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Abstract

The superconvergence in the finite element method is a phenomenon in which the
finite element approximation converges to the exact solution at a rate higher than the
optimal order error estimate. Wang proposed and analyzed superconvergence of the
conforming finite element method by Z*-projections. However, since the conforming
finite element method (CFEM) requires a strong continuity, it is not easy to con-
struct such finite elements for the complex partial differential equations. Thus, the
nonconforming finite element method (NCFEM) is more appealing computationally
due to better stability and flexibility properties compared to CFEM. The objective of
this paper is to establish a general superconvergence result for the nonconforming
finite element approximations for second-order elliptic problems by *-projection
methods by applying the idea presented in Wang. MATLAB codes are published at
https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and
to study. The results of numerical experiments show great promise for the robust-
ness, reliability, flexibility and accuracy of superconvergence in NCFEM by I*-
projections.
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1. Introduction

The conforming finite element method (CFEM) requires a strong continuity; hence it is

not easy to construct such finite elements for the complex partial differential equations.
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The nonconforming finite element method (NCFEM) is more appealing computation-
ally due to better stability and flexibility properties compared to CFEM [1] [2] [3]. The
superconvergence in the finite element method is a phenomenon in which the finite
element approximation converges to the exact solution at a rate higher than the optimal
order error estimate. Wang proposed and analyzed superconvergence of the conform-
ing finite element method by Z*-projections. The main idea behind the I*-projections is
to project the finite element solution to another finite element space with a coarse mesh
and a higher order of polynomials.

The objective of this paper is to establish a general superconvergence result for the
nonconforming finite element approximations for second-order elliptic problems by
I*-projection methods by applying the idea presented in Wang [4].

This paper is organized as follows. In Section 2, we present a review for the non-
conforming finite element method for the second-order elliptic problem. In Section 3,
we develop a general theory of superconvergence by following the idea presented in
Wang [4]. In Section 4, we perform numerical experiments to support the theoretical
results. Numerical experiements of superconvergence of NCFEM are performed in
MATLAB and its codes are posted at

https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to
study.

2. NCFEM for the Second-Order Elliptic Problem

Consider the second-order elliptic problem with the Dirichlet boundary condition
which seeks u € H'(Q) satisfying
Au=f inQ,

1
u=0 onoQ, M

where A is the Laplacian operator, Q is a bounded, connected, and open subset of
R*, 0Q is a Lipschitz continuous boundary, and a given function fis the external
force.

A variational formulation of (1) seeks u € H,(Q) such that

a(u,v) = (f,v), Yve H(l) (Q),
where
a(u,v)=(Vu,Vv)= IQVu -VvdQ.

Let 7, be a quasi-uniform, Ze, it is regular and satisfies the inverse assumption [5],
triangulation of Q with diam(K)<h,K €7,. Let P,(K) be the space of poly-
nomials of degree at most kwith k>0 on K Let &, denote the union of the boun-
daries of all elements K €7, and let & =&, \0Q be the collection of all interior
edges. Assume that the polynomial space in the construction of V, contains P, (K),

k >1. Define the finite element space V, associated with 7, as
Vv, = {v e’(Q):v|ce B (K),VK eT,,vis continuous at the middle point of

ee &), and v is zero at the middle point of boundary edge e on BQ}.
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The finite element space ¥, is assumed to satisfy the following approximation pro-
perty forany ue H""'(Q) [6]:

inf (e v]+ e =], ) < C™ [l

vel),

0<m<k. (2)

m+1 2

The nonconforming finite element approximation problem (2) seeks u, €V, such
that

a, (u,,v)=(f.v), VveV,, (3)

where

a, (u,,v) = KZT: (Vu,,Vv), = KZ; IKVuh -Vvdx.
€4h €4p

A well known error estimate for the finite element approximation solution u, is
the following [7]:

o=+ =], = € . @

where C is a constant independent of the mesh size A.

To apply the superconvergence of finite element approximation, we assume that
domain Q is so regular that it ensures a H', s >1, regularity for the solution of (2).
In other words, for any feH ?(Q) the problem (2) has a unique solution
ue H,(Q) satisfying the following a priori estimate

Jedl, < clr

. VfeHT(Q),s2], (5)
where Cis a constant independent of data £

3. Superconvergence of NCFEM

Let 7. be another finite element partition with coarse mesh size 7 where h< 7.

Assume that 7 and A have the following relation:
r=h", ae(O,l). (6)

Let V. be any finite element space consisting of piecewise polynomial of degree r
associated with the partition 7. Define O, to be the I’-projection from L’(Q)
onto the finite element space V. The finite element space V, is defined as follows:

V.={vel(Q):vxe B (K),VKeT}.
The following lemma will provide an error estimate for Qu—Q.u, .
Lemma 1 Assume that the second-order elliptic problem (2) holds (5) with

1<s<k+1 and V, c H>(Q). Then there exists a constant C independent of h and
T such that

Q,M _ quh” < Chk+s—l+amin(0,2—s)

where o €(0,1) and > h.

u||k+l ’ (7)
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Proof. Using the definition of || : || and Q,, we have
Qu-Qu= " sup |[(Qu-0Qu,.9)
geL(Q). Jol=
and

(Qru - Qruh’¢) = (” - uh’Qr¢)'
Then

Qu—-Qu,|= sup |(u—uh,QT¢)|. (8)

ger’(Q), Jgl=1

Consider the following problem:
-Aw=0¢ inQ,

9
w=0 on 0Q. ©)

Multiplying the second-order elliptic Equation (1) by v and integrating it over Q
give

a, (u,v)- Z<Vu~n,v>aK:(f,v), (10)

KeTy,

where nis the unit outward normal.

Subtract (3) from the above Equation (10) gives
ah(u—uh,v): Z(an,v}a[(, Yvevl,. (11)

KeT,
Multiplying (9) by u —u,, integrating it over Q, adding and subtracting w, €V,
and using the result (11) we have
(QT¢,u - uh) = (—Aw,u —uh)
=a, (W,u—uh)— Z <Vw~n,u—uh>aK

KeT,,

:ah(w—wl +w1,u—uh)— Z <Vw-n,u—uh>ak

KeTy,
=a,(w—wpu—u,)+a,(w,u—u,)— Y, (Vw-n,u—uh>ak
KeT,
=a,(w—w,u—u,)+ Z (Vu~n,w,>aK - Z (Vw-n,u—uh>5K.
KeT), KeT),

The line integrals of the above equations are approximated in [6] as follows:

(Ve mon) <0l ol 02

€4p

KZ; <Vw-n,u —U, >a1< <cptt |u||k+l "W s (13)
€Ty

Using the Cauchy-Schwartz inequality, the approximation property (2), and line

integral approximations (12) and (13) we have

|(QT¢,u—uh)|:ah (w—w,,u—uh)+ Z <Vu~n,w,>aK — Z (VW-n,u—u,})aK

KeT, KeT,
ks
< ||w—w,||||u—uh||+Ch i

s—1
<0 o,

w

|u k+1 s

w

s
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Substituting ||w||s as

0.¢

0.¢|,, and using the definition of 7=/“ we have

(@bt —u, ) < CH Q. ol
SChk+S_ITmi11(O‘2_S) Q¢

4

u||k+l !

., by the H® regularity, applying the inverse in-

equality to the term

.

< Ch k+s—1 z_min(O,Zfs)

..

< Chk+s‘—l+a min(O,Z—s)

Combining the above equation with the Equation (8) we have

qu _ Q,uh | < Chk+s—1+amin(0,2—s) (14)

u”kﬂ ’

which completes the proof of the lemma.

The following theorem provides an error estimate for u— Q. u,.

Theorem 1 Assume that (5) holds true with 1<s<k+1 and V, c H(Q).If u,
is the finite element approximation of the exact solution ue H"'(Q)nH"" (Q)
NH (l) (Q) 0f(2), then there exists a constant C independent of h and t© such that

o= Q|+ 1|V - (u = Q)|

15
< Cha(rH) |u T Chk+x—1+amin(0,2—x) "u ( )

r+l ||k+1 :

Proof. Since we assume the exact solution u is sufficiently smooth and by the de-

finitions of O, and 7, we have

e = O, || < Co" |u = ch [l - (16)
Using the triangle inequality and combining (16) and Lemma 1 we obtain
"u - Q‘[uh | < "u - Qru + Qru - Qruh |
a(r+l k+s—1+amin(0,2—s
<Ol + CH O ]
which completes the error estimate of "u -Q.u, "
Similarly, we estimate A“ |V, (u—Qu, )" .
Using the inverse inequality and the definitions of Q. and 7 we have
V. (u-Qu, )" <Cr’ | uf,,, =Ch" ””m . (17)
Using the triangle inequality and combining (17) and Lemma 1 we have
W |V, (u=Quu, )| < h |V u=V Q|+ h* |V, Qu~V,0u,
a(r+l k+s—l+amin(0,2—s
<Ch ., + Ch R
Hence the theorem has been proved.
The optimal « is selected using Theorem 1 for the error estimates:
a(r+1)=k+s—1+amin(0,2—s),
o= k+s—1 (18)

_r+1—min(0,2—s)'
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4. Numerical Experiments of Superconvergence of NCFEM by
L2-Projection Methods

In this section, we present numerical experiments for second-order elliptic problems to
support our theoretical results. Assume that the exact solution of the second-order

elliptic problem has the H® regularity for some 1<s<2 and for simplicity, assume
k=1,5=2, and r=2 whichgives « =§ using the o formula (18).
From the theoretical result (15) we have the following optimal error estimates:

"u _ quh " < Cha(r+1) "u" T Chk+s—1+amin(0,2—s)

r+l

< Ch? |Ju, (19)

u ||k+1

and

4
< Ch* |ul,. (20)

T Chk+s—1—a+amin(O,Z—s)—a "M

From the results (19) and (20), theoretically, in Z* norm the I*-projection to the

V. (u-Qu,)|<Ch

u

r+l k+1

existing numerical approximation does not improve the convergence rate but in H,
norm the I*-projection to the existing numerical solution provides some superconver-
gence.

The finite element partition 7, is constructed by dividing the domain into an
n’ xn’ rectangular mesh then dividing the rectangular mesh with the positive slope to
form two triangles. The coarse finite element partition 7, is also constructed by
dividing the domain into an n° xn’ rectangular mesh then dividing the rectangular
mesh with the positive slope to form two triangles. The finite element space ¥, con-
sists of the space of the linear polynomials B (K ) associated with the partition 7,
and the dual finite element space V, consists of the space of the quadratic polynomials
P,(K) associated with the partition 7,. The finite element spaces ¥, and V, are
defined as follows:

v, = {v e’(Q):v|ce B (K),VK eT,,vis continuous at the middle point of

eeeg),and v is zero at the middle point of boundary edge e on 69}.

and

V.={vel’(Q):v|xe B(K),VKeT}.

The numerical approximation is refined as h=n" where n=2,---,6. The length
of t=n-h,n=2,---,6 andeach 7 element contains n”>-h elements.

Using the a Equation (18) and our choice of k=1,s=2, and r=2 we have

k+s-2

“= r+1—min(0,2—s)_

2
>

Using the difference in mesh size and a higher degree of polynomials we shall
produce some superconvergence of NCFEM for the second-order elliptic problems.
Example 1. Let the domain Q=[0,1]x[0,1] and the exact solution is assumed to be

as follows:
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u=x(1-x)y(l-y).

From Table 1 we observe that the Z*-projection to the existing numerical approxi-
mation u, reduced the error estimates in Z* norm and in A, norm. In Z* norm the
convergence rate of ||u -Q.u, " is similar to the convergence rate of ||u —uh” which is
the same as the theoretical result (19). The convergence rate of |u -Q.,u, | , is about 33%
faster than the convergence rate of |u —u, |1 in H, norm (see Figure 2). The surface
plots of Q.u, in coarse meshes and u, in fine meshes are shown in Figure 1. The
numerical example 1 clearly supports the theoretical result and confirms the super-
convergence of NCFEM for the second-order elliptic problem.

Example 2. Let the domain Q=[0,1]x[0,1] and let the analytical solution be given

as
=x(1-x)ycos(1.5my).

From Table 2, we can see that the numerical example 2 supports the theoretical
result (15). See Figure 3, when h=3" and 7=3", we can project 3* fine triangle
elements onto one coarse triangle element. Thus, as 2 increases, we can project n’
more fine triangle elements to one coarse triangle element in which the process of
refining elements produces better error estimates. The [?-projection to the existing
numerical approximation u, produced some superconvergence in H, norm and did

not affect the convergence rate in Z* norm (see Figure 4). The numerical example 2 also

Table 1. Numerical error approximation results using NCFEM in Example 1, u = x(l —x) y(l - y) .

b ¥, ()] o] ¥ (-0, T
1 273 0.1388e—1 0.3909¢-3 0.8184e—2 0.3920e-3
2 373 0.4138e—2 0.3443e—4 0.1635e—2 0.3431e—4
3 47 0.1747e-2 0.6104e—5 0.5190e—3 0.6104e—5
4 573 0.8944e-3 0.1600e—5 0.2127e-3 0.1600e—5
5 67 0.5176e—3 0.5358e—6 0.1026e—3 0.5359%—6
o(h") 0.9981 2.000 1.3287 2.0010
0.06 0.06 0.06
0.06 0.05
0.05
@ » 004 ; 0.04
x 124
3 % 0.03 m 44 NH k N\
T © Wl
s 5 0.02. ,’uWA w&% ‘ 0.03
g 5 H!
0.01 rrm , ‘w 0.02
0 Ly " I
1 0.01
0
y-axis 0o x-axis

Figure 1. Surface plots of approximation using NCFEM in Example 1, u=x(1-x)y(1-y). (L): Surface plot of u, when h=27.(M):

Surface of plot of u, when % =3.(R): Surface plot of Q.u, when r=37.
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10° 10"
g lu=uy,
S u=Quuy,
-2 -2 N
102 107 . “-0(h'"?)
10°% 10°%
ha|
-6 -4 \*‘
10° 10 y
-8 -5
10 : : 10 :
10° 10 10° 10° 10° 10' 10° 10°

Figure 2. Error convergence rates using NCFEM in Example 1, u = x(l - x) y(l - y) . (L): I? norm error; (R):

H, norm error.

Table 2. Numerical error approximation results using NCFEM in Example 2, u =x(1-x)ycos(1.5ny).

iter h th (u—u,) e =, ‘V, (u—-0u,) ||u—Qruh||

1 27 0.3933e-1 0.8429e-3 0.2214e-1 0.8453e-3

2 37 0.1189%e-1 0.7404e—4 0.4387e-2 0.7408e—4

3 4 0.5019e-2 0.1317e-4 0.1392e-2 0.1318e-4

4 57 0.2570e-2 0.3454e-5 0.5708e-3 0.3455e-5

5 6 0.1487e-2 0.1156e-5 0.2754e-3 0.1157e-5
o(n) 0.9983 1.9998 1.3311 2.0006

_ 0.02
‘ 0
“\Wpﬂ | . ' -0.02
ms" Moo, -0.04

- - -0.06.27 -0.06

i 008y T -0.08

iy
e : -0.1
: 20 -0.12
7 ' ' _—— 1l-0.14
06 ® - m\ 0608 W

0 _—~ ., 04

y-axis x-axis y-axis 02 4 0 x-axis yaxis 079 92 xaxis

Figure 3. Surface plots of approximation using NCFEM in Example 2, u=x(1-x)ycos(1.5ny). (L): Surface plot of u, when h=2".
(M): Surface of plot of u, when h=3".(R): Surface plotof Q.u, when 7=37.

supports the theoretical result and confirms the superconvergence of NCFEM for the

second-order elliptic problem.

5. Conclusion

The I*-projection to the existing numerical approximation u, produced some super-

convergence in A, norm, convergence rate 1.3, but did not affect the convergence
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10 10 :
-g- llu=uyl B |u—uh|1
107 -4 lu=Quuy || 5., - lu—Qu,
3 +*
—Q_O(hz) . —$—O(h1'3)
-2
. 107
10 8,
10 N
10
- N \-k\
10°; s
. ‘
ﬂ\
6 * —4
10 Cee B 10 T
10° 10' 10° 10° 10° 10' 10° 10°

Figure 4. Error convergence rates using NCFEM in Example 2, u =x(1-x)ycos(1.5ny). (L): Z* norm error;

(R): H, norm error.

rate in [* norm. With the numerical experiments we can conclusively support the

theoretical result and confirm the superconvergence of NCFEM for second-order

elliptic problems by Z?-projection method.
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