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ABSTRACT
Continuous Integration (CI) services, which can automatically build,
test, and deploy software projects, are an invaluable asset in dis-
tributed teams, increasing productivity and helping to maintain
code quality. Prior work has shown that CI pipelines can be sophisti-
cated, and choosing and configuring a CI system involves tradeoffs.
As CI technology matures, new CI tool offerings arise to meet the
distinct wants and needs of software teams, as they negotiate a
path through these tradeoffs, depending on their context. In this
paper, we begin to uncover these nuances, and tell the story of
open-source projects falling out of love with Travis, the earliest
and most popular cloud-based CI system. Using logistic regression,
we quantify the effects that open-source community factors and
project technical factors have on the rate of Travis abandonment.
We find that increased build complexity reduces the chances of
abandonment, that larger projects abandon at higher rates, and that
a project’s dominant language has significant but varying effects.
Finally, we find the surprising result that metrics of configuration
attempts and knowledge dispersion in the project do not affect the
rate of abandonment.

1 INTRODUCTION
Continuous Integration (CI) systems automate the compilation,
building, testing, and deployment of software at a rapid pace [15].
CI is considered a software development best practice, and is known
to improve productivity in software teams and help maintain code
quality [3, 15, 26, 31]. However, rarely is a best practice truly univer-
sal and divorced from the context where it is applied. This intuitive
concept is best described by Contingency Theory [20] in a wider
organizational context: an organization’s structures and processes
should be compatible with the context in which it operates.

CI pipelines are no exception. Configuring CI is a complex pro-
cess, with numerous tradeoffs [14] and side effects on other software
development practices [32]. For example, Hilton et al. [14] found,
after interviewing 16 industrial developers, that implementing CI
requires negotiating tradeoffs between 1) test suite execution speed
and certainty in the code’s correctness, 2) ease of access and infor-
mation security, and 3) the desire for many configuration options
balanced against the desire for simplicity. Given all these choices,
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it’s natural for different projects to have different needs, as well as
for a project’s CI needs to change over time, as developers navigate
these tradeoffs [2, 27]. Simply stated, one size does not fit all.

As a realization of the diversity of CI needs, the marketplace of
available CI tools in open-source software (OSS) is booming. While
not long ago Jenkins and Travis CI were the only broadly used
client-side and cloud-based CI services, respectively, there are now
17 CI services that integrate with GitHub directly,1 and online
discussions are explicit about the need for tailored CI solutions.2

To better support developers looking for bespoke CI solutions as
well as designers and builders of CI tools, in this paper we begin to
uncover the factors that inform the choice of CI implementations
by OSS developers on GitHub. Specifically, we investigate 1,819
OSS projects moving away from Travis CI, the dominant cloud-
based CI service on GitHub [15], and try to uncover, using multiple
regression modeling, hints in their repositories that might explain
and contextualize this transition.

The phenomenon of Travis CI abandonment, we argue, is a
particularly attractive setting to study limitations of generic CI
solutions. First, by virtue of its popularity, there is a wealth of public
data available for GitHub projects using (and abandoning) Travis.
Second, abandoning Travis is a more significant event in the life of
a software project than its adoption: it is a choice to either abandon
CI altogether, going against a best practice, or abandon just Travis
CI, the most popular and trusted CI tool [15], in favor of a newer
and presumably less recognized replacement. For this to occur,
we assert there must be significant ‘push’ factors, which cause
projects to abandon Travis or CI altogether, or overriding ‘pull’
contextual factors, which draw a project from Travis to a new CI
service. Additionally, as the cost of setting up CI (including Travis)
is non negligible [11, 24], abandoning suggests that the push or pull
factors must be strong enough to overcome the initial investment.
Therefore, investigating Travis abandonment is important to fully
understand CI use, to understand how tool choices change with
recent addition of alternatives, and as a more general case study of
the factors which regulate community change.

Specifically, our results have the following highlights:
• We find that projects with more complex Travis configurations
tend to be less likely to abandon Travis, providing support for
the applicability of Contingency Theory in this context.

• We find that projects with more commits tend to be more likely
to abandon Travis, suggesting that larger projects may outgrow
Travis.

• Surprisingly, we find that metrics concerning number of attempts
to configure Travis and the extent to which Travis configuration
knowledge pervades the project community are not predictive
of Travis abandonment.

1https://github.com/works-with
2E.g., https://github.com/blog/2463-github-welcomes-all-ci-tools
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• We find that projects built with C# and other special purpose
languages tend to be more likely to abandon Travis, perhaps due
to a contextual mismatch.

2 DEVELOPMENT OF RESEARCH QUESTIONS
CI is a well-studied concept. Prior work has found that CI can help
teams scale, increasing the numbers of developers and the size of
the code base, without affecting software quality [26, 31]. Other
work suggests that CI needs change over time as projects navigate
different tradeoffs [27]. Retaining contributors is important for
sustaining the life of distributed software projects [10], andCI usage
has been shown to correlate with popularity: popular projects with
more developers tend to use CI at higher rates [10]. The use of CI
in a project, e.g., as indicated by repository badges [29], is also a
signal of adherence to best practices. CI itself can provide signals
of differential interest to different stakeholders, and work is being
done to unify signals from disparate sources and present only the
signals which will be relevant to a given stakeholder [6, 7].

However, adoption of CI is not without barriers, many of them
social or cultural, relating to incompatibility between the goals ofCI
and those of developers, and social processeswithin an organization,
underscoring that CI may not be for everyone [11, 19, 24]. The
problems of selecting appropriate test suites (e.g., to balance testing
speed and certainty), and automatically generating test suites, are
also ones of recent study [9, 13, 18]. These problems may lead some
organizations to only partially adopt CI into their workflow [21].

In this paper, starting from 11 interviews with developers in-
volved in configuring CI in their projects, carried out during prior
work [14], we built a “design space” of the facets of variability in-
volved in configuring CI, and the tradeoffs which are made when
choosing how to set up CI systems. From this, it was apparent that
abandonment is likely to be a complex process, influenced by many
factors. We group these factors into two distinct groups: technical
attributes of the project itself and those pertaining to community
structure. The goal of this study is to estimate the (relative) effects
of these different factors on the likelihood of abandoning Travis.

Testing is arguably the most important stage in a CI pipeline [31],
and Travis can be more useful in a test-heavy environment. Still, the
importance of tests likely depends on a project’s application domain,
which is often reflected in the choice of programming language.
HTML projects are likely to be web-related, R projects are likely to
be scientific or statistical applications, and Objective C projects are
likely to be mobile apps. Moreover, building and testing a project
can be a multi-stage process. The better the fit between Travis’
capabilities and a project’s build needs, one can argue, the more
of these stages it should be able to automate. In short, given that
technical attributes of a project can indicate how much value the
project gains from using CI, we ask: RQ1: What effects do technical
factors have on the likelihood of Travis abandonment?

Community culture, values, and structure can have large and
pervasive effects on that community’s choices and processes. For
example, projects with a culture that values stability are less likely
to make changes which might affect users, at the cost of implement-
ing new features. Other projects negotiate this tradeoff differently,
valuing adding new features over stability [5]. As another example,
there is evidence that some projects choose to use older versions

of APIs, perhaps on the assumption that they are more stable, or
that refactoring their project to work with new APIs may introduce
defects [22]. Also, it is reasonable to expect that DevOps culture,
of which CI is a central pillar, will not fit every community. In this
case, communities may have decided to try out CI only to find that
it clashed with their modus operandi. For example, a 2015 study
identified cultural factors which may bar teams from embracing
DevOps culture, such as a lack of agreement among team members
as to the goals and values of a project, resistance to changing old
habits, and the perception that embracing DevOps involves more
work [28]. Additionally, they found that lack of developer interest
in the “other side” of a Developer-Operations divide may lead to
a rejection of DevOps culture. The important and varied role that
community factors can have in the adoption and abandonment of a
tool, and the culture in which its use can be fully realized, lead us
to ask: RQ2: What effect do community contextual factors have on
the likelihood of Travis abandonment?

3 METHODS
3.1 Dataset and Preprocessing
Starting from a data set of GitHub projects using (or having used)
Travis CI, collected during prior work [32] circa March 2017, we
identified 38,214 projects that had disabled Travis, using the binary
is active flag returned by the Travis API.3 Of these, 95% had
also ceased development activity shortly after disabling Travis, i.e.,
had no commits beyond 30 days after Travis abandonment;4 we
subsequently filtered these out, as the abandonment event cannot
be disentangled from their termination of activity. We further fil-
tered out infrequent programming languages (to allow for enough
variance in the regression model). The resulting sample contains
1,819 projects distributed over 14 languages: 63 C#, 87 Puppet, 114
Shell, 134 CSS, 146 HTML, 155 Objective-C, 189 C, 234 C++, 283 Go,
651 Java, 868 Python, 947 PHP, 1,206 Ruby, and 2,199 JavaScript.

Next, we compiled a control group, down-sampling the much
larger group of non-abandoning projects using nearest-neighbor
propensity score matching [8] on the Travis adoption date (i.e., the
date of the first build); we sampled three matching non-abandoning
projects for every abandoning one, using the matchIt R package.
This ensures that all control-group projects started using Travis at
(approximately) the same time as their treatment-group counter-
parts, therefore all had the same number of CI options available at
the time of Travis adoption and, thus, controls for global environ-
ment effects. Our final sample of 7,276 projects is a merger of these
control and treatment groups; Table 1 presents summary statistics.

3.2 Measures
The outcome measure is Travis CI abandonment, as indicated by
builds being switched off on the travis-ci.org dashboard; this
is a manual action which must be undertaken by someone with
administrator privileges to the repository. We further compute the
following community (c) and technical (t) factors:
Project age (c/t): Project age in days. Older projects may be more
entrenched in their practices, and thus less likely to abandon Travis.

3This guarantees that a project abandoned Travis on all branches, more accurately
than branch-dependent signals, e.g., the absence of a travis.yml configuration file.
4We extract commit data by cloning the repositories locally and parsing their git logs.
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Table 1: Summary Statistics for Predictors

Predictor, Abandoned Min 1Q Med Mean 3Q Max

T 1,079 1,377 1,630 1,682 1,946 2,932Project age (days) F 1,079 1,351 1,603 1,668 1,910 3,000
T 1 2 5 13 13 143Contributors F 1 2 3 8 8 142
T 1 1 1 2 2 11.yml contributors F 1 1 1 2 2 12
T 1 2 4 8 9 215.yml commits F 1 2 4 7 8 217
T 0 0 0 18 8 644Pull requests F 0 0 3 28 18 810
T 1 64 163 456 448 54,690Commits F 2 27 66 218 180 24,012
T 2 19 73 197 200 2,854Build duration (sec) F 2 31 126 267 301 2,998
T 1 1 1 2 2 34Build jobs F 1 1 2 3 4 66

Contributors (c): How many distinct contributors have committed
to this project? It may be harder to reach a consensus to modify
development practices in a larger community.
.travis.yml contributors (c): The fewer people are involved in con-
figuring Travis, the easier it may be to reach consensus to change.
.travis.yml commits (c): More investment in configuring Travis,
therefore in using Travis, may suggest a decreased likelihood of
abandonment. Alternatively, more commits may indicate possi-
ble frustration at trying to get Travis to perform as desired, thus
increasing the likelihood of abandonment.
Pull request count (c): Travis is often used as a quality control
gate for outside contributions, typically submitted as pull requests.
Commit count (c/t): As a proxy for project size.
Build duration (t): Duration of the most recent build, in seconds.
Long build times (either from high build complexity, or heavy
travis-ci.org server load) may push people off Travis, as wit-
nessed qualitatively in log files, but may also indicate more sub-
stantive Travis usage and thus more commitment to Travis.
Build jobs (t): The number of jobs spawned per build is an indica-
tion of build complexity, the amount of investment in the Travis
setup, and possibly related to the extent to which teams are able to
configure Travis to suit their specific needs. Projects running more
Travis jobs may have been able to tailor Travis to their context
better, and may thus be less likely to abandon it.
Language (t): The dominant project language, as identified by
GitHub. Languages with higher domain specificity may be less
well suited to Travis, constituting a push factor, or especially well
suited to other CI systems, constituting a pull factor.

3.3 Binomial Logistic Regression Modeling
Binomial Logistic Regression models estimate the likelihood of a
binary outcome given a set of predictors. In our case, we have a
sample of GitHub projects, a quarter of which abandoned Travis,
matched on the Travis adoption date to control for environmental
effects. Logistic regression allows us to explain the likelihood of the
dependent binary event Travis CI abandonment, as a function
of our contextual measures which serve as the predictors, and

Table 2: Travis CI Abandonment Logit Model. McFadden
R2 = 0.215

Predictor Coeffs (Errors) Deviance

(Intercept) 3.33 (1.06)∗∗

log(Project age) −0.68 (0.15)∗∗∗ 21.56∗∗∗
log(Build duration) −0.43 (0.03)∗∗∗ 226.27∗∗∗
log(Commits) 0.62 (0.04)∗∗∗ 334.69∗∗∗
log(Contributors) 0.34 (0.05)∗∗∗ 58.86∗∗∗
log(Build jobs) −0.33 (0.06)∗∗∗ 27.92∗∗∗
log(Pull requests + 0.5) −0.43 (0.02)∗∗∗ 423.17∗∗∗
log(.yml commits) 0.02 (0.04) 0.30
log(.yml contributors) 0.02 (0.09) 0.07
Langauge: C vs Mean −1.27 (0.21)∗∗∗

Langauge: C# vs Mean 0.81 (0.27)∗∗

Langauge: C++ vs Mean −0.41 (0.17)∗

Langauge: CSS vs Mean 0.11 (0.19)
Langauge: Go vs Mean −0.03 (0.14)
Langauge: HTML vs Mean 0.23 (0.20)
Langauge: Java vs Mean −0.22 (0.10)∗ 260.80∗∗∗
Langauge: JavaScript vs Mean −0.77 (0.08)∗∗∗

Langauge: Objective-C vs Mean −0.26 (0.19)
Langauge: PHP vs Mean 0.01 (0.10)
Langauge: Puppet vs Mean 2.65 (0.25)∗∗∗

Langauge: Python vs Mean −0.72 (0.10)∗∗∗

Langauge: Ruby vs Mean −0.26 (0.09)∗∗

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

to estimate the size of the effect of each variable on increased
likelihood of abandonment, while holding the other variables fixed.

We built a binomial logistic regression model with Travis CI
abandonment as response, using all the factors above as predic-
tors. In preparation, we filtered out the top 1% of highly-skewed
measures as potential high-leverage points, to increase model ro-
bustness [25, 30], and we log-transformed variables as needed, to
stabilize variance and reduce heteroscedasticity [16]. We further
performed multicollinearity analysis, checking if the Variance In-
flation Factor remained below 3 [1]. The reference for categorical
language data was set to the overall mean (i.e., we used deviation
coding); languages with positive coefficients are more likely to
abandon Travis than the mean.

For each predictor, the model gives four useful pieces of in-
formation: whether the effect of the predictor on the outcome is
statistically significant at 0.05 level or below, as indicated by the
p-value; whether the effect is positive or negative, represented by
the coefficient’s sign; the strength of the effect, represented by the
magnitude of the coefficient; and the share of the total variance
explained by that predictor shown by an ANOVA type-2 analysis,
revealing the relative importance of each predictor.

The model fits the data well: the McFadden ρ2 value, a psuedo
R2 value for assessing goodness of fit in generalized linear mod-
els [23] (pscl package in R), is 0.215; the Area Under the Sensitiv-
ity/Specificity Curve (AUC) (pROC package) is 0.81.

4 RESULTS AND DISCUSSION
We now answer our research questions and discuss our results.
RQ1: What effect do technical factors have on the likelihood of Travis
CI Abandonment? The dominant technical factors which explain
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Travis abandonment are Build duration and Language, with
some deviance explained by the number of Build jobs run on
Travis. Projects writted in C#, mainly used for building Windows
applications, are more likely to abandon Travis than average; this
is unsurprising since Travis provides MacOS and Linux testing
platforms, but does not provide one for Windows. Languages used
in contexts in which testing may not make much sense, such as
the software configuration management language Puppet, are also
more likely to abandon Travis than average. Travis CI itself is built
in Ruby, so naturally it has done a good job of catering to the Ruby
language: the relative likelihood that Ruby projects abandon Travis
is lower than average. Java is easily unit tested, and perhaps this
translates to our observed lower chances of Travis abandonment
than average.

Projects with a longer Build duration are less likely to aban-
don Travis. We speculate that because Build duration can indicate
build complexity, projects with more complex builds are better able
to adapt Travis to fit their specific context; this effect is supported
in smaller part by Job Count. Overall this effect aligns with Con-
tingency Theory: projects would not unnecessarily configure their
build system to work in an arbitrary and complex way, but they
might configure their build system in a complex way if the complex-
ity reflected and fit well with their context; thus, higher complexity
can show that Travis fits their context better, which may explain
the reduced chances of abandonment.

RQ2: What effect do community factors have on the rate of Travis
CI Abandonment? We will begin by discussing the community
factors which, surprisingly, had little or no effect on the likelihood
of Travis abandonment. One might assume that projects with more
Contributorsmight be less likely to abandon Travis, e.g., for fear of
upsetting their large contributor base, but this effect does not play
out in our model. Additionally, one might assume that the number
of .yml commits to the Travis configuration file might affect the
likelihood of Travis abandonment, whether negatively because of
the time investment spent configuring Travis, or positively because
of frustration over configuring Travis adequately, but the model
does not suggest any such effects. Finally, one might assume that
the extent to which Travis configuration knowledge is widespread
within a project’s community, asmeasured by the number of distinct
.yml contributors, would have some effect on the rates of Travis
abandonment, but our model does not offer any indication of this.

The dominant community factors which explain Travis aban-
donment are the number of Commits, and the number of Pull
requests. Projects with more Pull requests tend to be less likely
to abandon Travis, other variables held constant; we speculate that
this is because they are getting value out of Travis by using it to
help evaluate external pull requests. Projects with more Commits
are more likely to abandon Travis, suggesting that they may either
become too large or unwieldy to work well with Travis, or that
they have become large enough to justify a more customizable or
tailored solution that better fits the context of their project.

5 THREATS TO VALIDITY
A single research method can never capture all the nuance involved
in complex phenomena, and the blind spots of quantitative research
on software repositories are well understood [4, 17]. While our

model explains a sizeable chunk of the variance in Travis aban-
donment, it is quite likely that we neglected to include significant
covariates of Travis abandonment. It is also possible that some of
our measures don’t accurately capture the concepts they try to
operationalize, especially in the cases where the model does not
suggest any significant effects. We also note that the randomness
inherent in the propensity-score matching process may create a
small amount of variability in the effects for languages represented
by relatively few projects. Finally, we cannot make causal claims
using our model, because it is possible that the factors we measured
are instead correlated with an underlying and unknown true cause
we do not account for. To enable replications and extensions, we
make our data publicly available.5

6 CONCLUSIONS AND IMPLICATIONS
We have shown that a model with relatively simple predictors
explains Travis abandonment with good fit.

Our results have three main implications on research. Firstly, our
work motivates more research on understanding CI Abandonment,
a previously unstudied and unquantified phenomenon. Secondly,
our work suggests that more qualitative research is needed on how
knowledge of a project’s CI practices propagates through a com-
munity, since the measures we used to operationalize this concept
did not have the expected effects. Finally, our work motivates more
research on understanding how context affects the choice of CI, on
which there have been little large scale quantitative studies.

Our work also has implications for practitioners. Firstly, users
of Travis are encouraged to look elsewhere if Travis is not able to
accommodate the complexity appropriate to their context. Secondly,
projects using Travis should be wary of outgrowing their CI setup
as they become larger. Finally, designers of Travis and similar CI
services should pay attention to the context of use, and where there
are particular unmet needs.

Future Work. Although encouraging, our results should be con-
sidered preliminary. Future work should focus on the causal mecha-
nisms behind making the decision to abandon Travis. One direction
could be to collect qualitative data from projects abandoning Travis,
using a mixed-methods design [12]. Another direction could be
to study what happens after projects abandon Travis. How many
projects abandon CI completely? Alternatively, howmany switch to
a new CI system? Can contextual factors predict which new system
they migrate to? Finally, future work should also consider the pro-
ductivity and code quality implications of abandoning Travis or CI
altogether. For example, does the increase in productivity associated
with CI adoption, reported by prior work, come with an equivalent
but opposite decrease in productivity after CI abandonment?
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