pEI ¼ �pII ¼ �pEX ¼ 0:2.

As above, outgoing connections were chosen with replacement, so some neurons made multi-

ple contacts onto other neurons. Connection widths in physical space were αE = 0.15 and

αI = αX = 0.04 (as measured on the unit square). Connection widths in orientation space were

αE,θ = αE,θ = 0.1 and αX,θ = 0.125 (corresponding to widths of 18˚ and 22.5˚ when measured in

degrees). Connection strengths, Jab, were the same as in Figs 1, 2 and 3 except multiplied by a

factor of 1.2. Each neuron in L4 was modeled as a Poisson process with rate given by

rXðx; yÞ ¼ �rX rX;xðxÞrX;yðyÞ

where x is the location of the neuron, θ is its preferred orientation,

rX;xðxÞ ¼ c þ ð1 � cÞGðx � x0; sXÞ

and

rX;yðyÞ ¼ cy þ ð1 � cyÞgð½y � y0�=180�; sX;yÞ:

This models a stimulus with orientation θ0 = 0.5 (representing 90˚) and centered at spatial

coordinates x0 = (0.5, 0.5). The parameters σX and σX,θ quantify the width of L4 firing rates in

physical and orientation space. For all panels in Fig 5, we used σX,θ = 0.1 (width 18˚) and cθ =

0.75. We used σX = 0.2 for Fig 5d–5i and σX = 0.06 for Fig 5j–5o. In both cases, we chose �rX
and c so that the minimum and maximum of rX,x(x) were 10 and 20 Hz respectively.

For the spatially extended network, the connectivity kernels, W and WX , are defined in

Results where wab(x, θ) = JabNbpab(x, θ)/(JEXpEXNX). The Fourier series in physical and orienta-

tion tuning space is defined by

euðn; kÞ ¼

ZZ

uðx; yÞe�2piðx�nþkyÞdxdy

where the triple integral is over the two dimensions of physical space and one dimensional
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orientation space. The Fourier series of the convolution kernels defined above turns

convolution into multiplication in the Fourier domain, from which Eq (10)

gives eI ¼ ð1=�Þ½fWer þ eX� where eX, fW , and fWX are defined in Results with

ewabðn; kÞ ¼ wab exp ½�2p2ðjnj
2
a2
b þ k2a2

b;y
Þ�, wab ¼ ewabð0; 0Þ ¼ JabpabNb=ðJEXpEXNXÞ, and

knk2 ¼ n2
1

þ n2
2
. Using the linear approximation, r = gI then gives Eq (17). Firing rates for

dashed curves in Fig 5 and all firing rates in Figs 6 and 7 were obtained by first computing

Eq (17), then inverting the Fourier transform numerically using an inverse fast Fourier

transform. Solid curves in Fig 5 were computed similarly, except using Eq (13) in place of

Eq (17).

All simulations and numerical computations were performed on a MacBook Pro running

OS X 10.9.5 with a 2.3 GHz Intel Core i7 processor. All simulations were written in a combina-

tion of C and Matlab (Matlab R 2015b, MathWorks). The differential equations defining the

neuron model were solved using a forward Euler method with time step 0.1 ms.
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