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Abstract

We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton
distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its
potential impact on LHC scattering processes. The “fitted charm” PDF obtained in various QCD
analyses contains a process-dependent component that is partly traced to power-suppressed ra-
diative contributions in DIS and is generally different at the LHC. We discuss separation of the
universal component of the nonperturbative charm from the rest of the radiative contributions and
estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the
QCD coupling strength, including the latest experimental data from HERA and the Large Hadron
Collider. Models for the nonperturbative charm PDF are examined as a function of the charm
quark mass and other parameters. The prospects for testing these models in the associated pro-
duction of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including

effects of the final-state parton showering.
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I. INTRODUCTION: CTEQ DISTRIBUTIONS WITH INTRINSIC CHARM

The principle of the global analysis is to use QCD theory to analyze a broad range of ex-
perimental data, including precision data from HERA, the Tevatron, and the Large Hadron
Collider (LHC). In particular, theoretical predictions for short-distance scattering processes
allow the measurement, within some approximations, of universal parton distribution func-
tions (PDFs) for the proton. These functions can then be used to predict hadronic cross
sections in the QCD and electroweak theories, and in beyond-the-standard-model theories.
With the new high-precision data becoming available from the LHC, the ultimate goal for
the global QCD analysis is to be able to make predictions that are accurate to about one per-
cent. This, in turn, requires improvements in theoretical predictions to allow for an accurate
extraction of the parton content of the proton in global fits.

A recently published CTEQ-TEA (CT) analysis of QCD data [1] produced the
CT14NNLO PDFs, referred to as the CT14 PDFs in this paper. The analysis is based
on the next-to-next-to-leading order (NNLO) approximation for perturbative QCD. That
is, NNLO expressions are used for the running coupling as(@)), for the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations [2-6], and for those hard matrix ele-
ments for which the NNLO approximation is available, such as the deep-inelastic scattering
(DIS) neutral-current data from HERA and fixed-target experiments, and the Drell-Yan
data from the Tevatron, fixed-target experiments, and the LHC [7-17]. Next-to-leading
order (NLO) is used only for inclusive jet data from the Tevatron and the LHC and for deep-
inelastic scattering (DIS) charged-current data from HERA and fixed-target experiments.
The NNLO predictions for these processes [18-20] were not available or incomplete at the
time of the CT14 study, and we have argued [1, 21] that the effect of missing NNLO terms in
jet production on the PDFs is small relatively to the experimental uncertainties in the CT14
data sets. Similarly, the NNLO contribution for charged-current DIS, including massive
charm scattering contributions, is modest compared to the experimental uncertainties.

In the global analysis, all QCD parameters, such as o, and the quark masses, are correlated
with the PDFs. The determination of the PDFs depends not only on the data sample
included in the fits, but also on the specific theory assumptions and underlying physics
models. As one such choice made in the standard CT PDF sets, the charm quark and
antiquark PDF's are taken to be zero below a low energy scale ). = )y of order of the
charm mass. In the CT14 analysis, the charm quark and antiquark PDFs were turned on
at the scale Q. = Qy = m. = 1.3 GeV, with an initial O(a?) distribution consistent with
NNLO matching [15, 22] to the three-flavor result. At higher @), most of the charm PDF
is generated from the DGLAP evolution that proceeds through perturbative splittings of
gluons and light-flavor quarks. Hence, the charm PDF from a standard global analysis is
called “perturbative”, for it was obtained by perturbative relations from light-parton PDF's
at scale (). and perturbatively evolved to the experimental data scale Q).

In addition to the perturbative charm production mechanism, it is believed that “intrinsic



charm quarks” may emerge from the nonperturbative structure of the hadronic bound state.
The plausibility of the intrinsic charm (IC) component, its dynamical origin, and its actual
magnitude have been a subject of a long-standing debate. Indeed, QCD theory rigorously
predicts existence of power-suppressed (higher-twist) channels for charm quark production
that are independent of the leading-power (twist-2, or perturbative) production of charm
quarks. The intrinsic charm (IC) quarks have been associated with the higher |uudce) Fock
state of the proton wave function [23-28] and predicted by meson-baryon models [29-32].
On the other hand, Refs. [33, 34] concluded that the momentum fraction carried by intrinsic
charm quarks is at most 0.5% at the 4c level, though this conclusion has been challenged
in Ref. [35]. This is to be compared to the earlier CT10IC study [36], which concluded
that the existing data may tolerate a much larger momentum fraction carried by intrinsic
charm quarks. For a valence-like model, it was found to be less than about 2.5%, at the 90%
confidence level (C.L.). Recently, several analyses by the NNPDF group [37-40] established
a smaller fitted charm momentum fraction. NNPDF determined a fitted charm momentum
fraction equal to (0.26 +0.42)% at 68% C.L. just above the charm mass threshold, with the
charm quark pole mass taken to be 1.51 GeV [40], and equal to (0.34 + 0.14)% when the
EMC data [41] on SIDIS charm production were included.

The current paper revisits the issue in the context of the CT14 analysis [1], also including
more recent advances that were made in the follow-up CT14HERA2 study [42]. It updates
the previous work [36] on fitting the charm PDFs based on the CT10 NNLO framework [21],
as well as the CTEQ6.6 IC study [43] done at NLO. In addition to implementing the combined
HERA I+1II data on DIS, the new LHC data, and improved parametrizations for light-parton
distributions, we shall address some fundamental questions: What dynamics produces the
nonperturbative ¢ and @ components of the proton? Is there a universal description of this
type of charm component that is supported by the QCD factorization theorem, such that
the same charm PDF can be used in both lepton-hadron and hadron-hadron scattering
processes?

These core questions must be raised to appraise the range of validity of the PDF models
with nonperturbative charm in our work and in the other recent studies [33, 34, 39, 40, 44].
We address them by starting from the fundamental QCD result, the factorization theorem
for DIS cross sections with massive fermions. We start by discussing the definition to the
“Intrinsic charm”, the term that has been used inconsistently in the literature. In the
theoretical section, we advance a viewpoint that the “intrinsic charm” can refer to related,
but non-equivalent concepts of either the “fitted charm” PDF parametrization, on one hand,
or the genuine nonperturbative charm contribution defined by the means of power counting
of radiative contributions to DIS. This means that the generic notion of the “intrinsic charm”
may cover several kinds of unalike radiative contributions. After we draw this consequential
distinction, and assuming that the nonperturbative charm scattering cross section can be
approximated by a factorized form, our global analysis examines agreement of various models
for the nonperturbative charm with the modern QCD experimental data.



The nonperturbative charm content is normally assumed to be suppressed by powers
of (A?/m?), where A is a nonperturbative QCD scale. But, since this ratio is not very
small, it may be relevant in some processes such as precise DIS. The allowed magnitude of
the nonperturbative charm is influenced by other theoretical assumptions that a global fit
makes, especially by the heavy-quark factorization scheme [22; 45-49], the a, order of the
calculation, the assumed charm mass m., and the parametrization forms for the PDF's of
all flavors. We study such effects in turn and find that, among the listed factors, the IC
component is strongly correlated with the assumed charm mass.

Dependence on m, in the absence of the nonperturbative charm has been addressed at
NNLO in the CT10 NNLO framework [50] and in other references [39, 51-55]. In the context
of the CT10 analysis [50], the general dependence on the charm quark mass was studied, and
a preferred value of m,(m.) = 1.157315 GeV was obtained at 68% C.L., where the error is a
sum in quadrature of PDF and theoretical uncertainties. Here, m.(m.) denotes the running
mass of the charm quark, defined in the modified minimal-subtraction (MS) scheme and
evaluated at the scale of m.. This value, constrained primarily by a combination of inclusive
and charm production measurements in HERA deep-inelastic scattering, translates into the
pole mass mP°® = 1.311513 GeV and 1.547015 GeV when using the conversion formula in
Eq. (17) of Ref. [56] at the one-loop and two-loop order, respectively. As the pole mass of
1.3-1.8 GeV borders the nonperturbative region, accuracy of its determination is limited by
significant radiative contributions associated with renormalons [57-59]. In this light both
converted values are compatible with the value of mP°® = 1.3 GeV, which was assumed by
CT10 and CT14 and provides the best fit to HERAI+II data at NNLO with the chosen PDF
parametric form. We shall use it as our standard charm quark pole mass value in this paper,
unless specified otherwise.

To establish robustness of our conclusions, in our fits we varied the selection of data and
the analysis setup. Constraints on the IC from both CT14 [1] and CT14HERAZ2 sets [42]
of experimental data were compared. As the CT14HERA2 fit prefers a smaller strangeness
PDF than CT14, comparison of the CT14 and CT14HERA2 allowed us to estimate the
sensitivity of the IC to the strangeness content. [The sensitivity to the treatment of bottom
quarks is expected to be marginal.|

Finally, we consider the impact of the possible nonperturbative charm on predictions
for the present and future experimental data. The momentum sum rule, one of the key
QCD constraints, implies that introduction of a fitted charm PDF modifies the gluon and
sea (anti)quark PDFs, particularly, for # and d. Hence, accurate predictions of the ¢ and
¢ parton distributions will be relevant to various important LHC measurements, such as
production of W#*, Z° and Higgs boson, or associated production of a charm jet and a Z°.

The remainder of this paper is organized as follows. In Sec. II we review the theoretical
foundations of the CTEQ global PDF analysis with contributions of massive quarks. In
particular, we discuss issues related to the factorization of the charm PDF in the proton,
after clarifying the meaning of the PDF's for the leading-power (perturbative) charm, power-



suppressed charm, and the fitted charm. Several theoretical models of the intrinsic charm
PDF at the )y scale will be presented in Sec. III. The results of our global fits, called
the CT14IC PDFs, are discussed in Sec. IV, where the quality of the data description is
documented, and a detailed comparison of the CT14IC PDFs with the CT14 PDFs and
other PDF sets is provided. The dependence of the CT14IC PDF fits on the charm-quark
mass is detailed in Sec. IVC. In Sec. IVF, we discuss the impact of including the EMC
data in the global fits for the fitted charm PDFs, as predicted by those theoretical models
introduced in Sec. III. We examine the impact of the CT14IC PDFs on the production of the
electroweak W*, Z and Higgs bosons at the LHC in Sec. V, and on a charm jet production
associated with a Z boson at the LHC in Sec. VI. Finally, our conclusions are presented in

Sec. VII.

II. QCD FACTORIZATION WITH POWER-SUPPRESSED CHARM CONTRI-
BUTIONS

Particle interactions with energies of hundreds of GeV, at modern colliders such as the
LHC or the Tevatron, are not directly sensitive to the masses of most Standard Model (SM)
fermions. At such high energy, one may safely neglect the mass of any quark in a short-
distance scattering cross section, except for the top quark. Protons, the initial-state nucleons
at the LHC, behave as bound states composed of strongly interacting constituents lighter
than the top, including light quarks (u, d, s), heavy quarks (¢ and b), and gluons g.! A
parton a knocked out of an initial-state proton by a hard collision moves essentially as a
massless particle; however, the probability for knocking the parton out, quantified by the
parton distribution function fo/(&, ), or a(§, i) for short, depends on the parton’s flavor
and, ultimately, the parton’s mass.

A charm quark with mass m, ~ 1.3 —1.6 GeV is heavier than a proton at rest, with mass
0.938 GeV. If we introduce a parton distribution for the charm, what is the physical origin
of this PDF?

The answer is not as clear-cut as for the lighter quarks, whose PDFs are dominated by
nonperturbative QCD contributions arising from energies smaller than the proton mass. The
light-quark PDF's are essentially nonperturbative; we parametrize each light-quark PDF by a
phenomenological function fo/,(z, Qo) at an initial energy scale Qo of order 1 GeV and evolve
the PDF's to higher energies using the DGLAP equations [2-6]. For the charm and anticharm
contributions, on the other hand, the respective PDF's at such low (), are not mandatory.
Only some QCD factorization schemes introduce them, with the goal to improve perturbative
convergence at scales () much larger than )y. The perturbative component of the charm PDF
dominates in conventional treatments, such as those implemented in the general-purpose

1 Without loss of generality, we focus on a situation when neither top quarks nor photons are classified as

nucleon’s partonic constituents.



QCD analyses by CTEQ-TEA and other groups. However, a nonperturbative component
in the charm PDF cannot be excluded either — we will explore it in this paper. What are
the theoretical motivation and experimental constraints for the nonperturbative component?
Can it be relevant for the LHC applications?

We can systematically approach these questions by reviewing QCD factorization, and the
associated factorization theorem, for a perturbative QCD calculation of a radiative contri-
bution with heavy quarks. Let us focus on predictions for neutral-current DIS structure
functions F(z, Q) with 3 and 4 active flavors, at a relatively low momentum transfer @) that
is comparable to the mass m,. of the charm quark. Our considerations can be extended read-
ily to situations with more than four active flavors, and to higher () values. Moreover, among
the experimental processes included in the global QCD analysis, the neutral-current DIS is
the most sensitive to charm scattering dynamics [39, 50, 52-55] with the rest of the processes
providing weaker constraints. Therefore, it is natural to focus on DIS as the starting point.

A. Exact and approximate factorization formulas

We first write down a phenomenological form for the DIS structure function that is im-

plemented in the CTEQ-TEA PDF analysis:

Ny 1
d T me
P = Y [ e (2955 a) 50 En)
Ny

= 3" e @ 190 (2,Q). &)

This is a standard convolution formula, consisting of the coefficient function
cNor ) (z/€,Q/p, me/ ;o)) and the PDFs féj\;‘”d) (&, i) dependent on the light-cone par-
tonic momentum fraction £ and factorization scale p of order @ (set to coincide with the
renormalization scale to simplify the notation). The index a denotes the initial-state parton’s
flavor, running from a = 0, corresponding to the gluon, to the number N; of active quark
flavors assumed in the QCD coupling strength a(p) and the PDFs fq/5(&, 1). Implicitly,
summation over quarks and antiquarks is assumed. We reserve the index “h” for a heavy-

quark flavor, A = ¢ in DIS charm production.? The superscripts (N,.q) in both C™erd) and

Nord)
fé{p ’
of ay.

emphasize that their perturbative coefficients are computed up to a fixed order N,.q

Let us highlight several aspects of this formula. First, Ny, the number of active flavors, is
not measurable, it is a theoretical parameter of the renormalization and factorization schemes
chosen for the perturbative calculation. Ny should be distinguished from NV f * [60, 62], the

2 Beyond the NNLO accuracy considered in this paper, DIS includes contributions with both ¢ and b quarks.
Treatment of such contributions in the ACOT formalism is explained in Refs. [60, 61].



number of (anti-)quark species that can be physically produced in the final state in DIS at
given collision energy. The optimal value of Ny is chosen as a part of the QCD factorization
scheme to optimize perturbative convergence. N )f “ can be determined from an experimental
observable, such as the final-state hadronic mass in the neutral-current DIS process.
Second, the CTEQ-TEA group computes the perturbative coefficients of cNerd) in the
S-ACOT-x scheme [46, 63-65], a general-purpose factorization scheme for lepton-hadron

and hadron-hadron scattering processes. For neutral-current DIS, CiNed) were derived in

this scheme up to O(a?), or NNLO [60]. Figure 1 is reproduced here from Ref. [60] and
shows the Feynman diagrams and notations for the perturbative coefficients of the “charm
production” structure function F.(z,Q) up to NNLO in the S-ACOT-yx approach. Our
discussion will turn to these diagrams for an illustration. The remaining NNLO charm
scattering contributions in NC DIS, arising in the light-quark structure function Fj(z, Q)
and not as important numerically, can also be found in Ref. [60].

Third, in a general-purpose analysis such as CT14 NNLO, we start with non-zero PDF
parametrizations for the gluon and 3 light (anti-)quark flavors at the initial scale slightly
below the charm mass, Qo = m. — €. The input charm mass can be either the MS mass
m.(m,), or the pole mass m2?¢: the two are related by NNLO perturbative relations [56, 66],
both are implemented in CT14 PDFs.? As féz"’"d)(ﬁ , Q) are evolved upward from the initial

scale ()p, they are converted from N; = 3 to 4, and from 4 to 5, at the corresponding

CéN‘“"d) are converted concurrently to

switching points ;. The perturbative coefficients of
preserve the factorization scheme invariance at each order of a;. The CT14 analysis switches
from Ny to Nyy, exactly at the heavy quark mass; so for the charm quark the switching
takes place at the energy scale ). = me.

In this conventional setup, we assume a zero charm PDF, f./,(§,Qo) = 0, for Ny = 3 at
the initial scale Q) slightly below Q). = m,, and obtain a small non-zero f.,(&, Q) for Ny = 4
at scale (). via perturbative matching. Of course, (), is arbitrary, we could equally choose
a (). value below )y and then expect a non-zero charm PDF also at (). This alternative
suggests the possibility of including a non-zero initial charm PDF parametrization, or the
“fitted charm” parametrization, at the initial scale ()y that would now correspond to Ny = 4.
However, if the charm quarks are produced exclusively from perturbative gluon splittings,
the dependence on the fitted f./,(§, Qo) cancels up to the higher o, order in the cross section,
not the PDF alone. It only makes a difference, compared to the higher-order uncertainty, if
another mechanism adds up to perturbative charm-quark production.

To demonstrate this, compare the above approzimate fixed-order formula (1), which either

includes the fitted charm PDF| or not, to the all-order expression for F'(z, ) with massive

3 The past CTEQ-TEA analyses traditionally used m2°'® as an input, but m.(m.) may be preferable
in future precise calculations. The pole mass cannot be used to arbitrarily high accuracy because of
nonperturbative infrared effects in QCD, related to the fact that the full quark propagator has no pole
because of the quark confinement [67].



quarks that follows from the QCD factorization theorem [63, 68]:

Fa,Q) - Z f ( 22 as(m) Fopleol) + OW2/m2 NG, (2)

Eq. (2) underlies all modern computations for the inclusive DIS observables, in the factor-
ization schemes with fixed or varied Ny values. The convolution of C, with f,/,(&, ) in
Eq. (2) includes all “leading-power” radiative contributions that do not vanish when the
physical scales /s, @, m. are much larger than the nonperturbative hadronic scale A of
order less than 1 GeV. In Eq. (1), as implemented in the fits, this leading-power C, ® fo/p is
approximated just up to order N,,q.

Structure Functions Subtractions
1 "\/\/\’_ A
2088
(0) (1; 1 ) c(")
A(l) c(1)
. ™
89985, 0999 §
F}fg) FE]:':"'IQ) All,g‘ C(D) ‘{u@ (0)
@

FIG. 1: Leading-power (perturbative) radiative contributions for neutral-current DIS charm pro-
duction and scattering, included up to O(a?) in the S-ACOT-x scheme. The figure is reproduced
from Ref. [60].

This means that, in the all-order factorization theorem (2), [C, ® fo/p)(z,Q), the first
term on the right-hand side, captures all contributions associated with the leading-power,
perturbative, charm production. On the other hand, when a non-zero initial condition for
fc(j,i‘”"d) (£,Qp) is introduced in the fitted formula (1), it plays the role of a placeholder for
several kinds of missing contributions that appear in the full factorization formula (2), but
not in the approximate formula (1). For example, it substitutes in part for the leading-
power perturbative contributions beyond the order N,.q. The O(a?), or NNLO, radiative
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FIG. 2: Dominant squared leading-power amplitudes in DIS charm production in the Q2 > m2 >
A? limit. Here F' is the DIS structure function, Co, Ko and D are two-particle irreducible (2PT)
subgraphs, Ty and Tﬂ(‘l) are the twist-2 and 4 target hadron subgraphs, and K, é2|4j is the heavy-quark
“mixed-twist” 2PI subgraph.

contribution to neutral-current DIS heavy-quark production is large numerically. If a global

fit is done at NLO, as in Refs. [33, 39, 43|, it prefers an augmented fitted charm fc(j,i’r“o)(f , Qo)
of a certain shape in part to compensate for the missing NNLO DIS Wilson coefficients.
The fitted charm may also absorb part of the last, power-suppressed, term on the right-
hand side of Eq. (2). The “power counting” analysis of Feynman integrals shows that
the ordinary power-suppressed contribution in unpolarized inclusive DIS is proportional to
(A/Q)™ with integer n > 2 (“twist-4”, see, e.g., [69, 70]). In the DIS scattering of charm
quarks, the lowest power-suppressed contribution also includes terms of order A?/m?2 [23,
24, 63]. The latter term clearly does not vanish with increasing @) and, furthermore, at very
high Q it is enhanced logarithmically and behaves as (A%/m?)In%(Q?/m?) with d > 0 due
to contributions from collinear scattering. The power-suppressed charm contribution, once
introduced at low scale () ~ m,, will survive to the much higher scales relevant to the LHC.
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B. Charm contributions in 3-flavor and 4-flavor schemes

While the complete analysis of the twist-4 contribution is far too extensive, we present
a heuristic explanation of its logarithmic growth by following an analogy with the leading-
power, or twist-2, terms [60]. It is useful to compare the relevant Feynman graphs in the
Ny = 3 factorization scheme, the most appropriate scheme to use in the threshold kinematical
region, where () is comparable to m,, and in the Ny = 4 scheme, which is most appropriate
at Q* > m?, where the charm density has the most physical interpretation.

First, recall that in the Ny = 3 scheme all subgraphs containing heavy-quark propagators
are assigned to the Wilson coefficients C, and not to the PDFs f,/,. Among the leading-power
hard-scattering amplitudes in Fig. 1, the only contributions arising in the 3-flavor scheme are
those attached to the external gluons and light quarks, denoted by F; éka) . The explanation for
this is that the Ny = 3 scheme applies zero-momentum subtraction to UV singularities with
heavy-quark propagators and strongly suppresses highly off-shell charm quark propagators as
a consequence of their manifest decoupling. Therefore, the non-negligible Feynman integrals
in this scheme contain the charm propagators only in the hard-scattering subgraphs, where
the virtualities of all particle momenta are comparable to @* and m?. The nonperturbative
subgraphs with virtualities much less than Q? contain only light-parton propagators, as those
are renormalized in the MS scheme.

A twist-4 Ny = 3 hard-scattering matrix element for F, ég can be thought of as a twist-2
Ny = 3 hard-scattering matrix element connected to the parent hadron by an additional light-
parton propagator at any point in the hard subgraph. Both twist-2 and twist-4 terms with
charm take the factorized form illustrated in Fig. 2, while Fig. 3 shows representative twist-4
squared matrix elements obtained after attaching the second initial-state gluon to some of the
twist-2 matrix elements in Fig. 1. In the hadronic cross section, every twist-4 hard scattering
cross section shown in Fig. 3 is multiplied by a twist-4 (double-parton) nonperturbative
function, such as fg,/,(&1,&2, ). Insertion of two QCD vertices suppresses the twist-4 cross
section by a power of o, compared to the counterpart twist-2 cross section, while the insertion
of two propagators and multiplication by a twist-4 function further suppresses it by a power
of A?/p? with p? of order Q* ~ m?2.

At twist-4, we encounter several new nonperturbative functions that are not constrained
by the data and obey their own evolution equations at the scale @ [71, 72]. The complete
analysis of twist-4 is lengthy — we will refer to the vast literature on the subject, including
Refs. [69, 70, 73-85].

We further note that, in the limit Q% > m?2 > A2, the twist-4 charm scattering cross
sections contain ladder subgraphs of essentially twist-2 topology. They can be seen in Fig. 2,
illustrating a decomposition of the structure function F' containing the ladder contributions.
D denotes a two-particle irreducible (2PI) part (in the vertical channel) of the structure
function F'. The first graph on the right-hand side is a generic twist-2 ladder contribution
recognized from the calculation of NLO splitting functions in the massless case by Curci,
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Furmanski, and Petronzio [86]. It is composed of 2PI subgraphs Cy, Ky, and Ty (without
an upper index), where Cy and Ty are coupled to the virtual photon and target hadron,
respectively. The decomposition in terms of D and C x Kj... * Tj for twist-2 also appears in
the Collins’ proof of QCD factorization for DIS with massive quarks [63].

The ladder graphs are different in the Ny = 3 and Ny = 4 schemes. The Ny = 4 scheme
introduces additional terms with heavy quarks that approximate the leading contribution in
the @2 > m?2 limit. In Fig. 1, these ladders correspond to the contributions proportional
to the “flavor-excitation” Wilson coefficient functions cgff)t. Such terms are absent in the
N¢ = 3 scheme, and their purpose is to resum collinear logs lnaf(Q2 /m?) from higher orders
with the help of DGLAP equations. In this case both the light- and heavy-parton subgraphs
are renormalized in the MS scheme. Importantly, apart from a finite renormalization of as,
the perturbative expansions of the structure functions in the Ny = 3 and Ny = 4 schemes
are equal up to the first unknown order in a, — the condition that we expect to hold both
for the twist-2 and twist-4 heavy-quark contributions.

Next to the twist-2 term in Fig. 2 we show a ladder attached to a twist-4 target subgraph
Té” [with an upper index “(4)”], connected to the twist-2 kernels Ky in the upper part via a
“mixed-twist” kernel K(()ZM) containing a real heavy-quark emission. As Kém} is connected to
Tb by four propagators, at Q% > m? > A? it scales as A?/p®. Since it includes loop integrals
with massive quark propagators 1/(f — m.), the momentum scale p can be either @) or my;
but the A%/m? term is less suppressed than A%/Q?. [It is crucial that two large QCD scales,
m. and @), are present, in contrast to the massless-quark case.] On the other hand, apart
from the replacement of Tj - Ky by Té4) . K((,QM), the second ladder has the structure of the
first one.

1. Factorization for twist-2 contributions

We assume that the Feynman diagrams in Fig. 2 are unrenormalized and indicate this
by a subscript “0”. Ref. [63] shows how to recast the full sum of twist-2 diagrams into a
factorized convolution

F(z,Q) =) [Ca® fap)(z,Q) +7 (3)

by recursively applying a factorization operator Z and renormalizing the UV singularities.
Z is a projection operator that is inserted recursively between the rungs of the ladder di-
agram, e.g., at the location indicated by the circle markers. The action of the Z operator
is to replace the exact ladder graph by a simpler, factorized expression which provides a
good approximation to the full graph in the Q% > m?2 limit, and which is valid up to a
power-suppressed remainder r. In particular, Z replaces the off-shell intermediate parton
propagator at the insertion point by an on-shell external state with zero transverse momen-
tum in the Breit frame. By considering recursive insertions of the Z operators to all orders,
one demonstrates factorization for F'(z, Q)) in either the Ny = 3 scheme or the N; = 4 scheme
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of the Aivasis-Collins-Olness-Tung (ACOT) class [46]. By its construction, the remainder r
is of order

highest virtuality in Tp ) 2
( lowest virtuality in Cy ) = @A/p), (4)
with p = @ or me.

While the Z operation in the MS scheme is uniquely defined for intermediate light states,
for a heavy quark, it encounters an additional ambiguity. The projection operator acting
upon an intermediate heavy quark, denoted by Z;, may include additional powers of (m?2/Q?)
that vary among the conventions [60, 63]. The ambiguity in Z} gives rise to several versions
of the ACOT-like schemes, all equivalent up to a higher order in a;. The form of Z; may be
even made dependent on the type and a, order of the scattering contribution: some choices
for Zy, such as the one made in the SACOT-y scheme [60, 64, 65], simplify perturbative
coefficients and enable fast perturbative convergence.

In a practical calculation of a twist-2 cross section illustrated by Fig. 1, the Z operation

defines the prescription for constructing the perturbative coefficients C(b of Wilson coef-

ficient functions from the structure functions F (b) computed in DISe+b — e+ X on a
partonic target b. Here i denotes an (anti)quark struck by the virtual photon.* The parton-
scattering structure functions, coefficient functions, and PDFs are expanded as a series in

as = ag(p, Ny)/(4m):
F,, = F(D)—I—a F(l)—l—a F(2)
Cz’,a _ C(D) +asc(1) —I—{IQC(Q) +.

71,4

fapp(x) = 6u0(1 — ) + ag Afjg 2A@) . (5)

sab

where Agfg (k = 0,1,2,...) are perturbative coefficients [15] of operator matrix elements

for finding a parton a in a parton b. A perturbative coefficient Cg;) of the Wilson coefficient
function at a, order k£ can be found by comparing the perturbative coefficients on the left
and right sides of

Fip = an',a. ® fasp- (6)

(k) with an initial-

The comparison does not specify the form of the perturbative coefficients ¢;,
state heavy quark; those are specified by Z, at each a, order k and re-used in exa,ctly the same

form in all occurrences of c(k) in the contributions of orders k + 1 and higher. The freedom
in selecting Z, affects c and not the partonic PDF coefficients Aég that remain defined in
the MS scheme. With such self-consistent definition, the dependence on Z; cancels up to
the first unknown order in as, as it was verified numerically up to O(a?) in Ref. [60].

4 Up to NNLO, we use a simplified decomposition of the neutral-current DIS structure function over the
quark flavors probed by the virtual photons: F(e+b— e+ X) = E?j: €2 F; », where €; is the (anti)quark’s
electric charge [60]. The SU(Ny) decomposition of the ACOT structure functions for higher orders was
derived in Ref. [61].
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2. Factorization of twist-4 contributions: a sketch

Going back to Fig. 2, we recall that, while in the twist-2 factorization formula (3) the
Kém} . To(‘l) subgraph is counted as a part of the remainder r ~ A%?/m?2, diagrammatically,
it is attached to the upper ladder subgraphs in exactly the same way as the twist-2 K - 7.
We can treat the sum Ky - Ty + K(()ZM) . Té‘g as a modified target contribution of twist-2,
which now includes some power-suppressed correction. The derivation of the factorization
for Q? > m?2 can be repeated for Ny = 4 as in the previous subsection. The factorized cross
section reproduces the structure function up to the terms of order A?/Q? or (A*/m2).

At the level of individual contributions, the K‘?I‘L) . Té'd) target subgraph introduces a non-
zero term in the charm PDF at the switching scale from 3 to 4 flavors. We can continue to use
the DGLAP equations and the same coefficient functions as in the pure twist-2 case, and the
latter are again dependent on the definition of operator Z; (the heavy-quark mass scheme).

In particular, if the flavor-excitation coefficient function cg?l is modified by a term of order

(m2/Q?), the twist-4 component of the structure function [c}f,{ ® feltwist-4 is modified by a
term of order (m?2/Q?) - (A?/m?2) = A?/Q?. The net change does not exceed the total error
A?/@Q? of the factorized approximation.

This implies that the twist-4 component of the charm PDF is compatible with any avail-
able version of the ACOT scheme, the differences between the structure functions in these
schemes are of order A?/Q? for twist-4 and even weaker for higher twists. Furthermore,
by the structure of the ACOT schemes, the scheme differences cancel order-by-order in a.
Therefore, the claim in Refs. [37-39] that the nonperturbative charm is only consistent with
the “full” version of the ACOT scheme or its analog schemes, such as the fully massive
FONLL scheme, is not correct. In our analysis, it suffices to use the S-ACOT-y scheme,
with or without the power-suppressed component. Since open charm is produced in c¢ pairs
in neutral-current DIS, and not as lone ¢ (anti)quarks, the x rescaling in the S-ACOT-y
scheme [65], requiring production in pairs only, approximates energy-momentum conserva-
tion better than its full ACOT counterpart that also tolerates production of single ¢ or ¢
quarks.

Let us illustrate the calculation of the simplest twist-4 charm contributions on an example
of select twist-4 squared amplitudes in Fig. 3. Again, we follow a close analogy to the twist-2
S-ACOT-x calculation in Sec. IIB1, see also [46] and [60].

The first line in Fig. 3 shows the lowest-order twist-4 contributions of order O(a?), the
remaining lines show some radiative contributions of order O(a3). As before, a superscript
in the parentheses indicates the order k of the perturbative coefficient.

In either the 3- or 4-flavor scheme, we start by computing “favor production” structure
functions F,Efccfb, such as Ff;g or F;E:?g shown in Fig. 3, with b standing for a gg or another
double-parton initial state. Many more diagrams besides the ones shown arise at each
order depending on the locations of the extra gluon attachments in the hard subgraph.
The coefficient functions associated with twist-4 are derived by matching the perturbative
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FIG. 3: Examples of subleading-power contributions to charm production originating from double-

gluon initial states.

coefficients order-by-order as in Egs. (5) and (6).

For instance, at order a2, the double-convolution integral F, ,E 29 @ ®fgg/p over the gluon-
pair light-cone momentum fractlons & and &, scales as a%(Q)A?%/p?, where p? is at least as
large as Q% or m2. In the limit A? < m2 < Q?, the O(a?) contribution with a smaller hard
scale p? = m? still survives. A part of it is resummed in the flavor-excitation term CEE;; ® fe/ps
added across all Q > Q. in order to obtain a smooth prediction for F(z,Q).?

The twist-4 O(a?) remainder of F, ,5 g)g ® ®@fgq/p that is not absorbed in cgl ® fe/p may be
of the same order as cgl ® fe/p at relatively low ). The remainder is given by C,(f;g ® ® fg/p;

5 The discontinuity of F(x, Q) at the switching point Q. is very mild at NNLO and reduced with including
higher ¢ orders. Smoothness of F(x,Q) is desirable for the convergence of PDF fits.
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where C'?

h.gg 15 found from the comparison of the O(a?) coefficients in Eq. (6):

) =F2 — o) @AY (7)

h.gg h.gg h.gg*

(2)
h.,g9g

Fig. 3. It is obtained by inserting Z into the Feynman graph for F; ,5,2;9 in order to constrain

The Feynman diagram for the “subtraction term” cgl ® A;” is shown in the first row of

the momentum of the cut charm propagator to be collinear to that of the target hadron, and

to replace the part of the graph for F; ) above the insertion by a simpler subgraph given by

h.gg
c}f}l. Clearly, the remainder is process-dependent.
The next-order contribution F\°)

hgg With an added gluon line develops a logarithmic en-
hancement at m? < Q?,

ngg ® ®fog/p ~ a3 (Q) (A2/mg) In(Q?/m?), (8)
which is resummed as a part of cgl ® fe/p and CS,}; ® fesp- Again, the O(a?) remainder that
is not resummed must still be included in the full result, it takes the form of C,f; ¢ @ fag/ps
where

h.,g9g h.gg*

3 (3 0 1 2 3 . )
Chso = Fhag — chn ® [ A1) @ AL, + 415, | — ) @ AT, (9)

7@

h.gg
scheme [60].

The rest of the coefficient functions can be computed along the same lines.

stands for the infrared-safe part (with respect to light partons) of ng?g)g in the MS

III. MODELS FOR THE FITTED CHARM

A. Overview

To recap the previous sections, a non-zero initial condition at @), for the “intrinsic charm
PDF”, interpreted in the sense of the “fitted charm”, may be used to test for the power-
suppressed charm scattering contribution of order O(a?), of the kind shown in Fig. 3. To
be sensitive to these contributions, the twist-2 cross sections must be evaluated at least
to NNLO to reduce contamination by the higher-order twist-2 terms. The complete set of
power-suppressed massive contributions can be organized according to the method of the
ACOT scheme. It is comprised of numerous matrix elements F; ,Efcb), Agfg for double-parton
initial-states b, as well as of twist-4 nonperturbative functions such as f,q/,(£1, &2, 1t)-

Various model estimates suggest a power-suppressed charm cross section of a modest
size: of order of a fraction of the a? component in DIS charm production, carrying less than
about a percent of the proton’s momentum. To estimate sensitivity of the QQCD data before
resorting to the full twist-4 calculation, we utilize an update of the phenomenological method

of the CTEQ6.6 IC NLO and CT10 IC NNLO analyses [36, 43]. In contrast to the previous

analyses, we examine a more extensive list of nonperturbative models, fit the most complete
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set of DIS data from HERA as well as the data from the LHC and (optionally) the EMC|
and utilize a PDF parametrization that results in a more physical behavior.

Four models for the charm-quark PDF ¢(z, Q) = ¢(z) at the initial scale @y will be
considered. [Qo is set to be less than (). = mE® in all cases.] Besides the conventional CT14
model that sets ¢(z) = 0, the other three models allow for ¢(z) of an arbitrary magnitude.
In all models, the charm PDF is convoluted with the S-ACOT-y coefficient functions cgf;)”
with & < 2. It remains constant below the switching scale (). and is combined with the
perturbative charm component at (). and evolved to @) > Q. by the 4- and 5-flavor DGLAP
equations.

Neither the present fit, nor the contemporary fits by the other groups include the twist-4
remainders of DIS cross sections discussed in Sec. [1 B 2: C,(f;g ® fag/p; C,ﬂg ® fgq/p, etc. The

remainders are process-dependent and comparable to the cgff)t ® fe/p convolutions at energies
close to m,.. Without including these process-dependent terms explicitly, the fitted charm
PDF found in a fit to DIS is not a truly universal nonperturbative function; it absorbs the
above process-dependent remainders. Furthermore, in DIS at very low ) or W, separation
of the A2/Q? and A?/m? terms presents an additional challenge. The experimental data in
the CT14(HERA?2) fits is selected with the cuts Q* > 4 GeV?, W2 > 12.5 GeV? so as to
minimize sensitivity to the A?/Q? terms. This is usually sufficient to minimize the A?/Q?

contributions below the PDF uncertainty from other sources. We examine the possibility of
the impact of the A2/Q? terms on the best-fit ¢(x, Q) in Sec. IV E.

B. Valence-like and sea-like parametrizations

Given that several mechanisms may give rise to the fitted charm, we will parametrize it
by two generic shapes, a “valence-like” and a “’sea-like” shape. The two shapes arise in a
variety of dynamical models.

A valence-like shape has a local maximum at z above 0.1 and satisfies fq/p(z, Qc) ~ ™
with a; < 1/2for z — 0 and fy/p(z, Q.) ~ (1—2)* with a; 2 3 for z — 1. The distributions
for valence u and d quarks fall into this broad category, as well as the “intrinsic” sea-
quark distributions that can be naturally generated in several ways [25], e.g., for all flavors,
nonperturbatively from a [uudQQ) Fock state in light-cone [23, 24, 26-28] and meson-baryon
models [29-32]; for % and d, from connected diagrams in lattice QCD [87].6

A sea-like component is usually monotonic in z and satisfies fq/p(z, Qc) ~ 7% for z — 0
and fq/p(z,Qc) ~ (1 — z)® for x — 1, with a, slightly above 1, and ay, 2 5. This behavior
is typical for the leading-power, or “extrinsic” production. For example, an (anti)quark
PDF with this behavior originates from g — ¢g splittings in perturbative QCD, or from

6 In contrast to the light flavors, in lattice QCD a charm PDF arises exclusively from disconnected diagrams
[88]. This suggests that ¢ and € contributions in DIS are connected to the hadron target by gluon insertions,
in accord with the physical picture of the QCD factorization in Sec. ITA.
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FIG. 4: zc(z,Q) distributions for various models, evaluated at @ = 1.3 GeV and Q = 2 GeV,

respectively.

disconnected diagrams in lattice QCD (see Ref. [87] for details).
to-next-to-next-to-leading order (N3LO) leading-power correction may produce a sea-like

Even a missing next-

contribution at x < 0.1, where the valence-like components are suppressed.

One may wonder why the charm quark PDF cannot be fitted to a more general
parametrization, in the same manner as the light-quark PDF's. We find that the primary
problem is that there are not enough precision data available to provide meaningful con-
straints on the power-suppressed IC content in the {z, Q} regions where it can be important
(see the discussion of the EMC charm data in Sec. IVF). There is also a danger that the
charm quark distribution, being relatively unconstrained, may behave unphysically, for ex-
ample, when the fit allows a valence-like ¢(z, ()g) to be almost the same in size as @(z, Qo) or
d(z,Qq) at Qo ~ m, and x — 1, where the experimental constraints are weak. We must also
demand conceivable cross sections to be non-negative, even though the PDF's themselves can
generally have a negative sign. Adopting a too flexible fitted charm PDF parametrization
may mask unrelated higher-order radiative contributions to the data, hence lead to misin-
terpreted fits. Thus, we restrict the freedom of the charm quark somewhat by constraining
it to be non-negative and have either a valence-like or sea-like form, with only one free mul-
tiplicative parameter. The positivity of the BHPS form enables positive charm-scattering
cross sections at large x, while a negative-valued SEA form is not statistically distinguishable
in the fit from a positive SEA form at a larger m,. value. [The dependence of SEA fits on m,
is reviewed in the next Section.] We have verified that a mixed charm parametrization that
interpolates between the valence-like and sea-like parametrizations only slightly increases
the range of the allowed charm momentum fraction, without impacting the main outcomes.
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C. The charm distribution models in detail

We will now review these four models, whose z¢(z, ()) distributions at ) = 1.3 GeV and
Q) = 2 GeV are depicted in Fig. 4 for later reference. These models are implemented in five
fits, BHPS1,2,3 and SEA1,2, summarized in the next section.

i) Perturbative charm. The first model is the one used in the standard CT14 (and
CT14HERA2) PDF fits, in which a non-zero charm PDF is produced entirely perturbatively
by NNLO switching from the 3-flavor to the 4-flavor scheme at the scale ().. The size of
the preferred charm distribution at a given @ significantly depends on the values of the
physical charm quark mass m, and QQCD coupling strength a,(mz). On the other hand, its
dependence on the auxiliary theoretical scales of order m., including the switching scale Q).
and the scale in the rescaling variable y, cancels up to N3LO and thus is relatively weak; see
a practical illustration in Fig. 1 of [50]. The net momentum fraction of the proton carried
by charm quark starts off close to zero at () ~ (). and effectively saturates at high () values
at a level of approximately 2.5%, see Fig. 7.

i1) The approximate Brodsky-Hoyer-Peterson-Sakai (BHPS) model [23, 24]
parametrizes the charm PDF at )y by a “valence-like” nonperturbative function

c(z) = %A z? %(1 —z)(1+ 10z +2°) — 2z(1 4 z)In (1/:1:):| : (10)

This function is obtained from a light-cone momentum distribution by taking the charm
mass to be much heavier than the masses of the proton and light quarks: m, > M,, m,, m,.
Here and in the following, A is the normalization factor that is to be determined from the
fit. This parametrization choice is employed in two global fits named BHPS1 and BHPS2,
corresponding to two values of A in Eq. 10. The parametrizations for @(z, Qo) and d(z, Qo)
in this case are taken to be the same as in the CT14/CT14HERA2 fits, i.e., they do not have
a “valence-like” component and monotonically decrease at x — 1. The parametrizations of
this kind tend to have enhanced /4 and €/d ratios at = — 1, see Fig. 9.

iii) The exact solution of the BHPS model is realized in the BHPS3 fit. Instead of
approximating the probability integral as in model ii), the ¢(z) is obtained by solving the
BHPS model for the |uudee) Fock state numerically and keeping the exact dependence on
M, m,, and mg. This fit also includes small BHPS contributions to the @ and d antiquarks
generated from the |uudu@) and |uuddd) Fock states according to the same method. In the
BHPS model, the quark distributions are determined by starting from a |uudqq) proton Fock
state, where the probability differential for a quark i to carry a momentum fraction z; is
given by

5
dP(zy,...,25) = Aday .. .dos 6(1-) ) L 5. (11)
i=1 M? —

5 m2

P Ei:l E?]
The standard BHPS result, used in ii), is given by letting ¢ = ¢ and taking the limit
me > Mp, my, mgq to produce Eq. (10). However, Ref. [26] has shown that the solution
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that keeps the masses finite, including those of the light quarks, modifies the shape of ¢(z),
slightly shifting the peak to smaller z. A similar conclusion was reached in Ref. [27], where
a kinematic condition on the intrinsic charm was determined analytically by neglecting the
masses of the three light valence quarks and retaining the ratio Mg /m?.

The change in the BHPS charm quark PDF from including the full mass dependence,
although visible, is small compared to the uncertainties in the global analysis. However, by
using this generalized BHPS model (BHPS3) in the context of the CT14HERA2 fit, and
also including the BHPS @ and d components, we obtain physically consistent ratios of the
charm-quark and light-antiquark PDFs at large x, cf. Fig. 9. We do not, however, include
the BHPS contribution to the s quark PDF, because it is overwhelmed by the very large
strange PDF uncertainty. The presence of a BHPS component for the strange quark does
not affect our conclusions about the nonperturbative charm, so we leave this topic for a
separate CTEQ study of the strange content of the proton.

i) In the SEA model, the charm PDF is parametrized by a “sea-like” nonperturbative
function that is proportional to the light quark distributions:

dz)=A (d(z,Qo) +u(z, Qo)) - (12)

This model is assumed with the SEA1 and SEA2 PDF sets from the two global fits distin-
guished by the value of normalization A in Eq. 12.

Finally, the normalization coefficient A in models ii)-iv) can be derived from the charm
momentum fraction (first moment) at scale Q:

() = f ze(z, Qo) + &z, Qo)) d. (13)

By its definition, (z);c is evaluated at the initial scale Q. It is to be distinguished from
the full charm momentum fraction (z).+2(Q) at @ > @Q., which rapidly increases with @
because of the admixture of the twist-2 charm component.

IV. FEATURES OF THE CT14 INTRINSIC CHARM
A. Settings of the fits

The BHPS1, BHPS2, SEA1, and SEA2 parametrizations are obtained by following the
setup of the CT14 analysis [1]. BHPS3 is obtained with the CT14HERA2 setup [42]. The
CT14HERA2 NNLO fit is very similar to the CT14 fit except that the HERA Run I and II
combined cross sections were used in place of the Run I cross sections. One of the poorly
fit NMC data sets [89] was dropped in CT14HERAZ2, and the low-z behavior of the strange
(anti)quarks was no longer tied to that of the @ and d antiquarks. This extra flexibility in
s(z, Qo) of CT14HERAZ2 resulted in a reduction of s(z, Qy) over the entire x range relatively
to CT14. This feature has potential implications for the models of ¢(z) with a sea-like

20



120

7 120

CT14 Qy=13GeV N ' CT14HERA2 Qu=1.3GeV
1000 __ BH?’:_ . 1007 _ ppps o "
| ] I
g0l — BHPS + Tier-2 /fr i 80— BHPS + Tier-2 ’;’ ]
--SEA / : |-~ SEA /
60 — SEA + Tier-2 J . 60— SEA + Tier-2 S

FIG. 5: The change Ax? in the goodness of fit to the CT14 (left) and CT14HERA?2 (right) data sets
as a function of the charm momentum fraction (z)ic for the BHPS (blue) and SEA (red) models.
Solid (dashed) lines represent the total x? and the partial Xﬁlobal? as defined in Eq. (14).

behavior. In some exploratory fits, we include the EMC data [41] on semiinclusive DIS
charm production, while in the other fits we examine sensitivity on the input pole charm
mass.”

The PDFs for light partons are parametrized at an initial scale slightly below @, =
mP?® = 1.3 GeV, with the exception of the study of the m?°¢ dependence, in which it was
more convenient to start at a lower initial scale () = 1.0 GeV. For all models, the QCD
coupling constant is set to a,(Mz) = 0.118, compatible with the world average value [67]
as(Mz) = 0.1184 + 0.0007, as in the standard CT PDF fits. The PDFs are evolved at
NNLO with the HOPPET code [90]. NLO AppLGRID [91] and FASTNLO [92] interpolation
interfaces, combined with NNLO/NLO factor look-up tables, were utilized for fast estimation
of some NNLO cross sections.

B. Dependence on the charm momentum fraction

In the models in Sec. III C, the magnitude of ¢(z) is controlled by its normalization A,
correlated uniquely with the net momentum fraction (z)i¢ of ¢(z, Qo) + é(z, Qy) defined in
Eq. (13). The choice of the (z)ic affects theoretical predictions in a number of ways, either
directly by modifying the charm scattering contributions, or indirectly via the proton sum
rule that changes the momentum fractions available to other parton flavors.

To gauge the preference of the global QCD data to a specific (z);c, we examine the

7 CTEQ-TEA fits can also take a MS charm mass, rather than the pole mass as the input [50], with similar

conclusions.
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goodness-of-fit. function
X2 = Xgloba.l + _P} (14)

constructed in the CT14 method from the global X2, and a “tier-2” statistical penalty
P [1]. It is convenient to compare each fit with an (z);c # 0 to the “null-hypothesis” fit
obtained assuming (z)ic = 0. Thus, we start by computing

Ax® = X2 —xs, (15)

where x? and x2 are given for (z);c # 0 and (z);c = 0, respectively, at 50 values of (z)ic
and default Qy = mP°® = 1.3 GeV. We plot the resulting Ax? behavior in Fig. 5. The
CT14 (CT14HERAZ2) data sets are compared against the approximate (exact) solution of
the BHPS model, respectively. The SEA charm parametrizations are constructed as in
Eq. (12) in terms of the respective CT14 or CT14HERA?2 light-antiquark parametrizations.

For each series of fits, we show curves for two types of estimators: a dashed curve for
Axgtobal without the tier-2 penalty P, and a solid one for x? that includes P according to
Eq. (14). The Xﬁlow function estimates the global quality of fit and is equal to the sum of
x? contributions from all experiments and theoretical constraints. A non-negative “Tier-2”
penalty P is added to XEIOM to quantify agreement with each individual experiment [21, 36].
Being negligible in good fits, P grows very rapidly when some experiment turns out to
be inconsistent with theory. The net effect of P is to quickly increase the full x? if an
inconsistency with some experiment occurs, even when thom remains within the tolerable
limits.

We see from Fig. 5 that large amounts of intrinsic charm are disfavored for all models
under scrutiny. A mild reduction in y2, however, is observed for the BHPS fits, roughly at
(x)1c = 1%, both in the CT14 and CT14HERA?2 frameworks.

The significance of this reduction and the upper limit on (z);c depends on the assumed
criterion. In CTEQ practice, a set of PDFs with Ay? smaller (larger) than 100 units is
deemed to be accepted (disfavored) at about 90% C.L. Thus, a reduction of y? by less than
forty units for the BHPS curves has significance roughly of order one standard deviation.
We also obtain the new upper limits on (z);c in the CT14 and CT14HERA?2 analyses at the
90% C.L.:

0.021 for CT14 BHPS,
0.024 for CT14HERA?2 BHPS,
0.016 for CT14 and CT14HERA?2 SEA. (16)

)
3
A N N

In keeping with the previous analysis of Ref. [36], we define specific fits with particular
choices of (z)1c for both examined models. The fits BHPS1 and SEA1 correspond to (z)ic =
0.6%, while BHPS2 has (z);c = 2.1% and SEA2 has (z);c = 1.6%. Both the BHPS2 and
SEA2 charm parametrizations lie near the edge of disagreement with some experiments in
the global analysis data according to the CTEQ-TEA tolerance criterion, cf. Fig. 5. In the
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CT14HERA2 fit, the BHPS3 point corresponds to (z);c = 1%, which represents the best-fit
momentum fraction in the CT14HERA2 analysis. We remind the reader that, in addition
to fitting more recent experimental data from the LHC and other experiments, the BHPS3
analysis also employs a general numerical solution to the BHPS probability distributions and
small valence-like contributions for both the @ and d quarks.

The results in Fig. 5 are compatible with the findings of the previous CT10 NNLO IC
analysis [36]. In particular, comparing to CT14 in the left frame of Fig. 5 and to Fig. 2
in Ref. [36],°> we see that the minimum in Ay? in the right frame of Fig. 5 deepened by
approximately 10 units for BHPS3/CT14HERA2 — a minor reduction caused mostly by the
change to the CT14HERA2 setup, either for the exactly or approximately solved BHPS
model.

Also, for the CT14HERAZ2 analysis in Fig. 5 (right), we note that Ax? of the SEA model
rises more rapidly with increasing (z)jc than it does in the comparable CT14 fit. This is
due to the greater flexibility in the low-z behavior of the strange-quark distribution in the
CT14HERA?2 framework discussed previously. More freedom reduces s(z,()) at low  and
thus increases (z, Q) and d(z,Q) at the same z. In the CT14 fit with the SEA charm
component, the Ax? minimum is at (z);c & 0.004, and it is largely washed out in the
CT14HERA2 case. The Ax? for SEA grows faster for CTI4HERA2 compared to CT14: at
(z)1c = 1.6% it is higher by about 40 units in Fig. 5(right) relatively to Fig. 5(left).

The reduction in x? for the NNLO BHPS fits at (x);c = 0.01, relatively to the fit with
(xz)1c = 0, thus remains a persistent feature of the CT10, CT14, and CT14HERA2 analyses.
While the Ax? reduction is not statistically significant, it raises one’s curiosity: is it a sign of
a genuine charm component or of the other circumstantial factors identified in Sec. III A? It
will be discussed in Sec. IVE that 2 is reduced primarily in a few fixed-target experiments
(the F; measurements from BCDMS and the E605 Drell-Yan data) that are not overtly
sensitive to charm production. Conversely, the description of the other experiments that
might be expected to be most sensitive to intrinsic charm is not improved.

C. Dependence on the charm-quark mass and energy scale

We have checked that these conclusions are not strongly dependent on the PDF
parametrizations of the light partons. However, the SEA parametrization at the initial
Qo is very sensitive to the assumed charm mass.

Distinct from the auxiliary QCD mass parameters — )y, )., and the mass in the y
rescaling variable — the physical charm-quark mass of the QCD Lagrangian enters the DIS
hard matrix elements through the “flavor-creation” coefficient functions, such as the ones for
the photon-gluon fusion. The NNLO fit to DIS is mostly sensitive to the primordial QCD
mass parameter m,, not to the auxiliary parameters of order m, [50]. The m?°¢ dependence

8 In Ref. [36], Xﬁiobali P, and x? are denoted by x%, T3, and x% + T.
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FIG. 6: Upper: dependence of Ax? in the CT14 NNLO fit (without the nonperturbative charm)
on the charm mass m{,""’e for two possible gluon parametrization forms. Lower: Dependence of
Ax? on the intrinsic charm momentum fraction for CT14 candidate fits with different values of the
charm-quark pole mass mPoe. Ax? is defined as x% —x? (mgde = 1.3GeV) and x2—x2 ({z)ic =0)

in the upper and lower insets, respectively.

remains mild, the mP?® values in the range 1.1 — 1.5 GeV are broadly consistent with the
CT14 data.

Exploratory fits testing the dependence of Ax? on (x)ic, for a selection of pole masses,
mPole = {1.1, 1.2, 1.3, 1.4, 1.5} GeV, are illustrated by Fig. 6. The general setup of these y2
scans follows the fits to the CT14 data. To access the masses below 1.3 GeV, we reduced the
initial scale )y to 1 GeV and examined alternative forms for the gluon PDF parametrization,
because DIS charm production is sensitive to the gluon PDF g(z,Q). Dependence of Ay?
for CT14 NNLO on m?®® for two representative gluon parametrizations at Q, = 1 GeV,
dubbed “gluon 1”7 and “gluon 27, is shown in the upper inset of Fig. 6. With the “gluon 1”
parametrization, used in the default CT14 fit with Qy = 1.3 GeV, g(z, Q) is constrained to
be positive at all x; while for “gluon 27, it is allowed to be negative at the smallest z and
Q, provided that the negative gluon does not lead to unphysical predictions. In the latter
case, an additional theoretical constraint was enforced to ensure positivity of the longitudinal
structure function Ff,(z, Q) measured by the H1 Collaboration [93]. The more flexible “gluon
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2" parametrization results in a marginally better y? with respect to the nominal CT14, or
“gluon 17, at a slightly lower mP°® = 1.22 GeV, and with a large uncertainty. This best-fit
mP value in this range is consistent with the previously observed tendency of the DIS data
to prefer smaller M'S masses at O(a?), e.g., me(m.) = 1.157015 GeV obtained in the CT10
setup [50].

The two lower insets of Fig. 6 illustrate the variations in Ay?, with the more flexible
“gluon 2” parametrization, when the IC component is included for five values of m?°€. The
circles on the curves mark the x? minima; the thin vertical lines indicate the exclusion limits
on (z)1c for each mP° value.

For the BHPS model in the left inset, the position of the y? minimum is relatively stable as
mfg’m is varied, while the upper limit on (z)1c decreases to 1.9% as m, increases. The overall
conclusion is that the preferred (z);c at scale @)y is not strongly sensitive to the variations
of m, in the case of the BHPS parametrizations. On the other hand, as we will see in a
moment, the total momentum fraction (z).,-(Q) at scales above @, = mE®® is sensitive to
mE?¢ due to the growing perturbative charm component.

The situation is very different for the SEA model shown in Fig. 6 (right), where the
dependence on m?° is more pronounced. In this case, Ax? develops a pronounced minimum
for mP°® > 1.3 GeV, while the minimum totally disappears, and (z)ic > 0.015 is totally
excluded, for mP?¢ = 1.1 GeV.

This can be understood as follows: when mP° increases, the twist-2 y*g fusion contri-
bution in the inclusive DIS structure functions is reduced due to phase-space suppression.
This suppression is compensated by allowing a larger magnitude of intrinsic ¢(z, Q)), which
enhances the y*¢ scattering contribution. An opposite effect occurs when m,. decreases (i.e.,
less phase-space suppression for v*¢ fusion, a smaller intrinsic charm momentum allowance
in v*c scattering). But the % and d quark PDFs are well constrained by the data, especially
from novel cross section measurements for vector boson production in pp and pp in the in-
termediate/small z region. The net effect is the Ay? enhancement in the sea-like scenario
for mP¢ < 1.3 GeV and also for larger (x)c fractions.

To conclude the discussion of the partonic momentum fractions, Fig. 7 illustrates the
first moments (z)(Q)) of the other parton flavors as a function of the factorization scale Q.
The momentum fractions are computed separately for quarks, antiquarks, and gluons in the
context of the CT14 setup. In the two upper subfigures, the PDF first moments are shown
for the BHPS model, while those from the SEA model are shown in the lower two subfigures.
The dashed curves represents BHPS1 (SEA1), the dotted ones represent BHPS2 (SEA2).

The lower part of each figure shows (z) normalized to its CT14 central value. The
BHPS2 model curve lies on the edge of the allowed CT14 u and d quark uncertainties, while
the SEA2 is on the boundary of the @ and d uncertainties. This corroborates the earlier
statement that BHPS2 and SEA2 are the extreme choices for the valence-like and sea-like
charm distributions, respectively. Next, we will consider the full z dependence of the PDF's
provided by our models.
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FIG. 7: Momentum fractions (z)(Q) for CT14 and CT14 IC vs. @, shown independently for gluons,
quarks and antiquarks. The momentum fractions of PDFs for BHPS1 (SEA1) are denoted by the
dashed curves, while those for BHPS2 (SEA2) are denoted by dotted curves. (Here, the label

n

“cqk” indicates that only charm quark is counted, and “ubr” is for up antiquark only, etc.) The

uncertainty bands are for CT14 with no intrinsic charm.
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FIG. 8: Ratio of ¢(z,Q)ic/c(z, Q)cT14 Within the CT14 uncertainties at 90% C.L. at the scale
Q =2 GeV (left) and @ = 100 GeV (right).

D. Impact of IC on the PDF's

To complement the visualization in Fig. 4 of the = dependence of the BHPS/SEA charm
quark PDFs, in Fig. 8 these PDF's are shown normalized to the CT14 charm PDF with no
IC contribution. The blue shaded region represents the CT14 uncertainty for ¢(z, ()) at the
90% C.L.

At low scales () = 2 GeV), the charm quark in the SEA models, especially the SEA2
model, appears to be larger, with respect to the CT14 central charm, over a wide range of
momentum fraction z. The charm quark distributions from both of these models are clearly
outside the CT14 uncertainty bands. Of course, this is not a contradiction, since the CT14
charm PDF is purely radiative, and so it depends on the theoretical assumptions in addition
to the constraints from the experimental data. The inclusion of nonperturbative sources
of charm relaxes the theoretical assumptions, and so allows a larger charm PDF. The SEA
models exhibit minor shape distortions; two bumps are present in both the SEA1 and SEA2
models at z ~ 1073 and z = 0.1.

The charm-quark distributions in the BHPS models at low scales are basically coincident
with CT14 below = ~ 5 x 1072, while a rapid growth is observed at high z, of the largest
rate for the BHPS2 model. We note that there is no qualitative difference in the behavior of
c(z, Q) between the BHPS3 model and the other BHPS models below x = 5x 1072, while the
differences at larger x can be ascribed to the exact solution for mass dependence in BHPS3.
At a higher scale (Q = 100 GeV), the excesses for all models are suppressed for z < 1072 due
to the effects of DGLAP evolution. The results for the ratio of ¢(z, Q)ic/c(z, @)cTi4nERAS
are analogous to those shown in Fig. 8 and are omitted.

Additional insights can be gathered by examining the ratios of the charm-quark PDF to
other flavors: (c(z, Q) + &(z,Q)) / (u(z, Q) + d(z,Q)), c(z, Q) /u(z, Q), and c(z, Q) /d(z, Q).

These ratios are plotted versus x in Fig. 9, for two different values of the () scale. Also shown
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for a comparison are the corresponding CT14 PDF uncertainty bands.

For (¢ + &)/(@ + d), all the BHPS and SEA models reproduce the shape of CT14 at low
z, with the ratios in the SEA models shifted upwards. The SEA models retain the shape
of CT14 (but with a larger normalization) at higher = as well. All BHPS ratios start to
rise quickly in the range 0.1 < z < 0.2. This rise is essentially unabated at z > 0.2 for
the BHPS1 and BHPS2 models, because their respective parametrizations for @ and d fall
off as (1 — z)¢ and are more strongly suppressed at  — 1 than the BHPS charm quark
PDF. Inclusion of the intrinsic @ and d components in the BHPS3 model, together with the
numerical estimation of the BHPS integrals for the ¢, @, and d intrinsic parametrizations,
results in a softer BHPS3 (c + ¢)/(u + d) ratio at large = with a bump residing at = ~ 0.5.
The exact amount of suppression at > 0.5 can be determined, e.g., by a fit to the numerical
solutions of the BHPS3 model. In particular, we find that a 6-parameter fit using f(z) o
2P1(1 — z)P2(1 + p3zP* + psz + pex In (z)), gives a large-z suppression power p, &~ 8,9, 10 for
intrinsic ¢, d, and @, respectively.

The c(z,Q)/u(x, Q) ratios in all BHPS models agree with CT14 over the range 107° <
z < 0.1 and exhibit a bump (most prominent for BHPS2) at z ~ 0.5. The SEA model
ratios are notably larger than CT14 in the range 107° < z < 0.3 and approach CT14 for
larger z-values. At higher scale, ) = 100 GeV, all models are closer to CT'14 over the range
107° < x £ 0.1 with the exception of SEA2, while the bump in the BHPS models at x =~ 0.5
are slightly suppressed. The ¢(z, Q)/d(z, Q) ratio plot shows essentially the same features as
the ¢(z, Q) /u(z, Q) plot, with the difference that the bumps present in the BHPS1, BHPS2
and BHPS3 models, at x =~ 0.5, are much more pronounced.

An additional charm component (either a sea-like or valence-like one) affects both those
LHC predictions that directly involve charm quarks in the initial state, and those that
do not. In Fig. 10 we show how the gluon-gluon luminosity is affected by BHPS and SEA
models at LHC run I and II energies in the x range sensitive to Higgs production. The parton
luminosity is defined as in Ref. [94]. The various models, shown as ratios to CT14NNLO, are
well within the 68% C.L. PDF uncertainty. At /s = 8 TeV the most prominent deviations
are for the SEA2 model, which is suppressed at lower Mx and is notably larger than CT14
for Mx in the TeV range. The BHPS models are almost coincident with CT14 for the
invariant mass My < 200 GeV: BHPS1 and BHPS2 are highly suppressed above My > 300
GeV, while BHPS3 is suppressed for 0.3 < Mx < 3 TeV and enhanced above this energy
by approximately 3%. The impact on the Higgs cross section is small, the influence on the
high-mass gg PDF' luminosities is more pronounced, but still within uncertainties.

E. Agreement with experimental data sets

In this section we focus on the data sets whose goodness-of-fit values are affected by
the introduction of the intrinsic charm component. These are selected by computing an
effective Gaussian variable, S,,, for each experiment n, according to the method introduced

28



]03 1 T T T T T T 1 ]03 T T T T T T T T
(c+0)/(u+d) at Q =2.0 GeV 90% C.L. ; (c+0)/(u+d) at Q =100.0 GeV 90% C.L. 4
CT14NNLO ; CT14NNLO ;
ol e BHPS1 /] 2| === BHPS1 /
or e BHPS2 /3 10 --— BHPS2 /3
= — BHPS3 ;’f /] o — BHPS3 "__- .;-
lg SEAl / ; g - SEAL1 ,/ ‘!_.-
‘5 101 SEA2 Fs Fi ‘5 101 | SEA2 / {.... i
- -
= =
3 3
10°
]0_1 L
0.5 T T T T T T T T 0.5 T
(X, Q)u(x.Q) at Q =2.0 GeV 90% C.L.
0.4 04}
B .2
[+ [+
£~ £~
= =
=02 =02
= =
0.1 0.1F
0.0 0.0 L
10" 107
0.5 1 T T T T T T T 0.5 T T
¢(x,Q)/d(x.Q) at Q =2.0 GeV 90% C.L.
CT14NNLO
04
2 2
= = 03 -
& &
s s
= =2 02F
3 3
0.1F

FIG. 9: Left column: BHPS and SEA models within the CT14 PDF uncertainty at 90% C.L. in the

charm-quark fraction (c(z,Q) +é(z,Q)) / (u(z, Q) + cf(x,Q)) (upper), c(z,Q)/u(z,Q) (middle),
and c(z,Q)/d(z,Q) (lower), at Q@ = 2 GeV. Right column: same as left, but at Q@ = 100 GeV.

in Refs. [21, 36, 95].

For specifications of S,,, we refer the reader to the appendix of Ref. [36]. S, maps the
goodness-of-fit 2 for a particular data set, assumed to obey the chi-square probability distri-
bution with Vs data points, onto a variable .S,,, which obeys a standard normal distribution
independently of Nps. More precisely, Sy, is defined so that the cumulative standard normal
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invariant mass M x of a hypothetical massive final state X. The predictions are normalized to the

CT14NNLO central PDF set. The shaded bands indicate the CT14 uncertainty at 68% C.L.

distribution evaluated at S, equals the cumulative x?(x2, Npts) distribution evaluated at x2.
We adopt an accurate approximation for 5, given by

Sn ~ L(Xia Npts),

L (18 Ny)*? 6 9N
T 18Ny +1 |6 —In(x2/Nys) O9Nps — 1

(17)

The S,, distribution over the individual data set characterizes the agreement with the totality
of the fitted experiments, regardless of their numbers of data points. Conversely, a naive use
of the global y? as the only discriminating variable may give too much weight to the data
sets with large numbers of data points, even if the correlations with the fitting parameters
are not very significant.

The values of S,, can easily be interpreted in terms of the probabilities associated with
a normal distribution. Fits with S,, between -1 and 1 are accepted as reasonable, within
the 68% C.L. uncertainties. That is, an increase of S,, by 1 has about the same significance
(68%) as the increase of x2/Nps by \/2/Npts. Fits with S, > 3 are considered poor, while
those with S;, < —3 actually fit the data much better than one would expect from the regular
statistical analysis: for some reason they have anomalously small residuals.

In Fig. 11, we selectively plot S,, for those data sets whose agreement with theory is most
affected by the IC in the CT14 fit with m??® = 1.3 GeV. S, is plotted as a function of (z)c
for both the BHPS (left) and SEA (right) models.

For the BHPS model, the most visible dependence is found for the fixed target measure-
ments from BCDMS for F¥ and F¢ (ID 101, 102) [96, 97] and the ATLAS 7 TeV W/Z cross
section measurements [98] (ID 268). The E866 Drell-Yan dimuon cross section measure-
ment [99] also shows some variation, however, its S, is always larger than 3 and not shown
in Fig. 11(left). These experiments, mostly sensitive to u and d quarks at large z, (slightly)
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favor a non-zero intrinsic charm component. Although the improvement for the BCDMS S,
is relatively mild, the two data sets contain a large number of data points (Nps = 339 for F}
and 251 for F§). The shallow minimum of 20-30 units occurring in y? for the BHPS model
in Fig. 5 is attributed primarily to these two experiments; it is not clear whether it originates
from the charm component or reflects a small admixture of the N3LO contributions or even
some residual 1/Q? terms that may be present at relatively low ) and large z.

Continuing with BHPS, the charged-current (CC) DIS measurement [100] F} by CCFR
(ID 110) has 0 < S,, < 1 for 0 < (z)1c < 0.02, then S, increases faster for even larger (z)c.
The combined HERA charm production [101] (ID 147) exhibit 1 < S, < 2 over the whole
range of (z)ic.

The S,, dependencies of various experiments for the SEA model are shown in the right-
side of Fig. 11. The HERA charm production and BCDMS (F}) data are very sensitive to
(x)1c in the SEA model. A fast growth for S, is observed for (z);c > 0.01, paralleling the
increase in x? observed in Fig 5. Experiment 108 (charged-current neutrino DIS on iron
by CDHSW [102]) does not impose strong constraints in either model, as it is already fit
very well (S, & —1). Its x? exhibits mild improvement for larger values of (z);c. Similar
conclusions can be drawn for the CT14HERAZ2 fits and when m,. is varied as in Sec. IV C.
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CT14, BHPS Q,=1.3 GeV BTSN CT14, SEA Q=13 GeV 1 108
20} e T B |- 110
e 10 50 j-w
I = 147 [ 1 ==268
100 [ —— 1 - 268 X ]
' 20F
= (R aunt® =
W e TN s w L
P e ] Lof
0.0F k
1.0 Frr ] g
1.0 ]
- 1 1 N N . | - . ]
205 0.01 0.02 0.03 204 0.01 0.02 0.03
X>1c X7

FIG. 11: The Gaussian variable Sy, for select experiments as a function of (z)ic. Left: BHPS model;
Right: SEA model. The curves correspond to BCDMS for Ff and Fg (ID 101, 102); ATLAS 7 TeV
W /Z cross sections (ID 268); CC DIS measurements (ID 110); combined HERA charm production
(ID 147); and charged-current neutrino interactions on iron CDHSW FJ’ (ID 108).

F. A global analysis including the EMC charm DIS measurements

The measurement of semi-inclusive dimuon and trimuon production in DIS on an iron
target by the the European Muon Collaboration (EMC) [41] has been investigated by various
groups for indications of BHPS-like contributions from the IC. This data set, published in

31



Candidate NNLO PDF fits X2 /Npts
All Experiments| HERA inc. DIS|{HERA ¢z SIDIS[EMC c¢ SIDIS
CT14 + EMC (weight=0), no IC 1.10 1.02 1.26 3.48
CT14 + EMC (weight=10), no IC 1.14 1.06 1.18 2.32
CT14 + EMC in BHPS model 1.11 1.02 1.25 2.94
CT14 + EMC in SEA model 1.12 1.02 1.28 3.46
CT14 HERA2 + EMC (weight=0), no IC [1.09 1.25 1.22 3.49
CT14 HERA2 + EMC (weight=10), no IC|1.12 1.28 1.16 2.35
CT14 HERA2 + EMC in BHPS model 1.09 1.25 1.22 3.05
CT14 HERA2 + EMC in SEA model 1.11 1.26 1.26 3.48

TABLE I: x?2 /Npis for all experiments, the HERA inclusive DIS data, HERA cc SIDIS data, and
EMC F5. data in representative fits.

1983, did not follow the stringent criteria on the documentation of systematic uncertainties
adopted in more recent studies; therefore, there is a lack of the control on the constraints
that these data may impose. This is why the EMC measurements are not included in the
CTEQ PDF analyses, whose policy is to include only data with documented systematic
errors. Moreover, the EMC analysis has been done at the leading order of QCD, clearly
insufficient for accurate conclusions at NNLO. Despite the tensions® stated between the EMC
measurement and its contemporary experiments in the case of inclusive DIS [89, 96, 97, 105]
and semi-inclusive charm DIS production cross sections [41, 106]'°, various studies [107—
111] have interpreted the excess seen in a few high-z bins of the EMC F,.(z, Q) data as
evidence for some nonperturbative charm contribution, while yet other studies concluded the
opposite [31, 33, 34]. Our special series of the CT14 IC fits included the EMC F5.(z, Q) data
to investigate the above conclusion. We observe that the EMC F). data do not definitively
discriminate between the purely perturbative and intrinsic charm models, hence we do not
include them in the final CT14 BHPS and SEA fits. However, it is still useful to examine
how the EMC data could possibly affect the amount of the intrinsic charm-quark content,
especially given their emphasis in a recent NNPDF study [39].
Our findings concerning the fit to the EMC data can be summarized as follows.

9 See, for example, discussions in the early CTEQ analyses [103, 104].
10 Keep in mind that EMC employed non-identical detection techniques in the measurement of the inclusive

structure functions F [105] and semi-inclusive F¥§ [41].
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1. x? values for the EMC data set

Either by fitting to the EMC F,, data or not, we obtain x?/Nps between 2.3 and 3.5 for
the EMC data set in various candidate fits. So, for their nominal experimental errors, the
EMC data is in general not fit well in either CT14 or CT14HERAZ2 setup, regardless of the
charm model. On the other hand, these y?/Nps values are not dramatically high, it may be
argued that allowing for a modest systematic error would improve the agreement to tolerable
levels. One way or another, the unknown systematics of this measurement prevents us from
concluding for or against the preference of the EMC F). data for a particular charm model.
To show an example of this, Table I reports the values of x* /Ny for all experiments, HERA
inclusive DIS; HERA charm SIDIS, and EMC charm SIDIS in the CT14 (CT14HERA2)
NNLO IC candidate fits in the upper (lower) half of the table.

The first two lines in each half present the fits without the nonperturbative charm. When
x? for the EMC F,. data is included with weight 0 (so that the EMC F5,. data has no
effect on the PDFs), we obtain x?/Npys &~ 3.5 — it is quite poor. When the EMC weight is
increased to 10 to emphasize its pull, x?/Nps decreases to 2.4, at the cost of a worse x? for
the inclusive HERA I+II data and other experiments, and somewhat better x? for charm
DIS hadroproduction. Again the quality of the fits is poor, yet it is also compatible with the
possibility of moderate unaccounted systematic errors, as those are unknown in the EMC
case.

We can also see from Table I that including the BHPS intrinsic charm does not qualita-
tively change the fit to the EMC data. Without the IC, the x? for all experiments slightly
grows if we increase the weight of the EMC data set; with the BHPS intrinsic charm, there
seem to be no effect with and without the EMC data, as y? does not change in either case.
In the SEA model fit, inclusion of the EMC data results in a larger x? with respect to the
fits without the intrinsic charm; description of both HERA inclusive DIS and HERA com-
bined charm SIDIS production deteriorates. To summarize, in all considered intrinsic charm
models (BHPS, SEA, and the mixed model that produces a similar outcome), the intrinsic
charm has no decisive effect on improving the fit to the EMC data.

2. Constraints from EMC on the IC momentum fraction

Figure 12 compares the dependence of Ax? on (z)ic in the context of the CT14 and
CT14HERAZ2 global analyses with and without EMC data. It must be noted upfront that,
since the EMC Fy.(z, Q) data set are not well described, these Ax? scans do not establish
clear-cut constraints on (z)jc, contrary to the CT14 IC fits without the EMC data set that
were presented earlier.

The outcomes shown here are for m??® = 1.3 GeV and remain analogous for the other
mP°¢ values. The bands of various shades illustrate the spread in Ay? values induced by:
(a) the choice of different data sets and strangeness parametrization used in CT14 and
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FIG. 12: Ax? as function of (z)i¢ in fits with and without the EMC data for both the BHPS and
SEA models for mF”® = 1.3 GeV. For the BHPS model (left), the two bands are from the fits
with and without the EMC data. For the SEA model (right), the bands are from the CT14 and
CT14HERAZ2 fits with the EMC data.

CT14HERA2, and (b) various gluon PDF parametrizations utilized.

For the BHPS model in Fig. 12 (left), we observe two distinct trends in the fits with and
without the EMC data. The spread in the Ax? band without the EMC data is mostly driven
by the differences in the data sets and in the strangeness parametrization between CT'14 and
CT14HERA2 (the dependence on the gluon parametrization is weak). Meanwhile, after
including the EMC data, the spread due to the gluon parametrization dependence is much
larger and gives the major contribution to the band. The BHPS model is affected more by
the EMC data, the Ax? band narrows near the minimum when these data are included. The
x? minimum with the EMC data moves to a lower value of (x);c &~ 0.006, with substantially
the same x? (same depth) at the minimum. The nominal upper limit on (x);c moves to
about 0.012; its exact location is debatable because of the overall poor quality of the EMC
fit, see above.

To contrast with the BHPS case, in the SEA model in Fig. 12 (right), the Ax? behavior
is only mildly impacted by the EMC data. As already discussed in Section IV B and shown
in Fig. 5, the Ax? trend in the SEA model is mostly affected by the differences between the
CT14 and CT14HERA2 fits. The EMC data do not change this trend. Both minima are
shallow and higher than in the BHPS case.

The Gaussian variables S, quantifying the agreement with the individual data sets are
shown for the CT14 fits and for various (z);c values in Fig. 13. [The behavior of S, in the
CT14HERAZ2 fit is largely analogous.] In this figure we selected only the experiments that
have pronounced dependence on (z)c.

Comparing Fig. 13 with Fig. 11 in which the EMC data are not included, one sees that
the dependence of S, for the non-EMC experiments on (z);c does not qualitatively change
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NNPDF3.1 [40] are superimposed.

upon the inclusion of the EMC. The S,, value for the EMC F,,., indicated as “experiment
ID 1707, is very high for any (z);c. In the BHPS model in Fig. 13 (left), the S,, variable for
the EMC experiment increases rapidly past (z)ic of about 0.005, up to very high values at
(x)1c = 0.03. The tier-2 contribution associated with the rapid increase of this S, above 6
produces the rapid rise of the global Ax? for (z)ic > 0.01 in Fig. 12. In the SEA model in
Fig. 13 (right), we observe S,, > 4 for the EMC regardless of (z)c.

To recap, the EMC data has a weak impact on fitting the rest of the CT14/CT14HERA?2
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data. Increasing the weight of the EMC data to 10 without the IC improves the description
of the HERA charm production data at the expense of a worse fit to the inclusive DIS data
and to the full data set. Including the nonperturbative charm contribution of the BHPS,
SEA, or mixed type does not improve the fit to the EMC F.(z, @), in contrast to the findings
in [39].

It might be argued that a larger set of parametrization forms for the IC needs to be
explored, as in the NNPDF method, to see if a better fit to the EMC F.(z,Q) could be
reached. In the absence of control of experimental and (N)NLO theoretical systematic effects
in the EMC F), data set, such an exercise again appears to be excessive. Indeed, when using
a purely perturbative charm only, the NNPDF3.1 study [40] obtains a considerably worse
X2 /Npts = 4.8 for the EMC F. data set than our results quoted in Table I. After including
a flexible “fitted charm” parametrization they arrive at a much better agreement with the
EMC data sample, with x2 /Ny = 0.93 and (z).,» = 0.344+0.16% at Q. = mF?¢ = 1.51 GeV
at 68% C.L. Their x?/N,, values in Table 4.3 of [40] are somewhat better for the inclusive
HERATIHII data set (1.16) and somewhat worse for the HERA charm SIDIS data set (1.42),
compared to our 1.25 and 1.22 in Table L.

Some of these disparities are explained by non-identical PDF parametrization forms
(positive-definite BHPS/SEA models in the case of CT14 IC, vs. the neural networks of
NNPDEF3.0), the general-mass schemes, and the choices of the mass parameters: Q). =
mP?e =1.3, 1.275, and 1.51 GeV in the CT14, NNPDF3.0, and NNPDF3.1 studies, respec-
tively. The preferred (z)c+2(Q) at @ = 1.51 GeV are smaller in the NNPDF3.1 frame-
work than for CT14 IC in part because the evolved perturbative charm PDF is absent at
this @ in NNPDF3.1. The S-ACOT-y scheme that we use is at present the only ACOT
scheme in which the massive coefficient functions are fully available to NNLO, or O(a?) [60].
NNPDF3.1 used a different mass scheme [37, 39] and set to zero some O(a?)/NNLO massive
terms that are not available in that scheme [40]. We thus expect some differences between
the schemes.

Another difference arises from the definitions of uncertainties. The current paper quotes
90% probability intervals obtained by scanning Ax? with respect to (z), as explained in
Sec. IVB. The NNPDF works quote their errors as symmetric standard deviations obtained
from averaging over many replica fits, each of which is not a perfect fit and may deviate
from the central fit by hundreds of units of x?* [113].

As an illustration, Fig. 14 compares the probability intervals on the momentum fractions
from the CT14/CT14HERA2 and NNPDF3.0/NNPDF3.1 NNLO analyses. The left frame
shows the CT14/CT14HERA2 90% probability intervals for {z)ic at @@ = 1.3 GeV. The right
frame shows the CT14/CT14HERA2 intervals for (z)..(Q) at @ = 1.51 GeV and super-
imposes the 68% C.L. uncertainties on the fitted charm (FC) copied from the NNPDF3.0
and 3.1 publications. Apart from the constant horizontal shift due to the ). choice, without
the EMC data, the CT14 and NNPDF probability intervals for (z).,. are reasonably com-
patible, minding their non-equivalent definitions. [The upward shift in (z).-(Q) by ~ 0.5%
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due to the choice of ()., an auxiliary scale in a general-mass scheme, is of little physical
significance, it is canceled up to O(a?) in the complete DIS cross section because of the
compensating shift in ACOT subtraction terms.| Inclusion of precise LHC data sets helped
to reduce the uncertainty in NNPDF3.1. The symmetric definition of the NNPDF3.1 errors
allows a negative value of uncertain interpretation for (z).,. at 68% C.L. if the EMC data
are not included. A very small uncertainty on (z).4z quoted by the NNPDF3.1+EMC fit is
accompanied by the reduction in the global x? by less than 13 units for 4300 data points
when the EMC data are added into the fit, cf. Table 4.3 in Ref. [40]. Needless to say, the
impact of the new experiments and assumptions on the uncertainty of (x).,. warrants a
further investigation.

V. IMPACT OF IC ON ELECTROWEAK Z AND H BOSON PRODUCTION
CROSS SECTIONS AT THE LHC RUN II

Next, we will analyze the impact of the fitted /intrinsic charm (or the “IC”| for short) on
key observables at the LHC, assuming that the fitted charm does not strongly depend on
the hard process at NNLO. [We argued in Section II that this assumption is not self-evident.
We will nevertheless make it to investigate sensitivity of the LHC predictions.]

Figure 15 illustrates dependence of the total cross sections for inclusive production of
electroweak bosons W*, Z° and H (via gluon-gluon fusion) on the IC model and charm
quark mass at the LHC /s = 13 TeV. To provide a visual measure of the CT14NNLO
uncertainty, each figure shows an error ellipse corresponding to CT14 NNLO at the 90%
C.L. The W and Z inclusive cross sections (multiplied by branching ratios for the decay
into one charged lepton flavor), are calculated by using the VRAP v0.9 program [16, 17| at
NNLO in QCD, with the renormalization and factorization (ur and pr) scales set equal
to the invariant mass of the vector boson. The Higgs boson cross sections via gluon-gluon
fusion are calculated at NNLO in QCD by using the 1Hixs v1.3 program [114], in the
heavy-quark effective theory (HQET) with finite top quark mass correction, and with the
QCD scales set equal to the invariant mass of the Higgs boson. The first row of Fig. 15
shows predictions for W*, Z° and H° production cross sections in the five BHPS and SEA
fits for mP?® = 1.3 GeV. Predictions for different values of the IC momentum fraction
0% < (z)ic < 3% and charm-quark mass 1.1 < m?°¢ < 1.5 GeV, obtained with the initial
scale Qp = 1 GeV, are illustrated in the second and third rows of Fig. 15. The varied (z);¢
values are indicated by the point color for each m??¢ value.

The central value predictions for the BHPS and SEA models are all within the CT14
NNLO uncertainties, with BHPS very close to the CT14 nominal fit. The impact of IC on
these key LHC observables is mild. For BHPS, increasing (z);c generally increases, and
then reduces the W=, Z° cross sections, and increases the Higgs cross sections. For SEA,
increasing (x)rc reduces all cross sections.

The intrinsic charm may partially offset the variations in the electroweak cross sections
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due to the pole charm mass. As mP?® is increased from 1.1 to 1.5 GeV, the light-quark PDF's
in CT14/CT14 HERA?2 are mildly increased at > 1073 and @ ~ My, while the gluon is
reduced at > 0.1. As mentioned before, m2?¢ ~ 1.5 GeV results in a worse fit to the
CT14HERAZ2 data set, cf. the upper Fig. 6. For the LHC W/Z cross sections, increasing
mP? to 1.5 GeV results in two competing trends. On the one hand, 1.5 GeV leads to a
somewhat better description of the total W and Z cross sections in Fig. 15, even though
the changes are well within the CT14 uncertainty. This increase reflects larger u and d
(anti)quark PDFs for m?° = 1.5 GeV.

On the other hand, the LHC data on high-pr Z-boson production [117-119] show con-
tradictory preferences for the m, and (z);c, depending on the collider energy [7 or 8 TeV]
and the format of the data [absolute or normalized cross sections]. Our conclusion at the
moment is that the LHC inclusive W and Z production cross sections may provide helpful
correlated constraints on m, and (z)ic in the future. We may also consider more exclusive
scattering processes [120-128] to look for evidence of the IC in the LHC environment.
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V1. Z + CHARM-JET PRODUCTION IN PP COLLISIONS AT THE LHC

A suitable test scenario is given by the production of a Z boson in association with a
charm jet, for which a CMS measurement at v/S = 8 TeV has been recently published in
Ref. [129]. The corresponding calculation pp — v/Z ¢ is available at NLO in QCD, building
on the important feature that the LO partonic process ¢ + ¢ — 7v/Z + ¢ (consisting
of § and £ channel contributions) is directly sensitive to the initial-state charm distribution.
Provided that the charm-quark transverse momentum is much larger than its mass, the NLO
corrections to this process can be calculated working in the S-ACOT scheme [46, 64, 65].

Using this scheme enables one to neglect the charm mass throughout, while only making a

Mz

small error of the order of 1/In (m—) X %123- [130]. The contributing subprocesses are given
c T

by gec — Zc (one-loop level production), q/g ¢ — Ze q/g (light-flavour parton emission)

11 Another subprocess leading to

(g = u,d,s) and g9 — Zcc (charm pair production).
charm-quark pairs in the final state is gq¢ — Zce. It is not regarded as a correction to
gc — Zc, but it is an additional source of Z¢ events, and therefore taken into account at LO.
There is one subtlety that concerns the Zce final states. They are evaluated by retaining
the charm-quark mass in order to regulate the gluon splitting singularity that would arise
for massless collinear quarks. Taking all of these subprocesses, one then arrives at an NLO
accurate description for the associated production of a Z boson and a single charm jet, as has
been presented in Ref. [131] and implemented in the program MCFM [132]. To compare the
impact of the different IC PDF fits, we use the MCFM calculation to generate the various
Z+c-jet cross sections in the presence of intrinsic charm at NLO.

The main drawback of the fixed-order predictions is their limitation in describing effects
that arise from multi-particle final states. One complication is due to the importance of
jet production at higher orders, which enhances the size of the Z+charm-jet cross section
especially for high-pr Z boson production. The inclusive cross section definition (Z+c-
jet+X) employed by the CMS analysis makes it important to account for the contributions
from more complex topologies like g¢g — Zceq or gluon-jet splitting to c¢ occurring at higher
perturbative orders (i.e. in Monte Carlo physics language, later in the event evolution).
The fixed-order approach will miss these multijet contributions, but we can invoke matrix-
element plus parton-shower merging (MEPS) to study these effects. This can be particularly
important if the final state is binned in a variable such as the Z boson transverse momentum,
while a fixed (low) cut is placed on any jets in the event. We can also investigate at which
point (in terms of the number of multileg MEs included), saturation (stabilization of the
cross section) can be found.

Another complication stems from the fact that in an experimental environment, we
are required to use a cross section definition, which is based on the detection of charm

11 The Z mass window constraint of the measurement will ensure the strong suppression of any v + ¢

contribution. We therefore neglect these contributions.
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hadrons/objects in the event, i.e. charm tagging is involved one way or another to determine
the inclusive Z+charm-jet rate. The theory-driven, parton-level definition employed in the
fixed-order case cannot be applied here, as it ignores the evolution of the hard event to
energy scales of the order of 1 GeV, where the measurement takes place. In this context
and, especially, for the identification of specific particles/objects — as in our case, charm jets
— aspects of multi-particle production (beyond hard jets) therefore need to be taken into
account to arrive at a more realistic simulation. For our studies, we will rely on the parton
shower to describe the fragmentation of the charm partons [133], and assuming factorization
of the initial-state and final-state QCD radiations as a reasonable approximation. The cross
section based on charm tagging will be affected by parton showering. Thus, we have to deal
with contributions emerging from Z+non-c¢ partonic processes because the g — c¢ splittings
have the potential of turning a Z plus light-flavour jet into a Z plus c-jet contribution. This
additional source of Z+charm events enhances the size of the measured cross section. How-
ever, this enhancement simply serves to dilute the impact of any intrinsic charm, since in
most cases it emerges from initial states not involving a charm quark, i.e. the enhancement
comes from final-state gluon splitting into a c¢ pair. The rate for this enhancement depends
on both the charm-jet transverse momentum threshold and the number of jets in the final
state.

For these reasons, one cannot ignore the multi-particle aspects when dealing with realistic
scenarios. We therefore generate predictions using the LO matrix-element plus parton-
shower merging (MEPS@LO) approach [134], adding additional jets and subsequent parton
showering, and requiring the presence of a charm jet in the final state. The MEPSQLO
approach allows us to estimate the impact of the higher-order radiative corrections and charm
tagging at the same time. Using the various IC models, we can examine (on a quantitative
level) to what extent the multi-particle effects alter the outcome of the NLO calculations
provided by MCFM. All MEPS@QLO predictions presented here have been obtained from
the Monte Carlo event generator SHERPA-2.2.1 [135]. To perform the charm tagging in
the SHERPA simulations, we rely on the flavorful version of the anti-k; jet algorithm as
implemented in FASTJET [136]. We generate Z+jets samples in the five-flavour scheme
(massless ¢ and b quarks) involving tree-level matrix elements for Z+4-0, 1 parton up to those
for Z+nyg partons where nyg denotes the maximum outgoing-parton multiplicity of these
matrix elements. Three SHERPA samples are provided, namely for nyg = 1,2,3, using
a merging cut of Qe = 20 GeV. Each SHERPA NI prediction is then drawn from the
respective Z+jets sample with nyg = N.

The simplest observable to look at is the inclusive Z+charm-jet cross section. Hence,
we start by presenting a summary of cross section predictions in Table II. In both types
of calculations (fixed order and MEPS@QLO), we employ kinematic requirements that are
similar to those utilized by the CMS analysis [129].12 Most notably, we impose the following

12 Although we aim at a fairly close reproduction of the kinematic selections used in the CMS analysis
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Calculation

PDF [ratio to MCFM CT14] (increase wrt. CT14)
MCFM SHERPA 1J SHERPA 2J SHERPA 3J
CT14NNLO 6.04 [1.0] 5.93 [0.982]  6.59 [1.091]  6.64 [1.099]
BHPS3 6.18 (+2.3%) 6.04 (+1.9%) 6.70 (+1.7%) 6.76 (+1.8%)
BHPS2 6.41 (+6.1%) 6.21 (+4.7%) 6.90 (+4.7%) 6.97 (+5.0%)
SEA1 6.51 (+7.8%) 6.29 (+6.1%) 6.97 (+5.8%) 7.03 (+5.9%)
SEA2 7.23 (+19.7%) 6.82 (+15.0%) 7.57 (+14.9%) 7.63 (+14.9%)
NNPDF3.0 6.09 [1.008]
- fitted charm 5.78 [0.957]

- fitted charm, no EMC  6.00 [0.993]

TABLE II: Total inclusive Z+charm-jet cross sections (in pb) at the LHC for v/S = 8 TeV for two
different standard PDFs (CT14 and NNPDF3.0) as well as different fits containing an IC compo-
nent. The predictions were obtained from MCFM at NLO, and from Z-+jet samples generated
by SHERPA using the MEPS@QLO approach at different levels of including higher-order tree-level
matrix elements. The details of the calculations are given in the text. Note that entities in square
brackets show ratios with respect to (wrt.) the MCFM result for CT14NNLO, while numbers in
parentheses quantify the percentage of increase in the cross section for the various CT14 IC models

in relation to the respective CT14 standard result.

kinematic requirements on the two leptons from the Z boson decay: pr, > 20 GeV, |n| < 2.1
and 71 GeV < my < 111 GeV. Jets are defined by using the anti-k; algorithm with a size
parameter of 0.5 and threshold requirements reading prjes > 25 GeV as well as |mjes| <
2.5. Table II shows that the predictions from the two standard PDFs (CT14NNLO and
NNPDEF3.0) agree very well. All CT14 IC models lead to an increase of the Z+charm-jet
cross section varying from about 2% for the specific choice of using BHPS3 to almost 20%
for the SEA2 model. On the contrary, the fitted charm PDFs of the NNPDF group [39, 112]
lead to a small reduction of the total cross section, however by no more than 5%. The
results from Table II also confirm the rise of cross sections owing to the inclusion of multijet
contributions. This increase can grow as large as 10%. From a fixed-order point of view,
the SHERPA 1J calculation is LO-like while the SHERPA 21 calculation is closest to the one
provided by MCFM. The largest differences with respect to MCFM lie in SHERPA’s neglect
of virtual contributions that are non-Sudakov like and the usage of a dynamical plus local
scale setting prescription.'> The SHERPA 3J computation then goes beyond the MCFM

(cf. Ref. [129]), we refrain from comparing our results directly to the experimental data for reasons such

as unapplied /unknown hadronization corrections and neglecting certain AR constraints.
13 We note that the SHERPA 27 calculations can be made even more MCFM-like by relying on Sudakov

reweighting but applying no parton showers at all. These modified SHERPA predictions show good agree-
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FIG. 16: Transverse momentum distribution of the Z boson for the production of pp — Z¢ at the
LHC with /S = 8 TeV. Various predictions based on different fitted charm models are compared
to their respective standard predictions, obtained by using the CT14NNLO PDF set on the left
and the NNPDF3.0 set on the right. Note that the CT14NNLO prediction is shown in both plots,
together with its uncertainty envelope for 90% C.L. All results have been generated using the
program MCFM. The lower panels are used to depict the relative changes induced by the different
models with respect to the CT14NNLO prediction (left) and the NNPDF3.0 prediction (right).

calculation, resulting in an additional but smaller increase with respect to the SHERPA 2]
cross sections. In other words, we observe the expected saturation effect that stabilizes the
Z+c-jet rate with increasing nyg. As in the fixed-order case, the CT14 IC models enhance
the SHERPA cross sections by different amounts. For a specific model, the predicted gains
are of similar size among the different SHERPA NJ calculations (as indicated by the numbers
in parentheses in Table II), but turn out to be smaller when compared to the respective
fixed-order result. The MEPS@QLO predictions therefore show the expected dilution of the
IC signals as previously described. Furthermore, we can take this as evidence for similar
mitigation effects applying to experimental signatures for intrinsic charm.

The total inclusive cross section as measured by CMS, o(pp = Zc+ X) x BR(Z —
(*¢~) = 8.6 +0.5 (stat.) £ 0.7 (syst.) pb, comes with an overall relative uncertainty of 10%.

ment with the cross sections predicted by MCFM though they are still larger by about 2%.
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FIG. 17: Same as Fig. 16, for the LHC with /S = 13 TeV.

This cross section is larger than any of the predictions in Table II. With this rather large
value, we cannot yet draw any conclusion regarding the preference or exclusion of the various
IC models. For example, if we assume that the baseline CT14 prediction describes the
data, the SEA2 model, which predicts the largest relative cross section change among all
IC models, would only occur at the upper edge of the allowed (20) range (neglecting the
impact of PDF and theory uncertainties for a moment). However, the various intrinsic charm
models affect the low and high x regions differently, making it worthwhile to investigate the
effects on differential cross sections as well. As mentioned earlier, the transverse momentum
distribution of the Z boson in association with a charm jet is a suitable candidate because
larger = values predominantly affect the high pr region. Focusing on different pr regions
may therefore increase our chances to distinguish certain IC models from each other.

Figures 16 and 17 show MCFM predictions of the differential Z boson pr cross sections
at the LHC, for energies of 8 TeV and 13 TeV, respectively. Apart from presenting the
p% distributions themselves, we also depict the respective ratios taken with respect to the
CT14NNLO result. We furthermore use the panels on the right in Figures 16 and 17 to
present a similar set of plots obtained by using various PDF's from the NNPDF group, namely
their current default version, NNPDF'3.0, also serving as the reference curve in the lower part
of the right panes, and their associated fitted charm PDFs with and without accounting for
the EMC data. These NNPDF plots also contain the CT14 baseline predictions (including
their PDF uncertainties) to allow for direct comparison between both PDF families.
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FIG. 18: Transverse momentum distribution of Z bosons produced in association with at least one
charm jet at the LHC, for v/S = 8 TeV (left panel) and v/S = 13 TeV (right panel). Except for the
reference MCFM result, all predictions were obtained by using SHERPA's MEPS@LO algorithm
for Z+jets production with nyig = 3 (supplemented by proper charm tagging). The bottom panels
show the ratios between the SHERPA 3J prediction using CT14NNLO and those using the IC models.

The results of Figures 16 and 17 reveal the existence of sizable deviations between the
predictions from the standard PDF's and the IC models (for both families). The BHPS
intrinsic charm fits produce larger cross sections for high Z transverse momenta, while the
PDF's using the SEA parametrization affect the cross sections fairly equally at all values of
pZ, and in a similar way at both 8 TeV and 13 TeV predictions. In particular, the SEA2
fit yields increases of the order of 20%. Regarding the BHPS models, the critical issue is
the reach of the LHC data into regions of higher z (corresponding to large values of pZ)
where the enhancement in the BHPS models becomes significant. At 8 TeV, the effects can
be up to 100% higher than the baseline; they however occur in a region without data (for
pZ > 500 GeV). At 13 TeV, we deal with smaller z values on average and therefore observe
smaller deviations (dropping by nearly a factor 2) for the corresponding BHPS predictions.
We also note that the relative changes predicted by the fitted charm PDF's of the NNPDF
group resemble those of the BHPS fits for the CT family. This resemblance is found at both
collider energies, for which we also observe good agreement between the central predictions

of NNPDF3.0 and CT14NNLO.

As discussed previously, we expect the sensitivity to the intrinsic charm component to de-
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FIG. 19: Transverse momentum distribution of Z bosons produced in association with at least one
charm jet at the LHC for v/S = 8 TeV. Both panels show SHERPA MEPS@LO predictions (obtained
by using proper charm tagging) for Z-+jets production with a successively increasing number of
multileg matrix elements taken into account (i.e. nyg = 1,2,3 where the nyjg = 1 curves serve
as the reference). In the left panel, Monte Carlo predictions for CT14NNLO are compared with
each other and the corresponding MCFM result, while in the right panel, the same set of curves

is shown for using the IC parametrization BHPS2.

crease in a realistic multijet environment. The p% distributions provided by the MEPS@LO
method for the various PDF's are presented in Figures 18 and 19, to be compared with
Figures 16 and 17 depicting the corresponding MCFEFM results. To support a direct com-
parison, the main panels of Figure 18 also contain the MCFM prediction for CT14NNLO.
While there are no large deviations between the SHERPA and MCFM predictions for lower
p% values, the SHERPA predictions show the expected hardening in the tail of the p% dis-
tributions. In the MEPS@QLO simulations, the IC increases the cross sections in the same
way as in the fixed-order case, although by a smaller factor (roughly half as much), which is
most prominently visible in the associated ratio plots.

Apart from reconfirming the dilution effect, Figure 19 provides us with additional in-
formation. First, the Sudakov (low p%) region is described in a more sophisticated and
therefore robust way (as a result of the inclusion of resummation effects). Second, regardless
of whether CT14NNLO (Figure 19-left) or BHPS2 is used as reference (Figure 19-right), the

inclusion of additional layers of multileg matrix elements leads to relative enhancement and
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[PFomins Pmax ] [GeV] [0,30] [30,60] (60, 200]

Ao(Ze)/Apt [pb/GeV]  CMS j:0.0?iof)0.0IQ + 0.02.3} :3:30.018 io.ogéojl:o.om
Rel. uncertainty CMS 22% 17% 17%
Rel. deviation BHPS2 MCFM 4.3% 4.9% 9.1%
wrt. CT14: BHPS2  SHERPA 31 3.9% 4.3% 6.6%
[do(Zc)/dpZlic SEA2 MCFM 18% 19% 22%
[do(Zc)/dpz]cTia SEA2  SHERPA 3J 14% 15% 16%

TABLE III: Results of the CMS measurement for the differential Z-+charm-jet cross section as a
function of the Z transverse momentum at the LHC for VS = 8 TeV [129]. The first uncertainty
of each data point denotes the statistical error, while the second one denotes the systematic error.
The relative uncertainties associated with the three data points are compared to the size of the
relative deviations generated by selected IC models with respect to the CT14NNLO baseline. The
theoretical predictions have been obtained from MCFM at NLO and SHERPA 3J at MEPS@QLO

accuracy. The details of the calculations are given in the text.

saturation effects of similar size at larger pZ values. This is an expression of the fact that
although the intrinsic charm models investigated here do change the initial conditions of the
charm content in the proton, they do not alter the nominal QCD evolution. The parton
shower evolves in the same way as encoded by the DGLAP theory in the absence of any
intrinsic charm.

Similarly to the case of the Z+c-jet cross section, the CMS data for the pZ distribu-
tion [129] can be used to estimate the current potential for discriminating possible intrinsic
charm models. The CMS measurement provides cross sections for three different pZ/GeV
bins, which are shown in the upper part of Table III, together with their associated relative
uncertainties. These uncertainties are to be compared with the size of the deviations induced
by the intrinsic charm fits with respect to the CT14 baseline. According to Figures 16 and
18, we can focus on the BHPS2 and SEA2 predictions, as only those feature differential rates
significantly exceeding the uncertainty range of the CT14 prediction. However, as shown in
the lower part of Table III, the deviations generated by both the BHPS2 as well as the SEA2
model do not exceed the 1o variation of the data, in particular if the dilution effect is taken
into account as simulated by MEPS@QLO. Thus, none of these changes reach a magnitude
that is distinguishable from the experimental and theoretical systematic errors at 8 TeV. The
discriminating power of the current CMS data is simply not sufficient to test the IC models,
either in terms of the differential p% cross section or in terms of the total Z+charm-jet cross
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section.!?

Owing to the rather low impact of current LHC data, it is important to better understand
the prospects for new measurements of detecting or excluding a high-z IC component. To
this end we extrapolate what we have learned at 8 TeV to the case of the 13 TeV LHC. The
CMS result for 19.7 fb™! of data at 8 TeV extends up to a Z boson transverse momentum
range of 200 GeV. The last bin is fairly wide, from 60 GeV to 200 GeV, and its associated
differential cross section has been measured as Ao /ApZ = (0.017 £ 0.003) pb/GeV, i.e. it
is reasonable to assume that cross sections as low as 0.01—0.02 pb/GeV can be measured
with ~ 20fb™! of integrated luminosity. In Figure 16, a cross section of this size corresponds
to a p% value of about 120 GeV, which translates into 2 ~ 0.03 on average. Thus, current
measurements probe relatively low values of z compared to the range (z > 0.1—0.2) where
the BHPS models start to have a significant impact (as shown in Figure 8). The cross section
for Z+charm production of course is larger at 13 TeV, but for the same low cross section
target of 0.01pb/GeV, the accessible p% range would only be extended by 30 GeV (according
to Figure 17) pulling the mean z towards 0.02, which means we would not even achieve the
same sensitivity as for the 8 TeV case. To reach a similar z range would require a Z transverse
momentum of the order of 200 GeV corresponding to a cross section of about 0.002 pb/GeV.
One therefore needs an integrated luminosity of about 100 fb™', in order to determine this
cross section with an accuracy comparable to the 8 TeV case. In other words, it will take the
full Run 2 cycle to barely get a first 20 sign of deviations at pZ ~ 200 GeV or probe transverse
momenta of the order of 300 GeV. Needless to say that definitive confirmation/exclusion will
require us to go considerably beyond the Run 2 luminosity budget.

The challenging environment for the Z + ¢ analysis forces us to search for ways to increase
the impact of an intrinsic charm component on the Z+-c-jet cross section. As this cross section
is diluted by the presence of the radiative corrections, for example, limiting the number of jets
in the event could reduce this dilution. The Z+c-jet rate could also be measured as a function
of the leading (charm) jet transverse momentum, which in fact has been carried out by CMS
in the same publication. Our studies suggest that this differential cross section is somewhat
more sensitive to the intrinsic charm modeling investigated here, but its sensitivity must be
weighed against the size of the relative uncertainties on the measurement of the charm jet
pr, in a similar fashion as shown for p% in Table III. In addition, deviations are also found
for Z boson rapidities outside the central phase-space region, such as might be measured at

LHCb [128].

14 The available measurements are still more sensitive to deviations in the total cross section. Thus there is
a small chance that current data is in disfavor of the SEA2 model.
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VII. SUMMARY AND CONCLUSIONS

We have explored the possibility of having a sizable nonperturbative contribution to charm
parton distribution function (PDF), i.e., the intrinsic charm (IC) quark component, in the
proton, using the CTEQ-TEA (CT) global analysis. In Sec. II, we reviewed the theoretical
framework used in the CT global analysis, and discussed the conditions under which our
formalism, Eq. (1), can better approximate the QCD factorization theorem, Eq. (2).

The notion of “intrinsic charm” refers to contributions to charm quark production and
scattering that arise besides twist-2 “perturbative” contributions. In DIS, the twist-4 cross
sections for charm production may numerically compete with “perturbative” twist-2 cross
sections at a high enough order in a;. For example, in Fig. 3, we show the relevant squared
amplitudes for a DIS structure function F(z,Q) from the v* + gg — ¢+ ¢ process. The
flavor-creation diagrams F; ,E:;)g

kinematical region (Q = m,). But, at very high photon virtualities, Q% > m?, their dominant

part is approximated in a variable-flavor number scheme by a twist-2 coefficient function cgff)t

render most of the twist-4 charm production rate in the HERA

convoluted with a universal charm PDF ¢(z, Q). A non-zero boundary condition for ¢(z, Q)
at () = ). ~ m, is obtained by perturbative matching from light-parton nonperturbative
twist-two and twist-four functions, such as fg/p(z, Q.) and fog/p(z1, z2, Qc).

In the context of the phenomenological PDF analyses, on the other hand, the “intrinsic
charm” PDF is often conflated with a “fitted charm” PDF parametrization that plays a dual
role of the approximant for the above power-suppressed contribution to charm scattering
and of a parametric surrogate for unrelated radiative contributions that were not explicitly
included. At the moment the fitted PDF is determined solely using the fixed-order convolu-
tions with the twist-2 coefficient functions, without including explicit twist-4 terms. While
the “fitted charm” PDF provides a good description of the cumulative QCD data in the CT
fit, care is necessary when making predictions for new processes based on its parametriza-
tion, as it may absorb a host of process-dependent corrections, notably the contribution
of DIS-specific twist-4 coefficient functions like in Fig. 3. We, as well as the other global
analysis groups, treat the “fitted charm PDF” obtained this way as though it is mostly
process-independent, until it is demonstrated otherwise.

For example, in neutral-current DIS charm production the twist-4 charm cross section is
of the same order in the QCD coupling strength as the NNLO twist-2 one. To estimate the
magnitude of the twist-4 IC cross section from the DIS data, using its model given by the
fitted charm, the twist-2 DIS contributions in the fit must be evaluated at least to NNLO.
Furthermore, it is necessary to study the contributions from the strange (and bottom) PDF,
dependence on the charm quark mass (m.), and to accurately implement suppression of
charm production at the mass threshold. In the case when low-() fixed-target data are
included, the IC component must be further discriminated from the 1/@Q? and nuclear-target
effects.

Hence, in this study, we have used both the CT14 NNLO and CT14HERA2 NNLO
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analyses, differing mainly in their strange PDFs. CT14HERA2 has a softer strange quark
component than CT14 at most z values. We have carried out a series of fits with a varied
charm quark pole mass m, between 1.1 and 1.5 GeV, within the preferred m?° range of our
global fits, see Fig. 6.

The NNLO heavy-quark mass effects are implemented in our calculation using the S-
ACOT-y factorization scheme.'® In Sec. II, we have given detailed arguments showing that
it is a self-consistent and sufficient scheme for predicting massive-quark DIS contributions
both in the twist-2 and twist-4 channels.

The charm content in a hadronic bound state, quantified by an operator matrix element
identified with the charm PDF', can in principle be predicted by QCD. We examine which
“Intrinsic charm” models predict the fitted charm PDF compatible with the global QCD
data. Two generic types of the charm models introduced in Sec. III, a valence-like BHPS
model and a sea-like SEA model, predict a non-zero c(z, Q) at large z and across all z,
respectively. The BHPS model is solved either approximately in the BHPS1 and BHPS2
PDF sets, or exactly in the BHPS3 set. To better predict the PDF ratios of charm to up and
down PDFs, in the BHPS3 model we also allowed for small intrinsic contributions to the «
and d (anti-)quarks generated from the |uuduii) and |uuddd) Fock states, included together
with the charm intrinsic contribution. Though we did not present its details, we have also
studied a mixed model of BHPS and SEA and arrived at similar conclusions.

Figure 5 shows that, at )y = 1.3 GeV, the charm quark momentum fraction (z)c, as
defined in Eq. 13, is found to be less than about 2% and 1.6%, for the BHPS IC and SEA
IC models, respectively, in the CT14NNLO analysis, at the 90% C.L. We note that by
its definition, (z)ic is evaluated at the initial scale Qp. It is to be distinguished from the
full charm momentum fraction (z).,z at @ > @Q., which rapidly increases with @) because
c(z, Q)+e(z, Q) also includes the perturbative contribution. The dependence of the outcomes
on mE°® was reviewed in Sec. IVC, and the resulting BHPS and SEA PDFs and parton
luminosities, as well as ) dependence of (z)., ., were explored in Section IV D.

A significant IC component in the proton wave function could influence observables mea-
sured at the LHC, either directly through enhanced cross sections via the charm PDF, or
indirectly via the momentum sum rule leading to a change in the momentum fraction carried
by the gluons. Modifications in the light-flavor PDF's are generally mild in the considered
BHPS/SEA models, although the gluon-gluon luminosities can be suppressed at the highest
final-state invariant masses Mx, as observed in Fig. 10. The allowed momentum fraction
(z)1c is correlated with the charm pole mass mP?€, especially in the SEA model. When the
charm PDF is purely perturbative, the inclusive Z cross section increases as m?°' increases,
due to the larger % and d PDFs that compensate for the smaller perturbative charm PDF

15 The massive NC DIS perturbative coefficients are known in their entirety to NNLO in the S-ACOT-x [60],
TR’ [48], and FONLL-C [49] schemes. In contrast, some of these NNLO coefficients are still unknown in
the “fully massive” ACOT scheme [46] and its FONLL equivalent [37, 38] adopted in NNPDF3.1.
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contribution. We also observe reduction in g(z, Q) at large =, and consequently some re-
duction in cross sections sensitive to large-x gluon scattering. For example, increasing m?°'
from the nominal 1.3 to 1.5 GeV increases the W/Z inclusive total cross sections at 13 TeV,
reduces the normalized high-pr Z production cross section at the LHC 7 TeV, and has van-
ishing effect on the gg — H? cross sections, see Sec. V. These changes can be partly offset
by introducing the IC, possibly at the expense of some tension with the non-LHC fitted
experiments, and generally within the regular CT14 PDF uncertainty.

There is much discussion in the literature about the impact of the EMC measurement [41]
of semi-inclusive DIS charm production on the intrinsic charm PDF. Although our standard
analysis does not include the EMC data, we have examined their impact in several IC models.
Section IV F argues that fitting the EMC data is not expedient, their persistent tension with
the other fitted data sets may reflect the systematic errors that were not documented in
the EMC publication. The level of (dis)agreement with the purely perturbative charm and
the exclusion limits on the intrinsic charm depend on the assumed magnitude of systematic
effects in the EMC measurement. As shown in Table I, even without the IC contribution, the
X% /Npts of the EMC data varies from about 3.5 to 2.3 when it is excluded or included with a
large statistical weight in the CT14 fits. Including the intrinsic charm component does not
significantly change x?/Npts for the EMC. For the BHPS models, including the EMC data
with the nominal errors reduces the tolerated range of (z);c by about a factor of two. The
impact of EMC data is small within the SEA model.

Besides the LHC electroweak boson production cross sections, we examined the implica-
tions of the IC for associate production of Z boson and charm-jet at the LHC, and summa-
rized our findings in Table II and Figs. 16-19. A fixed-order calculation for Z + ¢ production,
MCFM at NLO, was compared to a merged parton showering calculation in Sherpa, which
also generates charm jets in the final state via gluon splittings. In general, in a fixed-order
calculation for Z + ¢, the various IC models predict enhanced rate in the transverse mo-
mentum distribution of a Z boson (pZ) [128]. The SEA models tend to predict a higher
differential cross section across all p%, while the BHPS models suggest the increased rate
only at the highest pZ. The predictions based on the NNPDF3IC and NNPDF3IC (no
EMC) PDFs are close to our BHPS3 and BHPS2 predictions, respectively, they predict a
larger rate in the high p% region.

Inclusion of the final-state parton showering typically dampens the fixed-order enhance-
ment induced by the IC contribution, as can be observed from the comparison of Sherpa to
MCFM predictions. The dampening is mainly attributed to the gluon-splitting contributions
in the final state which reduce the relative impact of the IC contribution in the hard p# tail,
especially for the predictions from the BHPS models.

The analysis of QCD factorization indicates that the power-suppressed “intrinsic” com-
ponent in semi-inclusive DIS charm production may be comparable in magnitude to some
NNLO and N3LO leading-power contributions. Hence, a serious study needs to be car-
ried out at least at the NNLO, such as in this work. (It is not possible to draw a definite
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conclusion from an NLO analysis.) As of today, the experimental confirmation of the IC
component in the proton is still missing, and data from far more sensitive measurements
are required. An analysis of very low-() fixed-target data, such as the one presented at
NLO in Refs. [33, 34], must meet the challenge of the reliable separation of the IC from
the other relevant factors, including higher-order twist-2 contributions, the 1/Q? terms, m,
dependence, and nuclear effects. The constraints on the IC from the higher-energy data
are largely compatible between the CT14 IC and NNPDF3.x analyses [39, 40]. Our limits
on (z).,z are moderately more conservative than those of NNPDF3.1, as we do not include
the EMC F,, data and acknowledge competing preferences for m?°'¢ and (z)., among the
various non-LHC and LHC experiments, as outlined in Secs. IVC, IVE, and V. Ultimately,
a combination of high-luminosity measurements at the Large Hadron Collider, such as Z + ¢
production, and charm SIDIS at the Electron-lon Collider [137] will be desirable to test
intrinsic charm scattering contributions at NNLO and beyond.
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