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1. Introduction

Finite element method (FEM) is based on the premise that an approximation to
any complex engineering problem can be reached by subdividing the problem
into smaller and more manageable elements. Using FEMs partial differential
equations that describe the behavior of structures can be reduced to a set of li-
near equations that can easily be solved using the standard techniques of matrix
algebra. FEM is used in virtually every engineering discipline. The aerospace,

automotive, biomedical, chemicals, electronics, energy, geotechnical, manufac-
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turing, and plastics industries routinely apply finite element analysis. In addi-
tion, it is used not only for analyzing classical static structural problems, but also
for such diverse areas as mass transport, heat transfer, dynamics, stability, and
radiation problems.

The main objective of the superconvergence using various FEMs is to improve
the accuracy of the existing approximation solution by applying certain
post-processing techniques that are easy to implement. To obtain the supercon-
vergence of FEMs, several methods have been proposed in the literature in the
last thirty years. The method of local averaging has been a popular and useful
technique in the study of superconvergence [1]-[9]. The underlying assumption
of the existing superconvergence technique is that the finite element mesh has
some special properties such as uniformity [7], local point-symmetry [8] [10],
local translation-invariance [1] [8], or orthogonality [5] [11] [12] [13].

Zienkiewicz and Zhu [14] [15] introduced the patch recovery technique which
provides some superconvergence for the gradient of the finite element solution
by using a discrete least-squares fitting on a local patch with high order polyno-
mials. The method of Zienkiewicz and Zhu has been computationally proved to
be robust and efficient and to produce some superconvergence for the gradient
of the finite element solution.

Wang proposed and analyzed superconvergence of the conforming finite ele-
ment method (CFEM) by I*-projections. The main idea behind the I’-projections
is to project the finite element solution to another finite element space with a
coarse mesh and a higher order of polynomials.

The objective of this paper is to investigate the theoretical results in [16] for
the conforming finite element approximations for second-order elliptic prob-
lems by L*-projection methods and to support the theoretical results with nu-
merical experiments using MATLAB.

This paper is organized as follows. In Section 2, we present a review for the
conforming finite element method for the second-order elliptic problem. In Sec-
tion 3, we investigate the theoretical results in [16], the superconvergence of
CFEM for the second-order elliptic problem by Z’-projection methods. In sec-
tion 4, we perform numerical experiments to support the theoretical results in
[16]. Numerical experiments of superconvergence of CFEM are performed in
MATLAB and its codes are posted at

https://github.com/annaleeharris/Superconvergence-CFEM for anyone to use

and to study.

2. CFEM for the Second-Order Elliptic Problem

Consider the second-order elliptic problem with the homogeneous Dirichlet
boundary condition which seeks u e H'(Q) satisfying
Au=f 1inQ,

1
u=0 onoQ, M

where A is the Laplacian operator, Q is a bounded, connected, and open
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subset of &, 0Q is a Lipschitz continuous boundary, and a given function fis
the external force.

A variational formulation of (1) seeks u € H, (Q) such that
a(u,v)=(fv), YveHy(Q), (2)
where

a (u,v) = (Vu,Vv) = L}Vu -VvdQ

Let 7, be a quasi-uniform, Ze, it is regular and satisfies the inverse assump-
tion [17], triangulation of Q with diam(K) <h,KeT, and let P, (K) be
the space of polynomials of degree at most r with »>0 on K. Assume that the
polynomial space in the construction of ¥, contains £, (K ), k >21. Define the
finite element space ¥, associated with 7, as

V,={ve Hy(Q):|, e B (K).YKeT,|.
The finite element space V) is assumed to satisfy the following approxima-
tion property for any ue H""(Q):
inf("u - v" +h ||u - v"l) <cn™ ||u

Vel

0<m<k. (3)

m+l’

The finite element approximation problem (2) seeks u, €V, such that
a(uh,v)z(f,v), Vvel, (4)
where

a(u,,v)=(Vu,,Vv)= J-QVuh -Vvdx.

A well known error estimate for the finite element approximation solution
u, is the following:

|u —uh| <Cinf
1 vel

el ®

where Cis a constant independent of the mesh size A.

Then from (3) and (5) we arrive at the following error estimate:

ju = <

k+l "

To apply the superconvergence of finite element approximation, we assume
that domain Q is so regular that it ensuresa H’,s 21, regularity for the solu-
tion of (2). In other words, for any feH 52 (Q) the problem (2) has a unique
solution u € Hy(Q) satisfying the following a priori estimate:

<C|fl.,. VSeHT(Q), szl (6)

where C'is a constant independent of data &

g

3. Superconvergence of CFEM

Let 7. be another finite element partition with coarse mesh size 7 where

h < 7. Assume that 7and A have the following relation:
t=h", ae(0,1).

Let V. be any finite element space consisting of piecewise polynomial of de-
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gree rassociated with the partition 7, . Define Q, to be the I*-projection from
I (Q) onto the finite element space V.. The finite element space V, is de-
fined by

VT:{veLZ(Q):V|KeP,(K),‘v’KeT,}.

For the superconvergence of CFEM, the following theoretical results can be
found in [16].

Lemma 1 Assume that the second-order elliptic problems (2) holds (6) with
1<s<k+1 and V., cH (Q). Then there exists a constant Cindependent of
hand rsuch that

Qu-— quh” <Ch° ||u —u,

| " )

where o=s¢ —1+amin(0,2—s), ae (0,1) and 7> #h.

Theorem 1 Assume that (6) holds true with 1<s<k+1 and
V.cH” (Q).If u,=u, (X, y) is the finite element approximation of the exact
solution u=u (x, y) of (2), then there exists a constant Cindependent of 4 and
rsuch that

||u - Qruh” < chp) ||u

+CH (8)

r+l
where 0=s—1+amin(0,2—s).

Theorem 2 Assume that (6) holds true with 1<s<k+1 and
V.cH” (Q).If u, is the finite element approximation of the exact solution
ue H*'(Q)NH™ (Q)NH,(Q) of (2), then there exists a constant C inde-
pendent of ~and 7such that

|V (u-0u,) < ch

where O'=s—1+amin(0,2—s).

i+ O, ®

r+l

From (8) and (9) ais selected to optimize the error estimates:

o k+s—1 ' (10)
r+l—min(0,2—s)

4. Numerical Experiments of Superconvergence of CFEM by
L2-Projection Methods

In this section, we confirm the theoretical results in [16] with numerical experi-
ments for second-order elliptic problems. Assume that the exact solution of the
second-order elliptic problem has H’ regularity for some 1<s<2 and for
simplicity, assume k=1, s=2, and r=2 which gives 0{:g using the a
Formula (10). 3

Then according to the theoretical results in [16], the best possible error esti-

mates using the results (8) and (9) are given by

o= Qanl£ CH Ol + P <cr],

r+l

and

4
+Chk+x—l—a+amin(0,2—s) u"k+1 < Chg "u"3 ] (12)

r+1

¥ (-0 = 5
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From the result (11), we do not see any superconvergence in Z* norm. How-
ever, from the result (12), we have some superconvergence for the gradient error
estimate.

The finite element partition 7,

h

is constructed by dividing the domain into
an n’xn’ rectangular mesh then dividing the rectangular mesh with the posi-
tive slope to form two triangles. The coarse finite element partition 7, is also
constructed by dividing the domain into an n°xn’ rectangular mesh then di-
viding the rectangular mesh with the positive slope to form two triangles. The
finite element space ¥, consists of the space of the linear polynomials £ (K )
associated with the partition 7, and the dual finite element space V, consists
of the space of the quadratic polynomials P, (K ) associated with the partition
7. . The finite element spaces ¥, and V, are defined by

V,={ve Hy(Q):V|, e R(K).VKeT,}
and
V.={vel(Q):v], eB(K).VKeT}.

The numerical approximation is refined as h=n"", where n=2,3,--.6.
Thus, the length of 7=n-h,n=2,---,6 and each 7 element contains n*h ele-
ments. Using the difference in mesh size and a higher degree of polynomials we
shall produce some superconvergence of CFEM for the second-order elliptic
problems.

Example 1 Let the domain Q=[0,1]><[0,1] and the exact solution is as-
sumed to be

u= ycos(O.Sny)sin(Tr.x).

From Table 1, we observe that applying Z>-projections to the existing numer-
ical solution reduced the errors in Z* norm and in A, norm. Surface plots of nu-
merical solutions, u, in fine meshes and Q.u, in coarse meshes, are shown in
Figure 1. In I’ norm the error convergence rate of ||u—QTuh " and the error
convergence rate of ”u—uh " are similar to the theoretical convergence rate,
which is shown as O(hz) (see Figure 2). However, in A, norm the error con-
vergence rate of |u - Qruh|1 is higher than the optimal error convergence rate of
|u—uh|1 and the error convergence rate of the numerical example, O(hm),

Table 1. Numerical error approximation results using CFEM in Example 1,

u = ycos(0.5my)sin (7).

iter h HV(“ U, )H Ju—u, ‘V{ (u=Qu, )H -0,
1 273 0.1196e-0 0.7787e-2 0.5207e-1 0.7456e-2
2 33 0.3555e-1 0.6966e-3 0.8137e-2 0.6649e-3
3 43 0.0150e-1 0.1241e-3 0.2481e-2 0.1184e-3
4 573 0.7680e-2 0.3255e—4 0.1014e-2 0.3108e—4
5 67 0.4445e-2 0.1090e—4 0.4906e-3 0.1040e—4

o(n) 0.9990 1.9941 14117 1.9953
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Figure 1. Surface plots of approximation solution using CFEM in Example 1,
u = ycos(0.5my)sin(mx) . (L): Surface plot of u, . (R): Surface of plot of Q.u, .
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Figure 2. Error convergence rates using CFEM in Example 1,

u = ycos(0.5my)sin(mx) . (L): L' norm error. (R): H, norm error.

exceeds its theoretical error convergence rate, which is shown as O(h1'33). As
we expect from the theoretical results (11) and (12), the numerical example
shows some superconvergence in A, norm but not in Z* norm. The numerical
Example 1 supports the theoretical results in [16] and confirms the supercon-
vergence of CFEM for second-order elliptic problems.

Example 2 Let the domain Q= [0,1] X [0,1] and the analytical solution to the

problem is given as
u =x(1—x)y(y—1).

From Table 2, we confirm that the numerical Example 2 supports the theo-
retical results in [16]. In I* norm the error convergence rate of ||u—QTuh || is
similar to the error convergence rate of ||u —u, " which is about the same as the
theoretical result in (11), which is shown as O(h2 in Figure 3. The error
convergence rate of |”_Qf”h|1 is about O(h1'42) and the error convergence
rate of |u—uh|1 is about O(h). In H, norm the exact solution u clearly has
some superconvergence. Figure 4 shows the surface plot of Qu, in coarse

meshes and the surface plot of u#, in fine meshes. The numerical Example 2
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Figure 3. Error convergence rates using CFEM in Example 2, u=x(1-x)y(y—1). (L):

I’ norm error. (R): H, norm error.
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Figure 4. Surface plots of approximation solution using CFEM in Example 2,
u=x(1-x)y(y-1).(L): Surface plot of u, . (R): Surface plot of Q.u, .

Table 2. Numerical error approximation results using CFEM in Example 2,
=x(1-x)ycos(l.5my).

iter h HV(u—u,,) o =, | ‘V, (u—0u,) =0,

1 27 0.2227e-1 0.1441e-2 0.9193e-2 0.1378e-2

2 373 0.6632e-2 0.1287e-3 0.1427e-2 0.1227e-3

3 4 0.2799¢-2 0.2295e—4 0.4332¢-3 0.2185e—4

4 573 0.1433e-2 0.6017e-5 0.1763e-3 0.5732e-4

5 67 0.8294e-3 0.2015e-5 0.8504e-4 0.1919-5
o(r') 0.9985 1.9945 1.4173 1.9958

also supports the theoretical results in [16] and confirms the superconvergence
of CFEM for second-order elliptic problems.
Example 3 Let the domain Q= [0,1] X [0,1] and the analytical solution to the

problem is given as

u :y(l—y)(l—x)sin(me).
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From Table 3, the numerical approximation results show that after the
post-processing all the errors are reduced. The exact solution in Z* norm of
||u -0u, " has the similar error convergence rate as ||u —u, ||, which shown as
O(hz). In I’ norm, there is no improvement with the post-processing tech-
nique. See Figure 5, in H, norm I’-projection method improved the conver-
gence rate, which is shown as 0(h1'3) for "VT (u-Q.u, )" Figure 6 shows
surface plots of Qu, and u,. The numerical Example 3 confirms the theoret-
ical results in [16].

Example 4 Let the domain Q=[0,1]><[0,1] and the exact solution is as-

sumed to be
u = xsin(2mx) y cos(1.5my).

From Table 4, we confirm that the numerical Example 4 supports the theo-
retical results in [16]. In Z* norm the error convergence rate of "u -Q.u, " is
similar to the error convergence rate of ||u —u, " which is about the same as the

theoretical result, O(hz). However, in A, norm the exact solution uz has some

g llu-u 10 ‘
-0y ey

o - 2T " T
10 0 [ 107
107 107
10_4’ 10‘3,

_5 N 4
10 : 9 10 .

10° 10’ 10° 100 10° 10' 108 10°
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Figure 5. Error convergence rates using CFEM in Example 3,
=y(1-y)(1-x)sin(2mx). (L): I’ norm error. (R): H, norm error.

u-axis

(@) (b)

Figure 6. Surface plots of approximation solution using CFEM in Example 3,
u=y(1-y)(1-x)sin(2nx) . (L): Surface plot of u, . (R): Surface plot of Q.u, .

DOI: 10.4236/am.2018.96047

698 Applied Mathematics


https://doi.org/10.4236/am.2018.96047

A. Harris et al.

superconvergence. The error convergence rate of |u -0.u, |1 is about 34% faster
than the error convergence rate of |u —u, |l and meets the theoretical minimum
error convergence rate, 0(h1'33) . See Figure 7, in I’ norm there is no difference
in error convergence rates but in A, norm applying *-projection methods to the
existing numerical approximations improved the errors and produced some su-
perconvergence. Figure 8 shows surface plots of the numerical approximations

of (2) before and after the post-processing.

Table 3. Numerical error approximation results using CFEM in Example 3,
u=y(1-y)(1-x)sin(2mx).

iter h IV (—u,)| et =, V. (u-0u,)| e =0,

1 273 0.1162e-0 0.7440e-2 0.8059e-1 0.7070e-2

2 33 0.3444e-1 0.6787e-3 0.1389%¢e-1 0.6415e-3

3 43 0.1452e-1 0.1211e-3 0.4342e-2 0.1144e-3

4 573 0.7439e-2 0.3178e—4 0.1787e-2 0.3000e—4

5 67 0.4305e-2 0.1064e—4 0.8670e-3 0.1005e—4
o(n) 0.9999 19880 13726 19899

Table 4. Numerical error approximation results using CFEM in Example 4,
u = xsin (2mx) y cos (1.5my) .

b e feu] Veeow) eoul
1 2 0.3537e-0 0.2256e-1 0.2900e—0 0.2165e-1
2 33 0.1069¢—0 0.2138e-2 0.5074e—1 0.2042¢-2
3 473 0.4480e~1 0.3828¢-3 0.1585e~1 0.3654e—3
4 53 0.2294e~1 0.1004e-3 0.6526e—2 0.9585e—4
5 67 0.1327e~1 0.3365e-4 0.3165e-2 0.3210e-4
o(r) 0.9962 1.9762 1.3686 1.9779
10" ‘ 10°
=]
--[u-Quuyl
10_2 —$—O(h2) H 10_1
107° 107
107 107
5 4
10 ‘ 10 : :
10° 10’ 10° 100 10° 10' 10° 10°
(a) (b)

Figure 7. Error convergence rates using CFEM in Example 4,

u = xsin(2mx) ycos(1.5my) . (L): I’ norm error. (R): H, norm error.
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Figure 8. Surface plots of approximation using CFEM in Example 4,
u = xsin(2mx) ycos(1.5my) . (L): Surface plot of u, . (R): Surface plot of Q.u, .

With numerical experiments we support the theoretical results in [16] and

confirm the superconvergence of CFEM for second-order elliptic problems.

5. Conclusion

The I*-projection to the existing numerical approximation u, produced some
superconvergence in A, norm, convergence rate >1.3, but did not affect the
convergence rate in Z* norm. With the numerical experiments we can conclu-
sively support the theoretical result and confirm the superconvergence of CFEM

for second-order elliptic problems by Z*-projection method.
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