
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Time Lattice: A Data Structure for the Interactive Visual Analysis of
Large Time Series

Fabio Miranda1, Marcos Lage2, Harish Doraiswamy1, Charlie Mydlarz1, Justin Salamon1, Yitzchak Lockerman1,
Juliana Freire1, Claudio T. Silva1

1 New York University, New York, United States 2 Universidade Federal Fluminense, Niteroi, Brazil

Broadway Av.

Construction site

Figure 1: Using Noise Profiler to analyze OLAP queries over acoustic data from sensors deployed in New York City. A group-by hour is used
as a baseline for ambient noise (smooth line), highlighting the difference between the noise profile of two locations during weekdays. One
sensor (blue) is close to a main road (Broadway Av.) and has a constant dBA level throughout the hours of the day; the other sensor (orange) is
close to a major construction site and has a distinctly higher dBA level during construction hours between 7 a.m. and 5 p.m. The live streaming
data (fluctuating line) can be used to get instantaneous information about the noise level captured by the sensors, and inform city agency noise
enforcement teams about possible noise code violations such as construction sites operating outside of their allotted construction hours.

Abstract
Advances in technology coupled with the availability of low-cost sensors have resulted in the continuous generation of large
time series from several sources. In order to visually explore and compare these time series at different scales, analysts need to
execute online analytical processing (OLAP) queries that include constraints and group-by’s at multiple temporal hierarchies.
Effective visual analysis requires these queries to be interactive. However, while existing OLAP cube-based structures can
support interactive query rates, the exponential memory requirement to materialize the data cube is often unsuitable for large
data sets. Moreover, none of the recent space-efficient cube data structures allow for updates. Thus, the cube must be re-computed
whenever there is new data, making them impractical in a streaming scenario. We propose Time Lattice, a memory-efficient
data structure that makes use of the implicit temporal hierarchy to enable interactive OLAP queries over large time series.
Time Lattice is a subset of a fully materialized cube and is designed to handle fast updates and streaming data. We perform
an experimental evaluation which shows that the space efficiency of the data structure does not hamper its performance when
compared to the state of the art. In collaboration with signal processing and acoustics research scientists, we use the Time Lattice
data structure to design the Noise Profiler, a web-based visualization framework that supports the analysis of noise from cities.
We demonstrate the utility of Noise Profiler through a set of case studies.

1. Introduction

With the massive adoption of the Internet of Things (IoT) in various
scenarios ranging from smart home devices and smart cities to medi-
cal and healthcare applications, interactive visualization frameworks
are becoming paramount in the exploration and analysis of the data

generated by these systems. Any such IoT setup continuously trans-
mits data as a time series from tens and hundreds up to thousands
of objects (or sensors). The exploration of these data typically re-
quires complex online analytical processing (OLAP) queries that
involve slicing and dicing the time series over different temporal

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

resolutions together with multiple constraints and custom aggrega-
tions. The use of a visual interface adds an additional constraint: the
queries must be interactive, since high latency queries can break the
flow of thought, making it difficult for the user to effectively make
observations and generate hypotheses [LH14].

In this paper, we are specifically interested in the analysis of time
series from acoustic sensors deployed to help map and understand
the noisescape in cities. Noise is an ever present issue in urban envi-
ronments. Besides being an annoyance, noise can have a negative
effect on education and overall health [BH10]. To combat these
problems, cities have developed noise codes to regulate activities
that tend to produce sounds (see e.g. [NYC05,Cit]). To help monitor
noise levels in New York City (NYC), as well as to aid government
agencies in regulating noise throughout the city, researchers part
of the Sounds of New York City (SONYC) project have developed
and deployed low cost sensors that have the ability to measure and
stream accurate sound pressure level (SPL) decibel data at high tem-
poral resolutions (typically every second) [MSB17a,MSB17b,SON].
Thirty six such sensors have been collecting data for over a year,
in addition to another twelve new sensors that have been deployed
since. As the size of this network continues to grow, the amount of
data produced by the sensors becomes virtually unbounded.

This necessitates the ability to handle analysis queries efficiently
on such large time series data, in particular, the more complex OLAP
queries that require aggregations of the data across multiple temporal
resolutions. For example, noise enforcement agencies can assess
a breach if the noise level is greater than the ambient background
noise. However, the ambient background noise patterns are spatially
localized and vary depending on the time (e.g., peak hours, night
time, weekdays, weekends, etc.). So, to identify these patterns over
weekdays, as shown in Figure 1, the following query is issued using
a visual interface over data from sensors present in the different
regions of interest:

select time series during weekdays groupby hour
Furthermore, not only can the user restrict the time range over which
to perform the above query (e.g., in Figure 1, the time range is from
October 2017 to December 2017), but depending on the location
and its conditions (e.g., tourist spots), more constraints might also
be interactively added to this query. Since users can continuously
alter the constraints through the visual interface, it is crucial that
these queries have low latency to enable seamless interaction.

Problem Statement and Challenges. The goal of this work is to
design a time series data structure that supports OLAP queries and
has the following important properties:

1. Interactive queries;
2. Interactive updates from new data; and
3. Low memory overhead.

Two common approaches to support OLAP queries are to use either
database systems catered for time series, or data cube-based solu-
tions. However, neither of the approaches satisfy all of the above
requirements that are crucial for real-time visual analysis of the data.

Traditional time series databases [PFT∗15, BKF, Inf, Kai], by
supporting the powerful SQL-like syntax, can execute a wide range
of queries including the OLAP queries with temporal constraints
that are of interest in this work. They are often memory efficient,

and support updates over new data. To execute a given query, these
systems typically use an index to first retrieve intermediate results
based on the constraints. The query results are then computed by
explicitly aggregating the intermediate results. Unfortunately, such
strategy fails to be interactive when handling data at the scale that is
now available (see Section 4).

Data cube-based structures [LKS13, PSSC17, MLKS18, SMD07],
on the other hand, have extremely low latency to OLAP queries.
However, the size of these data structures increases exponentially
with the number of dimensions. In case of a time series, the di-
mensions correspond to the discrete temporal resolutions for a time
series. Moreover, to support temporal constraints in these queries,
the time resolution of these constraints should also be a dimension of
the cube. For example, specifying the time period of interest with an
accuracy up to a minute requires minute to be a dimension of the data
cube. This further increases the space overhead. While this might be
admissible when working with a single time series, it becomes im-
practical when working with several tens to hundreds of time series
that is now commonplace with IoT systems. Additionally, the more
practical memory-optimized data cube structures [LKS13, PSSC17]
do not support updates with new (or streaming) data, thus requiring
the re-computation of the entire structure every time. Given that the
cube creation time can take minutes even for reasonably small data
sizes, this approach becomes impractical for handling multiple large
streaming time series data.

Contributions. In this paper, we present a new data structure,
Time Lattice, that can perform OLAP queries over time series at
interactive rates. The key idea in its design is to make use of the
implicit hierarchy present in temporal resolutions to materialize a
sub-lattice of the data cube. This helps avoid the curse of dimen-
sionality common with other cube-based structures and results in
a linear memory overhead, while still being able to conceptually
represent the entire cube. This drastic reduction in memory also
allows us to augment our data structure with additional summaries,
thus supporting the computation of measures that are otherwise not
easily supported. More importantly, unlike existing approaches, our
data structure allows constant amortized time updates.

To demonstrate the effectiveness of Time Lattice, we develop
Noise Profiler, a proof of concept web-based visualization system,
that is being used in the SONYC project to analyze acoustic data
from NYC.

To summarize, our contributions are as follows:
• We introduce Time Lattice, a data structure that supports multi-

resolution OLAP queries on time series at interactive rates. It has
a linear memory overhead, and supports constant amortized time
updates with new data.

• We show experimental results demonstrating both the time as
well as space efficiency of Time Lattice.
• We develop Noise Profiler, a web-based visualization system to

simultaneously analyze multiple streams of data generated from
the SONYC sensors. Note that, without the underlying efficient
data structure, it would not be possible to visually analyze such
multiple streams in real time.

• We demonstrate the utility of Time Lattice through a set of case
studies performed by subject matter experts, and which are of
interest to the end users of the SONYC project.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

2. Related Work

Time Series Databases. Several databases have been proposed to
facilitate data acquisition and data querying of time stamped data.
Their architecture and design vary greatly depending on their goal.
One class of database systems such as tsdb [DMF12], Respawn
[BWSR13] and Gorilla [PFT∗15] are primarily concerned with pro-
viding the user with monitoring capabilities, and lack support for
complex analytical queries. Respawn [BWSR13] proposes a multi-
resolution time series data store to efficiently execute range queries.
While it efficiently speedup range queries, it does not support aggre-
gations (such as group-by’s) over any temporal resolution.

One of the most popular database to support analytical queries
on time series is InfluxDB [Inf], which offers a SQL-like language
for queries, including rollups and drilldowns. KairosDB [Kai] is
another popular time series database that uses Apache Cassandra for
data storage, and provides much of the same features as InfluxDB.
Timescale [Tim], on the other hand, builds on top of the popular
Postgres to offer a database solution tailored for time series. As
we show later in Section 4, a major drawback of these solutions is
that they cannot drive interactive visualization, with complex OLAP
queries requiring several seconds to execute. For a more detailed
survey on existing time series data management systems, we refer
the reader to the following surveys by Jensen et al. [JPT17] and
Bader et al. [BKF].

Data cube. Data cube [GCB∗97] is a popular method designed
specifically to handle OLAP analytical queries. It pre-computes ag-
gregations over every possible combination of dimensions of a data
set in order to support low-latency queries. It has been extended to
support data sets from different domains, such as graphs [CYZ∗08]
and text [LDH∗08]. The main drawback of a data cube is the ex-
ponential growth of the cube with increasing dimensions making
them impractical when working with large data sets. A common
approach to reduce the size of a data cube is to materialize only a
subset of all possible dimension combinations. One such approach,
called iceberg cube [BR99], only stores aggregations that satisfy a
given condition (specified as a threshold), and discards any values
not above this threshold. While this approach is suitable for the anal-
ysis of historical data, updates become unfeasible since new data
dynamically changes the aggregation requiring access to previously
discarded values.

More recently, with the focus on spatio-temporal data, several
approaches have been proposed to deal with the curse of dimension-
ality. Nanocube [LKS13] uses shared links to avoid unnecessary
data replication along the data cube. However, the above memory
reduction scheme is not sufficient to reduce the structure size when
considering high resolution, dense time series typically available
from IoT devices (see Section 4). Hashedcube [PSSC17], on the
other hand, uses pivots to efficiently compute a subset of the ag-
gregations on the fly from the raw data, rather than pre-computing
all of them, thus achieving a considerably lower memory footprint.
To do this, it requires the data to be sorted according to its dimen-
sions. While both nanocube and hashedcube support low latency
queries capable of driving interactive visualizations, they cannot
handle data updates. Han et al. [HCD∗05] tackle the memory ex-
plosion by restricting the analysis to a temporal window. This is
accomplished by a data cube that, while updating new data points,

discards old points (and the corresponding aggregations) based on a
user defined retention policy. A similar retention approach is also
used by Duan et al. [DWW∗11]. While this approach is suitable for
monitoring applications requiring analysis on recent history, it relies
on approximate queries and cannot be used for historical analysis.

Our goal is have a data structure that supports real-time queries
for both historical analysis as well as monitoring applications, while
still being memory efficient. To accomplish this, we choose a mate-
rialization of the data cube based on the intrinsic temporal hierarchy
that enables constant amortized time updates, as well as real-time
query execution. However, note that the proposed data structure
is not a replacement for general data cubes, which are structures
applicable to any data set. Rather, it provides an efficient alternative
when working with large time series and OLAP queries that slice
and dice the time series over the temporal resolutions.

Time series visualization. Time stamped data has long been studied
and visualized in multiple domains. Several studies propose differ-
ent metaphors and interactions when dealing with time series, such
as applying lenses [ZCPB11], clustering values into calendar-based
bins [VWVS99] or re-ordering of the series at different aggregations
to allow for an easier exploration [MMKN08]. The perception im-
pact on the visualization of multiple time series has been studied by
Javed et al. [JME10]. A full survey of different techniques was pre-
sented by Silva and Catarci [SC00], Müller and Schumann [MS03]
and Aigner et al. [AMM∗07]. Note that all of these approaches are
orthogonal to this work. While their goal is to provide new visual
metaphors, ours is to support real-time execution of queries that are
used to generate the required visualizations. The visualization of
time series in multiple resolutions has also been a topic of study.
Berry and Munzner [BM04] aggregate the data into bins prior to the
visualization. Hao et al. [HDKS07] proposed a distortion technique
that generates visualizations where more visual space is allocated to
data according to a measurement of interest. Jugel et al. [JJHM14]
proposed M4, a technique to aggregate and reduce time series con-
sidering screen space properties. All of these approaches, however,
do not focus on OLAP-type queries, limiting their techniques to
essentially a range query at a coarser resolution.

Another popular area of research associated with time series is the
querying of similar patterns in a time series [MVCJ16,CG16,HS04].
Time Lattice can augment these approaches by speeding up sub-
queries that are commonly used by them.

3. Time Lattice

The primary goal of this work is to efficiently execute queries of the
following type over an input time series:

select time series between t1 and t2
where constraints C
groupby resolutions G

where, t1 and t2 specify the time period of the data to consider. The
constraints C =

⋃
r{Cr} defines the constraints over each temporal

resolution r. Here, Cr specifies a set of values in resolution r that
have to be satisfied. The resolutions g ∈ G specify the resolutions
on which to perform the group-by. For example, if the query in
Section 1 has to be executed only for data from the last 6 months
of 2017, we set t1 = 2017-06-01T00:00; t2 = 2017-11-30T:23:59;
C =

{
Cdayweek = {Monday, ...,Friday}

}
; and G = {hour}.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Figure 2: Data cube with D = {hour,dayweek,month} has a total of 2|D| cuboids, where each cuboid stores the aggregations for all possible
values of its dimensions.

T Discrete space representing time.
f : T → R Time series.

D Dimensions of the data cube. It corresponds to the
temporal resolutions in case of a time series.

P(D) Power set of D.
≺ Partial order defined on the temporal resolutions.
H Hasse diagram of the poset (D,≺).
Br Cuboid corresponding to resolution r.

αr(t) Association function mapping time step t to an offset
in Br .

πr→r′ (i) Containment function mapping an element in Br to an
element in Br′ , where r→ r′ ∈ H.

Table 1: List of symbols.

In this section, we describe the main data structure, Time Lattice,
and discuss its properties. We also explain the query execution
strategy using Time Lattice and describe extensions to the data
structure that enable additional features such as support for join
queries and multiple aggregations.

3.1. Data Structure

A data cube [GCB∗97] is a method that was designed to efficiently
answer aggregate queries such as the one shown above. Here, the
resolutions of time are modeled as the dimensions D of a data
cube. However, unlike general data sets, the dimensions of time
corresponding to the different temporal resolutions are hierarchically
dependent. We make use of this property to design a data structure
that is both memory efficient and supports interactive aggregate
queries. To avoid the exponential memory overhead of a data cube,
we compute only a subset of the data cube. We then make use of
the inter-dependency between the temporal resolutions to efficiently
compute on-the-fly query results. In this section, we first provide
a brief overview of data cubes followed by describing in detail the
proposed data structure. We use the terms resolution and dimensions
interchangeably in the remainder of the text.

Preliminaries: Data Cubes. Consider a time series f : T → R,
which maps each time step of a discrete temporal space T to a real
value. Without loss of generality, let the resolution of T be seconds
and be represented using epoch time (i.e., seconds since January 1,
1970, Midnight UTC). Let f be defined for every second within a
time interval [t1, t2), t1, t2 ∈ T . For ease of exposition, assume that
there are no gaps in the time series, that is, the function f is defined
for all t1 ≤ t < t2. Since we are working with time, f can also be
analyzed in resolutions coarser than a second, such as minute, hour,
day of week (dayweek), etc.

A data cube represents all possible aggregations over the dimen-
sions in D. Formally, a data cube represents the 2d cuboids corre-
sponding to the elements of the power set P(D), where d = |D|.
For example, given dimensions D = {hour,dayweek,month}:

P(D) =
{

/0,{hour},{dayweek},{month},{hour,dayweek},

{dayweek,month},{hour,month},

{hour,dayweek,month}
}

The set of cuboids for the data cube in the above example is
shown in Figure 2. The dimension of a cuboid BP, P ∈P(D),
is equal to |P|. For example, the element {dayweek} forms a 1-
dimensional cuboid while {hour,dayweek} forms a 2-dimensional
cuboid. A k-dimensional cuboid (or k-cuboid) stores all possi-
ble aggregations corresponding to its k dimensions. For example,
the 2-cuboid {hour,dayweek,ALL}, corresponding to the element
{hour,dayweek} ∈P(D), stores the aggregations for all possible
(hour, dayweek) values. Here, the aggregation is performed over the
other d− k dimensions represented by ALL, which in the above
example is month. Thus, this cuboid has size 24×7 (there are 24
possible hours and 7 possible days). In general, the size of a k-
cuboid, i.e., the number of aggregations stored by the cuboid, is
equal to the product of the cardinality of each of its dimensions.

A fully materialized data cube pre-computes and stores all 2d

cuboids corresponding to P(D). As a rule of thumb, the number
of dimensions to use to create a cube depends on the resolution of
the constraints used in the query. In the above example, to support
queries that group by or filter over arbitrary time ranges specified in
the resolution of minutes, the dimension minutes should be added
to D. When a new dimension is added, not only does the number
of cuboids increases by a factor of 2 (23 to 24 in the example), but
the total number of aggregations stored (corresponding to all the
cuboids) increases by a factor equal to the number of categories
in that dimension (60 in case the dimension minute is added to D,
since there are 60 possible values denoting a minute). Clearly, the
size of the data cube increases exponentially with new dimensions,
and can quickly become intractable when working with resolutions
commonly used in time series analyses.

The Time Lattice structure. Instead of materializing the entire data
cube, we use the intrinsic hierarchy present in time to materialize
only a subset of this cube. Formally, let D = {r1,r2, . . . ,rd} denote
the different temporal resolutions. Let ≺ denote a partial order

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Figure 3: Hasse diagram denoting the poset defined on the temporal
resolutions used in this work.

defined on D, such that ri ≺ r j if the time stamps in resolution ri
can be partitioned based on the time stamps in resolution r j. For
example, minute≺ hour and hour ≺ dayweek, since the time stamps
specified in minutes can be partitioned based on the hour of that time
stamp, and similarly hours can be partitioned by days. Note that the
above partial order is different from the partial order that defines the
data cube itself (defined by the inclusion function [GCB∗97]). Let
H denote the Hasse diagram of the partially ordered set, or poset,
(D,≺). The nodes of H correspond to the dimensions in D, and an
edge exists from ri to r j if r j covers ri, i.e., ri ≺ r j and @rk|ri ≺ rk ≺
r j. In the above example, even though minute≺ dayweek, this edge
does not exist in H since dayweek does not cover minute (∃hour s.t.
minute ≺ hour ≺ dayweek). Figure 3 shows the Hasse diagram for
the poset covering common temporal resolutions used in this work.

Time Lattice materializes cuboids using H as follows. Consider a
maximal path (ri1 ,ri2 , . . . ,r, . . . ,rin) in H such that ri1 ≺ ri2 ≺ . . .≺
r ≺ . . .≺ rin . The cuboid (ALL,ALL, . . . ,ALL,r, . . . ,rin) is material-
ized corresponding to the node r in this path. For example, consider
the node daymonth in the poset defined in Figure 3. This results in
materializing the cuboid (ALL,ALL,ALL,daymonth,Month,Year).
Next, consider a resolution r which is not part of this path. A maxi-
mal path in H that includes r is next chosen to be materialized. This
process is repeated until there is at least one cuboid correspond-
ing all resolutions in H. The Time Lattice is the union of all the
cuboids resulting from the above materialization. Note that, since
each cuboid BP that is materialized corresponds to a resolution
r ∈ H, we refer to this cuboid using r as Br.

Such a materialization has several advantages:

• Each materialized cuboid Br can be represented by a contigu-
ous array such that the aggregate values stored in Br follow a
chronological order representing a continuous time series in res-
olution r. Thus, the Time Lattice can have a simple array-based
implementation.

• Consider the resolutions daymonth and dayweek. Even though they
are conceptually different (the categories have different range:
{1,2,3, . . .} vs. {Mon,Tue, . . .}), the individual array elements
of Bdaymonth and Bdayweek correspond to the same days. Thus, the
same array can be shared by both these cuboids.

• Because of the chronological ordering, the different cuboids can
be implicitly indexed based on the resolution r. This implicit
index is formally defined using an association function, αr(t),
corresponding to each r ∈ H, which maps a time stamp t to an
offset i of the array Br. That is, Br[i] stores the aggregated value
corresponding to time step t in the cuboid Br. Table 2 lists the
association functions αr used for the resolutions in Figure 3.

• Enables efficient updates to the data structure (see details below).
• The temporal hierarchy also allows for an implicit mapping

αsecond(t) Bsecond [t− t1]
αminute(t) Bminute[b t

60 −b
t1
60 cc]

αhour(t) Bhour[b t
60∗60 −b

t1
60∗60 cc]

αday(t) Bday[b t
24∗60∗60 −b

t1
24∗60∗60 cc]

αweek(t) Bweek[weeksbetween(t, t1)]
αmonth(t) Bmonth[12∗ (y(t)− y(t1))+m(t)−m(t1)]

αyear(t) Byear[y(t)− y(t1)]

Table 2: Association functions. Here y(), m() returns the year and
month respectively for a given time stamp, and weeksbetween()
returns then number of weeks between two time stamps.

between array elements across resolutions, enabling efficient
“rollups” and “drilldown” operations that are performed on a
cube (see Section 3.2). This mapping is formally defined by the
containment function πr→r′ which maps an array offset i in reso-
lution r to an offset j in resolution r′, whenever there is an edge
from r to r′ in H. Essentially, πr→r′(i) = j if and only if there
exists t such that αr(t) = i and αr′(t) = j. This function can also
be parametrically computed similar to the association function.
Since π is a many-one function, the inverse mapping π

−1
r→r′ maps

an offset in the coarser resolution r′ to a sub-array in Br. This
mapping to a sub-array is only possible because of the above
mentioned ordering of Br.

• Helps efficiently execute queries with range constraints as well—
only the sub-array(s) within the offsets corresponding to the query
range has to be considered.

The elements of the cuboid Br (i.e., Br[i]) store one or more
measurements µr(i). Here, µ can be any distributive and algebraic
operation. In our implementation, we store the following distributive
aggregates—minimum, maximum, sum, and count. This can in turn
be used to compute other algebraic aggregates such as average
(see Section 3.3 for more details). Note that if the dimension is the
same as the resolution of the underlying time series, then µ simply
corresponds to the time series itself.

Space requirements. Let the size of the time series be n. For anal-
ysis purposes, first consider a maximal path r1,r2, . . . ,rk in H s.t.
r1 ≺ r2 ≺ . . .rk. Without loss of generality, let r1 be the original
resolution of the time series. Thus, the Br1 simply corresponds to
the underlying data itself. Let the space required for materializing
at resolution ri (size of the array Bri) be si. Therefore, s1 = n. Then,
the space required for materializing all arrays (i.e., not counting
the base array, which is the underlying time series) is s = ∑

k
i=2 si.

The size si+1 is a fraction of si defined by si+1 = dsi/ai+1e, where
ai+1 = |π−1

ri→ri+1
|. For example, aminute = 60 (60 seconds make a

minute), and aday = 24 (24 hours make a day). Therefore,

s =
k

∑
i=2

si

=
s1

a2
+

s2

a3
+

s3

a4
+ . . .+

sk−1
ak

≤ s1×

(
1
a2

+
1

a2 ·a3
+

1
a2 ·a3 ·a4

+ . . .+
1

∏
k
i=2 ad

)
+ k

≤ s1 + k

≈ n
{

assuming k� n
}

Let the total number of maximal paths used to materialize the

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

1: function DRILLDOWN(B′,R,r,C,G, t1, t2)
2: result← []

3: B← B′ ∩BR[r][αr(t1),αr(t2)]
4: Cr ← Constraints at resolution R[r]
5: if |G|= 0 and |C|= 0 then
6: result← B
7: else if |G|> 0 or |C|> 0 then
8: G = G\{R[r]}
9: C←C \Cr

10: for all b ∈ B do
11: if b satisfies Cr
12: result←result ∪{

DRILLDOWN(π−1
R[r+1]→R[r](b),R,r+1,C,G, t1, t2)

}
13: if r ∈ G then
14: result← GROUPBY(result,R[r])
15: return result
16: function QUERY(C,G, t1, t2)
17: r′← finest resolution in C∪G
18: R[]←

{
path in H from r′ to year containing C∪G

}
s.t. R[i+1]≺R[i]

19: DRILLDOWN(Byear,R,0,C,G, t1, t2)

Figure 4: Pseudo-code for the aggregate query.

Time Lattice be m. Then, the size of the Time Lattice data struc-
ture is bounded by O(m ·n). Given that typically m is a very small
integer—m = 2 for the Hasse diagram in Figure 3, the size of the
data structure is linear in the size of the underlying data. We would
like to note that this is not a tight bound. In fact, as we show later in
the experiments, the space required by the structure is significantly
smaller in practice (< 2% of n as shown in Section 4.2).

Updating the data structure. One of the main goals of our pro-
posed data structure is to support updates over new (or streaming)
data. Consider an existing Time Lattice structure, and an incoming
value of the time series. Since this value will have a time stamp
t at the finest resolution (second for the purpose of this work), it
will simply be appended to Bsecond . For resolutions r|second ≺ r,
we first need to check if the corresponding array element BR[αr(t)]
already exists. If it does, we need to update the value of the aggrega-
tion µr to take into account f (t). If this element does not exist, it is
first created and appended to Br and the value of µr is appropriately
initialized using f (t).

Assuming that the data structure is updated every second, the
time complexity becomes O(d) per update, where d is the number
of arrays maintained and is bounded by the number of resolutions in
H. Oftentimes, it is not critical to have such a high update frequency.
For example, instead of updating the structure every second, it
would suffice in practice to update it every minute. Let this update
be performed every k seconds. In this case, there will be k appends
to Bsecond , d k

aminute
e updates / appends to Bminute, and so on. Thus,

when k≥ d (e.g. for a minute-wise update, k = 60 > d = 7) the time
complexity is O(k+d) for effectively k updates, or O(k+d

k) = O(1)
amortized time per update.

3.2. Querying

Aggregate query. Aggregate queries (or OLAP-type queries) are
primarily used for a more nuanced analysis on the time series data.
The algorithm to execute such a query is presented in Figure 4.
The query is executed by first drilling down starting from the 0-
dimensional cuboid of the data cube. At each successive resolution

Figure 5: Drilldown performed (w.r.t. one of the months) when a
query groups-by month over all Saturdays from 18:30 to 23:59.

r, the constraint values for that particular resolution (Line 4) are
evaluated. Given a constraint in resolution r, the sub-arrays in Br
satisfying these constraints (within the given time range [t1, t2)) are
first identified, and a drilldown is performed only with respect to
these sub-arrays (Lines 10–12). Intuitively, a drilldown corresponds
to expanding the cuboid by increasing its dimension by one. Figure 5
illustrates this procedure on a query that requires a group-by on
month over all Saturday nights (18:30hrs–23:59hrs). For the hour
18, the execution drills down up to the minute resolution, and for the
other hours in the constraints, only upto the hour resolution.

The drilldown is recursively repeated until the constraint in C
at the finest resolution, rc, is satisfied. Let rg ∈ G be the finest
resolution on which a group-by is performed. If rg ≺ rc, then a
drilldown is further performed until rg. On the other hand, if rc ≺ rg,
a rollup is performed until rg. Intuitively, a rollup decreases the
dimensionality of a cuboid by one by aggregating over one of its
dimensions. At this stage, the group-by is performed recursively
over all resolutions in G starting from rg and rolling-up to coarser
resolutions. At each resolution, the elements of the filtered (and
previously grouped-by) sub-array are aggregated into the query
result (Line 14).

Range query. Time Lattice also supports range queries over time
series data. A range query is used to query for the time series within
a given time interval at an optional user specified resolution. This
query is primarily intended for the visual exploration of the time
series. A resolution coarser than the original resolution of the time
series returns the computed aggregates. It is common for the vi-
sualization system to control the resolution specified in the query
depending on the available screen space and the time constraint.
For example, when visualizing a large time series, the screen space
restricts each pixel to cover a time interval larger than a single unit
of time. So, the system might choose to visualize the maximum
value within the time interval corresponding to each pixel in order
to obtain a big picture of the time series (analogous to the level of
detail rendering used for terrains, which shows only larger moun-
tains when the camera is distant, and increases detail as the camera
moves closer to the scene).

The result for a query having time constraint [t1, t2] and resolution
r is simply the sub-array of Br from αr(t1) to αr(t2).

3.3. Extensions

Handling discontinuous time series. We have so far assumed that
the given time series is continuous and without gaps. This, however,
need not be true in practice. For example, a sound sensor could

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Figure 6: An additional histogram corresponding to a second time
series is stored in the cuboids to support joins in queries.

malfunction, and hence stop transmitting data. This would result in
no data from the sensor until it is corrected. Such a situation can
be handled in two ways. One could simply “fill" the gaps with a
default value denoting lack of data. In this case, when aggregations
are performed at a coarser resolution, these values should be dealt
with appropriately. The other option is to maintain separate Time
Lattices for each contiguous time series. In this case, the query-
ing approach would be modified to perform queries over all Time
Lattices whose time interval intersects the query time range, and
combine the multiple results into a single result.

In our current implementation, we chose the former since the
time interval between failure and replacement of sensors is typically
small, resulting in a small memory overhead due to the “filling"
operation. However, for cases where this gap can be significant, we
advise the use of multiple Time Lattices.

Supporting multiple aggregations. Time Lattice supports the use
of any aggregable measure. Here, a measure is said to be aggre-
gable if its sufficient statistics can be expressed as a function of
commutative and associative operators [WFW∗17]. Thus, it allows
an aggregation at a coarser resolution to be computed purely using
the immediate finer resolution (and hence not using the raw data at
all). In addition, measures such as median or percentiles can also
be approximated by maintaining a histogram associated with each
bin. The size of this histogram can be adjusted depending on the
available memory and accuracy requirements.

The low memory requirement of Time Lattice further allows the
addition of more advance summaries, as long as they are aggregable.
For instance, each bin can have a tdigest [DE14] associated with it,
so that holistic measurements such as quantiles can also be computed
within an error threshold. As shown later in Section 6, it is also easy
to add domain specific measures to the data structure.

Supporting joins. Oftentimes, the analysis of a time series might
require a join with another time series. For example, when analyz-
ing the decibel level time series from a sound sensor, the domain
expert might want to consider only time periods when there was
significant rainfall (precipitation greater than a given threshold).
Here the rainfall data would be represented by a second time series,
say f ′. To support such a join, we additionally store a histogram
corresponding to f ′ in each element of a cuboid as follows. The bins
of this histogram correspond to the range of f ′. Consider one such
histogram bin having range [f ′1, f ′2). The value stored in this bin

Figure 7: Expanded materialization between the resolutions hour
and day. Recall that the array corresponding to day is shared for
the resolutions dayweek and daymonth.

is equal to the aggregate of f (t) where t| f ′1 ≤ f ′(t)≤ f ′2. Figure 6
illustrates once such histogram for the above rainfall example.

Note that the resolution of f ′ need not be the same as that of the
time series of interest f . If the resolution of f ′ is finer than that of
f , then f ′ is appropriately aggregated. If instead, it is coarser, then
f ′ can be extrapolated to support constraints in a finer resolution.
In our current implementation, we assume that the join condition
based on f ′ is not coarser than the group-by resolution of the query.
The case when the condition is coarser than the group-by resolution
can be supported by storing the aggregate measure corresponding to
f ′ as well in the Time Lattice, and drilldown performed only when
an array element satisfies the condition.

Extended materialization. Depending on the size of the underlying
time series, queries could still be expensive depending on the query
constraints. In such cases, selectively materializing more nodes
can greatly help speed up the query execution. If frequently posed
queries involve a group-by different from the ones materialized, then
that corresponding cuboid is materialized.

On the other hand, if frequently posed queries involve similar
constraints along a single resolution, then it might be more beneficial
to add a new dimension, and materialize that resolution accordingly.
For example, users might frequently pose queries with constraints
in hour of day to study patterns during different times of the day
such as during peak hours in the morning and / or evening. One
such query would be to obtain the aggregated behavior during peak
morning hours (say 8 a.m. to 11 a.m.) grouped by the days of the
week. To execute the queries, several sub-arrays are processed after
filtering Bhour. As the size of the time series keeps increasing, this
overhead could become significant. In such cases, a new coarser
resolution can be introduced.

For a resolution r, there can be ar− 2 possible resolutions that
can be added corresponding to the possible time ranges. In the
above example, this resolution would lie between hour and day
with respect to the partial order ≺. There are aday− 2 = 22 such
possible resolutions ranging from 2 hours to 23 hours. If all of
these resolutions are materialized, then it increases the size of the
Time Lattice by a linear number of cuboids.

Materializing all such nodes for all resolutions might not be nec-
essary for the required analysis. Instead, we allow users to specify
common queries, and choose the new resolutions to be materialized.
By default, one could materialize resolutions corresponding to time
intervals that are factors of ar. Figure 7 shows one such materializa-
tion between the hour and day resolutions, where the time intervals
of sizes 2, 3, 4, 6, 8, and 12 hours are materialized. Queries with
constraints having a different interval size are then computed by
using a combination of these resolutions.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Figure 8: Size of Time Lattice within increasing time series size.
Note that the additional memory overhead used for the data structure
is considerably smaller than the data itself (< 2%).

4. Experimental Evaluation
In this section, we discuss results from our experiments evaluating
the efficiency of the Time Lattice data structure.

4.1. Experimental Setup

Hardware Configuration. All experiments were performed on a
workstation with a Intel Xeon E5-2650 CPU clocked at 2.00 GHz,
64 GB RAM, and running a Linux operating system.

Data Sets. We generate synthetic time series data sets for our evalu-
ation. The time series is itself at the second resolution, and for each
second, a random number from a uniform distribution is used as
the value for each time step (second). We generate time series of
different sizes depending on the experiment that is performed.

Q1 select time series between December 14, 1970 5:20 and Febru-
ary 3, 1972 9:20 aggregated by hour

Q2 select time series group by hour
Q3 select time series where time between 09:30 and 17:30 group

by day
Q4 select time series where time between 09:30 and 17:30, month

in [January, February, March] group by hour, minute

Table 3: Queries used in the experiments.

Queries. The four queries used in our evaluation are shown in
Table 3. We chose these queries to cover the different scenarios that
arise during the visual analysis of time series data. Query Q1 is a
range query typically used in the exploration of time series, and
queries for data within the given range to be visualized as an hourly
time series. Q2 is a group-by query used to visualize the hourly
patterns in the data. Q3 queries for the day time patterns in the data
for every day of the week. The complexity of the group-by query in
this case is increased by adding a constraint on time (i.e. day time
range). The above two queries are typically used to study ambient
noise patterns (see Section 6.1). Finally, Q4 further increases the
complexity of Q2 and Q3 by adding an additional constraint, as
well as another group-by dimension. This query provides detailed
minute-wise day time patterns over winter months.

State-of-the-art Approaches. For a comparison of Time Lattice
with the state of the art in Section 4.3, we use a combination of both
data cube-based techniques as well as libraries and databases that
are catered for time series data analysis.

In particular, for the data cube-based baseline, we use
nanocubes [LKS13] which is also available as open-source soft-
ware. We did not choose hashedcubes [PSSC17] since the available

Figure 9: Query execution time for the four test queries as the size
of the data increases.

implementation supports only “count” queries and cannot perform
aggregation over attributes. Also, nanocubes has better query per-
formance than hashedcubes [PSSC17], and hence provides a better
baseline. To be fair, we only chose resolutions that are used by the
test queries as dimensions while constructing the nanocubes data
structure. This also allows the data structure to be more memory
efficient. The resolutions included were: year, month, dayweek, hour,
and minute, and hour-minute. The last category gives the minute of
the day having a value between 0 and 1440. This was required to
efficiently support queries Q3 and Q4 that have constraints on the
time of day.

With respect to time series databases, we chose those that support
OLAP queries: PostgreSQL with the timescale [Tim] extension,
InfluxDB [Inf] and KairosDB [Kai]. We created a hypertable and
an index on the time dimension when using the timescale extension
in PostgreSQL. For both InfluxDB and KairosDB, we created tag
columns corresponding to the time dimensions used for querying
(same as the ones used for nanocubes). In addition to the above, we
also compare our data structure with the in-memory python library
Pandas [McK13] that is commonly used by data scientists in the
analysis of time series data. To enable efficient querying, we created
a DataFrame with an index on the time dimension.

Software Configuration. The Time Lattice data structure was im-
plemented using C++. For all the experiments, the Hasse diagram in
Figure 3 was used to create the Time Lattice on the input data.

Queries were executed 5 times, and the median timings are reported.

4.2. Scalability

We first study the scalability of Time Lattice with increasing data
sizes with respect to both query evaluation time as well as data
structure update time.

Data Structure Size. Figure 8 shows the size of the Time Lattice
data structure for different time series sizes. Note that the size of
the structure includes that of the raw data, and the upper bound of
additional memory overhead for the data structure is linear in the
size of the data itself (see Section 3.1). In practice, as illustrated in
the figure, this memory overhead is just a small fraction (≈ 1.6%)
of the underlying raw data.

Query Evaluation. Figure 9 shows the query evaluation time for
the 4 test queries with increasing data sizes. Note that, except for
Q1, the rest of queries cover the entire time series. As expected,
one can see a linear scaling with data size. This is primarily due
to the data structure size and query time trade-off in the design on
Time Lattice. Since there is no cuboid materialized with respect to

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Size Q1 Q2 Q3 Q4
(MB) Increase Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup

Time Lattice 397 — 40.5 — 15.0 — 12.8 — 92.4 —
Nanocube 41799 105X 116.0 2.9X 4.6 0.3X 2491.8 194X 40083.9 433X

Pandas 1600 4X 1670.1 41.2X 9355.1 623.6X 10399.3 812X 11070.6 119X
InfluxDB 412 1.03X 10574.6 261X 42913.5 2860X 35259.5 2754X 29058.0 314X

TimescaleDB 7867 19X 20385.1 503X 60206.4 4013X 130594.5 10202X 101036.1 1093X
KairosDB 1301 3X 229110.9 5657X 629886.4 41992X 240168.2 18763X 75267.1 814X

Table 4: Comparing query response times of Time Lattice with existing approaches on a time series with 100M points.

Figure 10: Average time per update. Note that the update time
remains consistent (≈ 0.012 ms) even when adding new data to a
Time Lattice built on a time series of size close to a billion points.

the group-by dimensions used in the queries, the query execution
drills down to the finest resolution required, and the processing time
is linear in the size of this dimension.

Q4, in particular, is an example of a pathological case query for
our data structure due to the following reasons: 1) the time range
selected does not align with the dimensions used thus requiring a
drill down to a finer resolution during query evaluation (as a rule
of thumb, query evaluation requiring only coarser resolutions are
faster than those requiring finer resolutions); and 2) the group-by is
on two dimensions–the corresponding cuboid is not precomputed.
Thus, this aggregation has to be evaluated on the fly. Note that even
for such complex group-by with multiple constraints over an entire
time series having as large as one billion time steps, the queries take
less than 650 ms.

Performance of Updates. Figure 10 shows the time to update the
data structure with streaming data. For this experiment, we start with
an empty Time Lattice, and insert data one time step at a time. The
plot shows the average insertion time for an update with incoming
data, and thus increasing data structure size as well. As can be seen
from the figure, the time to update the data structure with new data
is roughly constant, and around 0.012 ms. This ensures that even
if new data arrives at a frequency of every millisecond, our data
structure will be updated without any lag.

4.3. Comparison with State of the Art

Table 4 compares the performance of Time Lattice with the cur-
rent state-of-the-art solutions. A time series of size 100 million
seconds was used for this experiment. For all the approaches, ex-
cept for Time Lattice, we had to add additional columns to the data
corresponding to the resolutions before loading it. Time Lattice
has the lowest space requirement, while nanocubes consumes the
most memory. InfluxDB, which compresses the data comes a close
second.

The table also shows the query execution times for the four test
queries. The performance of Pandas and the three databases is sig-
nificantly slower than that of Time Lattice. While nanocubes has
good performance for Q1, it has the best performance for Q2. This is
because Q2 is a straightforward group-by without any constraint or
filtering on time. Since nanocubes is essentially a memory optimized
data cube, this query is simply a lookup from the corresponding bin.
On the other hand, when more complex constraints are imposed,
the performance significantly degrades. To improve performance of
nanocubes for the constraints involving time of day, one could addi-
tionally add a dimension to the data corresponding to it. However,
when we tried to create the nanocubes structure with this additional
dimension, it ran out of the available 64 GB memory.

5. Noise Profiler

Working with researchers from the SONYC project, we developed
a prototype web-based visualization tool, Noise Profiler, that uses
Time Lattice to help in the visual analysis of the SPL data obtained
from the different sensors deployed in NYC. In this section, we
first describe the SPL data followed by discussing the design of the
Noise Profiler interface. We finally describe how Time Lattice was
used to support the different features of Noise Profiler.

5.1. Sound Measurement Data

For the remainder of this paper, we use sound pressure level deci-
bel (SPL dBA) data obtained from the different acoustic sensors.
Here, the A denotes a frequency weighting that approximates the
response of the human auditory system. This data is sampled con-
tinuously at 1 second intervals from each sensor. As mentioned
in Section 1, the sensor network used for this work consists of 48
deployed nodes spread across NYC. Thus, each sensor generates a
time series having approximately 31.5 million points per year. As
part of the analysis, the researchers are also interested in computing
a metric called equivalent continuous A-weighted sound pressure
level (LAeq). LAeq is the sound pressure level in decibels equivalent
to the total A-weighted sound energy measured over a given time
period. This metric is used when exploring / analyzing acoustic data
over coarser time resolutions.

5.2. Desiderata

The two main tasks that the researchers in the SONYC project are
interested in are: 1) specify, execute, and visualize OLAP analytical
queries over the SPL data from across the city; and 2) compare live
data with the summaries obtained from these queries. To accom-
plish this, we develop a web-based prototype system built on top
of Time Lattice to satisfy the following requirements: 1) visually

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

specify queries— this includes the ability to select the time period
of the data to analyze, apply constraints over different time reso-
lutions, and specify dimensions on which to perform group-by’s;
2) ability to select and compare data from one or more sensors based
on the location; 3) support for the LAeq metric as the aggregate in
the queries; and 4) visualize live data together with the results of the
queries We now briefly detail the interface followed by describing
the backend query processing that is handled separately by a server.

5.3. Visual Interface

The Urban Noise Profiler interface consists of two main
components—a query panel and a time series widget (see Figure 1
and the accompanying video).

Query Panel. The query panel (Figure 1 (right)) allows the user
to visually frame the different analysis queries, and choose the
measure of interest to be visualized. While framing a query, the
user can set constraints at various resolutions (e.g. analysis over
weekends would require a constraint on the dayweek resolution, and
night time would require a constraint on the hour of day resolution).
Users can also specify the group-by dimension. The time range
of interest for a query is specified by brushing on the summary
view from the time series widget (described next). The query panel
also has a map widget (Figure 1 (left)) that displays the location of
the deployed acoustic sensors from which the user can choose the
sensors of interest. In addition, the user can also choose between
analysis mode and streaming mode. The analysis mode is primarily
used for analysis of historical data, while the latter allows users to
visualize streaming data together with analysis queries.

Time Series Widget. The user can create one or more time series
widgets, called time series cards. Each card is composed of a sum-
mary view providing an overview of the entire time series, and a
detailed view, visualizing the result from a query. Users can select
the time range of interest by brushing over the summary view. When
no constraints / group-by’s are specified, the query simply corre-
sponds to a range query, and is visualized in the detailed view. We
support the level-of-detail rendering by default (see Section 3.2).
The resolution at which it is visualized is determined by the screen
space (number of horizontal pixels) available. Thus, by zooming in
(selecting a smaller time range) the users can see more details of the
time series. When group-by’s are present, the result of this query
over the selected time range is visualized in the detailed view.

Users can select several sensors to be visualized on a single card,
and the chosen query is executed on all time series corresponding to
these sensors. The color of a time series indicates the sensor source
on the map. When there are multiple time series cards, queries are
specified separately for each of them, thus allowing the user to use
multiple cards for comparing different scenarios (e.g., day time vs
night time, or different clusters of sensors).

When working in streaming mode, the live data from the selected
sensors is shown together with the plots resulting from the specified
query. Here, the live data is visualized using a lighter hue of the
sensor color (see Figure 1).

5.4. Query Backend

We implement a server-based backend so as to allow users easy ac-
cess to the Noise Profiler through a web browser. For each deployed

sensor, we maintain one Time Lattice data structure. Given a query
and collection of sensors (that are selected by the user), the query is
executed once for each of the sensors. Due to the low latency of the
Time Lattice data structure, it is possible to perform such analysis
interactively. Note that this would not have been possible using
existing techniques given their performance. The information about
each of the sensor (e.g., location, deployed time) is stored separately,
together with a reference to the Time Lattice corresponding to it.
Missing and / or invalid data (e.g., when a sensor goes down) is
filled with a default value.

When creating the data structure, in addition to the default mini-
mum, maximum, sum, and average measures, we also store informa-
tion to compute the LAeq metric that was required for the analysis
tasks. We maintain one background thread per sensor which listens
for new data and updates the Time Lattice data structure accordingly.

6. Case Studies

In this section, we illustrate how Noise Profiler can be used in the
visual analysis of multiple large time series data with a focus on
understanding the acoustic noise patterns in NYC. In particular,
we discuss three case studies performed by the researchers in the
SONYC project.

6.1. Exploring Noise Patterns via Grouping

To better understand the acoustic conditions of the urban environ-
ment, long-term monitoring is required to capture the variations in
SPL over different periods: minutes, hours, days, weeks, months and
seasons. For example, noise enforcement agencies in cities typically
assess a breach of the noise code by a given rise in SPL above the
ambient background SPL. In cites, this ambient background SPL
varies at many different temporal resolutions, thus it is important to
understand these trends in order to better enforce local noise codes.

Case Study 1: Location-wise noise patterns. In this case study, we
were interested in exploring the data for global trends, in particular
how the noise pattern changes throughout the course of a single day
at different sensor locations. This question essentially corresponds
to the following group-by query on the different sensors.

select time series between t1 and t2 groupby hour
Here, [t1, t2) corresponding to the time period of interest. To do this,
we first select sensors of interest into the same time series card and
configure the above query in the query panel.

Figure 11 shows the results from 2 sensors on main traffic thor-
oughfares and 2 on quieter back streets. It thus required executing
4 group-by queries, each of which took 100 ms to execute. The
morning rush-hour ramp up in dBA level begins at the same time for
each group of sensor locations, however, the main-street locations
maintain a raised dBA level until around 7 p.m., when the evening
rush hour begins to trail off. The reduction in dBA level after 1 p.m.
for the back street sensors could suggest that these streets are typi-
cally less used for evening rush hour travel. The difference in dBA
level between the early morning (12 a.m.–5 a.m.) and peak daytime
dBA levels from 8 a.m.–7 p.m. is far more pronounced at ≈7dB for
the main-street locations compared to ≈2dB for the back-street lo-
cations. This highlights the impact of traffic noise on the main-street
locations.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

Sensors location

Back street Main street

Back street

Main street

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

76.0

74.0

72.0

70.0

68.0

66.0

64.0

62.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

76.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 11: Comparing daily patterns of noise in back streets with noise in main streets.

Sensor Faults

Weekday Weekend 4:00 AM 8:00 AM
74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0
Sensor Faults

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230
Sensor Faults

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 Tue Wed Thu Fri Sat SunMon
Sensor Faults

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

Tue Wed Thu Fri Sat SunMon

Figure 12: The two plots on the left show noise patterns on weekdays vs. weekends on diverse locations around Washington Square Park and
Central Park. The two plots on the right show the weekly noise patterns for 4am and 8am.

Case Study 2: Weekday vs weekend patterns. On weekends the
daily dBA levels throughout the day would intuitively exhibit a dif-
ferent trend to those on weekdays. Knowing these differences allow
city agencies to better understand the evolution of ambient back-
ground levels at different periods of the day and week. Figure 12
shows separately the weekday and weekend daily dBA level evo-
lutions, aggregated by hour for 5 sensors across varying locations.
This shows an ≈1dB difference between weekday and weekend
peak dBA levels, highlighting the raised weekday levels. Of note is
the increased gradient on the ramp-up period from early morning to
peak rush hour on the weekday plot compared to that of the week-
end plot. That is, during weekdays, the noise levels increase sharply
between 4 a.m. and 7 a.m. On the other hand, during the weekend,
the noise levels start increasing later, at 5 a.m., and take until 2 p.m.
to reach peak levels. A key point that is apparent from these plots is
the ≈ 1 hour later shift in this ramp up at weekends suggesting that
noise making activities begin later and take longer to increase over
time.

By visualizing these hourly noise patterns, the above analysis pro-
vides the hours of interest to investigate more closely. In particular,
while the ramp-up patterns are clear, it is still not straightforward to
make out how these hours vary over the different days of the week.
This can be visualized using the following query template:

select time series between t1 and t2 where hour=4am
groupby dayweek

Figure 12 also shows the weekly noise patterns at 4 a.m. and 8 a.m.
respectively, allowing us to explore a different perspective of this
data. Note how the noise level at 8 a.m. is relatively constant on
weekdays, but is lower on Sundays as compared to Saturdays. On
the other hand, it remains consistent throughout the week at 4 a.m.
Each of the queries posed to obtain the above visualizations took on
average 80 ms per sensor.

These findings can provide valuable information to city agencies

90.0

85.0

80.0

75.0

70.0

65.0

60.0

55.0

Figure 13: Comparing live data with two different ambient noise
baselines for a given sensor.

looking to understand the temporal characteristics of dBA levels at
different days of the week. For example, construction permits are
generally not issued for work over weekends to reduce the impact
on city inhabitants. However, special out–of–hours permits can
be requested for weekend work. With knowledge on the temporal
evolution of dBA levels on weekends for a particular location, these
permits can be time limited to periods of high ambient dBA levels,
reducing the impact of construction noise on local residents.

Finally, an unexpected outcome of the visual analysis process
described above was the identification of erroneous sensor data due
to sensor faults as seen in the excessive and continuous raised dBA
levels that can be seen in the summary view in Figure 12. The visual
interface allowed us to quickly and easily exclude this erroneous data
from the analysis. This kind of sensor data anomaly identification is
crucial when maintaining a sensor network of this scale.

Case Study 3: Ambient noise baselines. In NYC, the indication
of a noise code violation is given when a noise source exceeds the
ambient dBA level by 10dB. This prompts city agency inspectors
to investigate further into the offending noise source to determine

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

the extent of its breach of the noise code. This ambient level mea-
surement is typically carried out using an instantaneous “eye–ball”
measurement using a sound level meter while the offending noise
source is not operating. Agency inspectors can also request that
these noise sources be switched off to gain a more representative
ambient measurement. The issues here are: (1) that this instanta-
neous ambient measurement may not be that representative of the
area, as experienced by its inhabitants / noise complainants over
extended periods of time on that day of the week, and (2) that a
passive acoustic monitoring network does not have the ability to
request the temporary shutdown of noise sources.

Given (1), it is important to consider an ambient background level
computed over a more representative period of time, in order to
decrease the impact of short lived noise sources and day of week
influences. This is naturally captured by a group-by query. Figure
13 shows such a case, with the ambient level computed as the hourly
average over the last 11 months, considering only weekdays. Note
that the result of this query gets continuously updated with new
incoming data. Prior to using the Noise Profiler interface with the
Time Lattice data structure, we computed the ambient noise as the
90th percentile over a much shorter and “temporally naive” period
of 2 hours, as in, it does not consider the holistic ambient level
of this location, during the same period of time over multiple past
instances of this period. This is illustrated using a dashed line in
Figure 13. Note that that the ambient noise computed using this
approach follows the same trend as the actual instantaneous dB
level, resulting in a less representative ambient background level
measurement. Thus, the use of select historical data for ambient level
calculation, therefore addresses issue (2), providing a representative
ambient background level measure for effective real–world noise
code enforcement. Using Time Lattice, computing both the group-by
queries as well as the 90th percentile measure took only 150ms even
as the the data structure is simultaneously updated with incoming
data.

Figure 1 presents another example showing the weekday hourly
noise patterns of two different sensors. One sensor (blue) is located
close to a main road (Broadway Av.), and presents a relatively
constant dBA level throughout the hours of the day. The other sensor
(orange) is close to a major construction site, with a higher dBA level
during regular construction hours of 7 a.m. to 5 p.m. Also notice a
temporary dip in the live noise level around lunch time.

As this use case demonstrates, the combination of OLAP queries
over long time-periods and live streaming data can be used to better
guide city agents when issuing noise code violations (e.g., construc-
tion sites operating outside of their allotted construction hours), as
well as to better understand the noise profile of certain regions.

6.2. Feedback

As researchers using the Noise Profiler, we found several advantages
in using the proposed system. The primary among them was the
ability to seamlessly deal with high resolution SPL data covering
large time periods. The high temporal resolution of the acoustic data
streamed from our noise sensor network results in vast amounts of
data. The frequently short-lived nature of urban noise events mean
that all of this data needs to be considered when determining the
effects of this noise on city inhabitants. We were typically limited to

interacting with small subsets of the data, especially when dealing
with a duration of more than a few days due to the limitations of our
current tools (e.g., Pandas). The addition of the ability to interac-
tively explore historical data simultaneously from multiple sensors
helps tremendously, as now we can make more informed decisions
based on the acoustic conditions at multiple locations As shown in
the last case study, OLAP queries also allow the computation of a
more meaningful baseline for ambient noise level measurements, a
clear improvement over our previous “temporally naive” baseline.
This, in particular would be of great benefit to city agencies tasked
with urban noise enforcement to better understand sources noise
levels with respect to a representative ambient baseline. In addition
to this, the Noise Profiler would allow a noise enforcement officer to
query the periods at the very start and end of the allowed construc-
tion times of 7 a.m. and 6 p.m. Construction sites that begin early
or end late can be scheduled a visit, optimizing agency resource
allocation to the places that matter.

We also recently demonstrated the Noise Profiler prototype to
experts from NYC’s Department of Environmental Protection (DEP).
While they were impressed with the analysis capabilities, especially
the responsiveness in querying and handling data from multiple
sensors, they found the general query interface a little overwhelming.
In particular, they want to simplify the query interface by making
it more focused on the typical queries that they repeatedly perform.
We are currently in the process of making our system live for them
to use.

7. Conclusion

In this paper we presented Time Lattice, a memory efficient data
structure to efficiently handle complex OLAP queries over time
series data. By selectively materializing a subset of the data cube
based on the intrinsic hierarchy of the time resolutions, it allows
for a linear memory overhead and also supports constant amortized
time updates to the data structure. We also developed Noise Profiler,
a web-based visualization framework that uses Time Lattice to
allow the interactive analysis of data captured from acoustic sensors
deployed around New York City.

While our current implementation can easily handle time series
having a billion points interactively, as the data size keeps increasing,
interactivity might not always be possible. However, many steps in
the query execution process can be parallelized. In future, we intend
to explore both CPU as well as GPU-based parallelization strategies,
which can enable sub-second response times even with time series
having several billions of points.

Acknowledgements

This work was supported in part by: the Moore-Sloan Data Science
Environment at NYU; NASA; DOE; The Sounds Of New York City
(SONYC) project (NSF award CNS-1544753); NSF awards CNS-
1229185, CCF-1533564, CNS-1730396, OAC 1640864; CNPq; and
FAPERJ. J. Freire and C. T. Silva are partially supported by the
DARPA MEMEX and D3M programs. Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of DARPA.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

F. Miranda et al. / Time Lattice: A Data Structure for the Interactive Visual Analysis of Large Time Series

References

[AMM∗07] AIGNER W., MIKSCH S., MÜLLER W., SCHUMANN H.,
TOMINSKI C.: Visualizing time-oriented data-a systematic view. Comput.
Graph. 31, 3 (2007), 401–409. 3

[BH10] BRONZAFT A. L., HAGLER L.: Noise: The Invisible Pollutant
that Cannot Be Ignored. Springer Netherlands, 2010, pp. 75–96. 2

[BKF] BADER A., KOPP O., FALKENTHAL M.: Survey and comparison
of open source time series databases. Datenbanksysteme für Business,
Technologie und Web (BTW 2017)-Workshopband, 266. 2, 3

[BM04] BERRY L., MUNZNER T.: Binx: Dynamic exploration of time
series datasets across aggregation levels. In Proc. of the IEEE Symposium
on Information Visualization (2004), IEEE, pp. 215.2–. 3

[BR99] BEYER K., RAMAKRISHNAN R.: Bottom-up computation of
sparse and iceberg cube. In ACM Sigmod Record (1999), vol. 28, ACM,
pp. 359–370. 3

[BWSR13] BUEVICH M., WRIGHT A., SARGENT R., ROWE A.:
Respawn: A distributed multi-resolution time-series datastore. In IEEE
34th Real-Time Systems Symposium (RTSS) (2013), IEEE, pp. 288–297. 3

[CG16] CORRELL M., GLEICHER M.: The semantics of sketch: A visual
query system for time series data. In Proc. of the IEEE Conference on
Visual Analytics Science and Technology (VAST) (2016), IEEE. 3

[Cit] CITY OF PORTLAND: City Code, Title 18: Noise Control. URL:
https://www.portlandoregon.gov/citycode/?c=28182. 2

[CYZ∗08] CHEN C., YAN X., ZHU F., HAN J., PHILIP S. Y.: Graph
OLAP: Towards online analytical processing on graphs. In IEEE Int.
Conf. on Data Mining (2008), IEEE, pp. 103–112. 3

[DE14] DUNNING T., ERTL O.: Computing extremely accurate quan-
tiles using t-digests, 2014. URL: https://github.com/tdunning/
t-digest/. 7

[DMF12] DERI L., MAINARDI S., FUSCO F.: tsdb: A compressed
database for time series. Traffic Monitoring and Analysis (2012), 143–156.
3

[DWW∗11] DUAN Q., WANG P., WU M., WANG W., HUANG S.: Ap-
proximate query on historical stream data. In Database and Expert
Systems Applications (2011), Springer, pp. 128–135. 3

[GCB∗97] GRAY J., CHAUDHURI S., BOSWORTH A., LAYMAN A., RE-
ICHART D., VENKATRAO M., PELLOW F., PIRAHESH H.: Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and
sub-totals. Data Mining and Knowledge Discovery 1, 1 (1997), 29–53. 3,
4, 5

[HCD∗05] HAN J., CHEN Y., DONG G., PEI J., WAH B. W., WANG J.,
CAI Y. D.: Stream cube: An architecture for multi-dimensional analysis
of data streams. Distributed and Parallel Databases 18, 2 (2005), 173–
197. 3

[HDKS07] HAO M. C., DAYAL U., KEIM D. A., SCHRECK T.: Multi-
resolution techniques for visual exploration of large time-series data.
In Proc. of the 9th Joint Eurographics / IEEE VGTC Conference on
Visualization (2007), pp. 27–34. 3

[HS04] HOCHHEISER H., SHNEIDERMAN B.: Dynamic query tools
for time series data sets: timebox widgets for interactive exploration.
Information Visualization 3, 1 (2004), 1–18. 3

[Inf] InfluxDB. https://github.com/influxdata/influxdb. 2, 3, 8

[JJHM14] JUGEL U., JERZAK Z., HACKENBROICH G., MARKL V.: M4:
a visualization-oriented time series data aggregation. Proc. of the VLDB
Endowment 7, 10 (2014), 797–808. 3

[JME10] JAVED W., MCDONNEL B., ELMQVIST N.: Graphical percep-
tion of multiple time series. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (2010), 927–934. 3

[JPT17] JENSEN S. K., PEDERSEN T. B., THOMSEN C.: Time series
management systems: A survey. IEEE Transactions on Knowledge and
Data Engineering 29, 11 (2017), 2581–2600. 3

[Kai] KairosDB. URL: https://kairosdb.github.io/. 2, 3, 8
[LDH∗08] LIN C. X., DING B., HAN J., ZHU F., ZHAO B.: Text cube:

Computing ir measures for multidimensional text database analysis. In
IEEE Int. Conf. on Data Mining (2008), IEEE, pp. 905–910. 3

[LH14] LIU Z., HEER J.: The effects of interactive latency on exploratory
visual analysis. IEEE Transactions on Visualization and Computer Graph-
ics 20, 12 (2014), 2122–2131. 2

[LKS13] LINS L., KLOSOWSKI J. T., SCHEIDEGGER C.: Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (2013), 2456–2465. 2, 3, 8

[McK13] MCKINNEY W.: Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython, first ed. O’Reilly, 2013. 8

[MLKS18] MIRANDA F., LINS L., KLOSOWSKI J. T., SILVA C. T.: Top-
kube: A rank-aware data cube for real-time exploration of spatiotemporal
data. IEEE Transactions on Visualization and Computer Graphics 24, 3
(2018), 1394–1407. 2

[MMKN08] MCLACHLAN P., MUNZNER T., KOUTSOFIOS E., NORTH
S.: Liverac: Interactive visual exploration of system management time-
series data. In Proc. of the SIGCHI Conference on Human Factors in
Computing Systems (2008), ACM, pp. 1483–1492. 3

[MS03] MÜLLER W., SCHUMANN H.: Visualization for modeling and
simulation: visualization methods for time-dependent data-an overview.
In Proc. of the 35th Conf. on Winter Simulation: Driving Innovation
(2003), Winter Simulation Conference, pp. 737–745. 3

[MSB17a] MYDLARZ C., SALAMON J., BELLO J. P.: The implementa-
tion of low-cost urban acoustic monitoring devices. Applied Acoustics
117 (2017), 207–218. 2

[MSB17b] MYDLARZ C., SHAMOON C., BELLO J. P.: Noise monitoring
and enforcement in new york city using a remote acoustic sensor network.
Proc. of INTER-NOISE and NOISE-CON 255, 2 (2017), 5509–5520. 2

[MVCJ16] MUTHUMANICKAM P. K., VROTSOU K., COOPER M., JO-
HANSSON J.: Shape grammar extraction for efficient query-by-sketch
pattern matching in long time series. In Proc. of the IEEE Conference on
Visual Analytics Science and Technology (VAST) (2016), IEEE. 3

[NYC05] New York City Local Law No. 113, 2005. URL: http://www.
nyc.gov/html/dep/pdf/law05113.pdf. 2

[PFT∗15] PELKONEN T., FRANKLIN S., TELLER J., CAVALLARO P.,
HUANG Q., MEZA J., VEERARAGHAVAN K.: Gorilla: A fast, scalable,
in-memory time series database. Proc. of the VLDB Endowment 8, 12
(2015), 1816–1827. 2, 3

[PSSC17] PAHINS C. A., STEPHENS S. A., SCHEIDEGGER C., COMBA
J. L.: Hashedcubes: Simple, low memory, real-time visual exploration of
big data. IEEE Transactions on Visualization and Computer Graphics 23,
1 (2017), 671–680. 2, 3, 8

[SC00] SILVA S. F., CATARCI T.: Visualization of linear time-oriented
data: a survey. In Proc. of the First Int. Conf. on Web Information Systems
Engineering (2000), vol. 1, IEEE, pp. 310–319. 3

[SMD07] SABHNANI M., MOORE A. W., DUBRAWSKI A. W.: T-Cube:
A data structure for fast extraction of time series from large datasets.
Tech. rep., DTIC Document, 2007. 2

[SON] SONYC: Sounds of New York City. URL: https://wp.nyu.
edu/sonyc/. 2

[Tim] TimescaleDB. URL: https://timescale.com/. 3, 8
[VWVS99] VAN WIJK J. J., VAN SELOW E. R.: Cluster and calendar

based visualization of time series data. In Proc. of the IEEE Symposium
on Information Visualization (1999), IEEE, pp. 4–. 3

[WFW∗17] WANG Z., FERREIRA N., WEI Y., BHASKAR A. S., SCHEI-
DEGGER C.: Gaussian cubes: Real-time modeling for visual exploration
of large multidimensional datasets. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (2017), 681–690. 7

[ZCPB11] ZHAO J., CHEVALIER F., PIETRIGA E., BALAKRISHNAN R.:
Exploratory analysis of time-series with ChronoLenses. IEEE Transac-
tions on Visualization and Computer Graphics 17, 12 (2011), 2422–2431.
3

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://www.portlandoregon.gov/citycode/?c=28182
https://github.com/tdunning/t-digest/
https://github.com/tdunning/t-digest/
https://kairosdb.github.io/
http://www.nyc.gov/html/dep/pdf/law05113.pdf
http://www.nyc.gov/html/dep/pdf/law05113.pdf
https://wp.nyu.edu/sonyc/
https://wp.nyu.edu/sonyc/
https://timescale.com/

