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Abstract— This paper studies dexterous manipulation in
the plane by a two-fingered hand in the plane. The dynam-
ics of each finger, which consists of two links with coupled
joints, are derived based on Lagrangian mechanics. As an
object is being manipulated, its orientation and the two
independent joint angles of the hand constitute the state
of the entire system. Contact kinematics, accounting for
both stick and slip modes, are combined with dynamics to
establish a dependence of the object’s linear and angular
accelerations on joint accelerations. This allows control of
joint torques, under a proportional-derivative (PD) law, to
move the object to a target position in a desired orientation.

I. INTRODUCTION

Industrial robots conventionally adopt independent
joint control schemes which are easy to implement,
have high failure tolerance, and can provide adequate
degrees of freedom for mostly pick-and-place tasks. In
the early design of a robotic hand, every finger was
equipped with an abundance of actuators to achieve
the same number of degrees of freedom (DOFs). For
example, the Stanford/JPL hand [13] had three fingers
with 3 joints each for a total of 9 DOFs, while the
MIT/Utah hand [8] had eight fingers with 4 joints each.
Such a hand with high complexities would be difficult
for kinematic and dynamic analyses as well as manip-
ulation control. Consequently, later hands were often
underactuated using coupled control schemes, resulting
in fewer DOFs than joints. Examples include the Barrett
Hand [14], of which every finger has two joints but one
actuation with a break-away clutch, the anthropomorphic
Shadow Hand [12], which is backdrivable with 20 DOFs
for 24 joints, and the minimalist SDM Hand [6], which
has only 1DOF for all 8 joints.

While underactuated hands can facilitate a range of
tasks, their kinematic and dynamic models are rarely
provided by the manufacturers or the designers. Inves-
tigations by others into such models, as done for the
Barrett Hand in [7], are often either brief or detached
from real tasks so the work cannot directly benefit the
user.

Meanwhile, dexterous manipulation with multifin-
gered hands has mostly focused on the use of rolling
contact [5], [2] largely because of the convenience of
tracking the position of the manipulated object relative
to the hand, and also the avoidance of complications
from switching contact modes between stick and slip.
Whenever sliding was treated for a robotic hand, it was
usually considered alone [10], [4] or based on quasi-
static analysis [3]. In [15], sliding was leveraged to lift
a planar object off its support to form an enveloping
grasp.

In this paper, we will study a simple 2D hand with
two fingers, each having two links driven by joints
that are coupled under one control. We will investigate
the contact kinematics and dynamics for the hand’s
manipulation of an object, and present a control of joint
torques to re-position and re-orient the object within the
hand.

II. FINGER KINEMATICS

As shown in Fig. 1, the hand comprises a horizontal

Fig. 1. Two fingers manipulating an object bounded by a curve ~(s).

palm and two identical fingers F; and F» modeled as



line segments. Each finger F;, ¢« = 1,2, has an upper
link ¢/; and a lower link £; with lengths () and ¢,
respectively. The upper link is connected to the palm
and the lower link at the joints o; and j,, and forms
initial joint angles «, 5 > 0 with them, respectively.
Under a coupled movement, the two joint angles always
have values o + 0; and 5 + ¢6;, for some 6#;,¢ > 0.
This mimics the movement of a finger of the Barrett
Hand [1], driven by a single motor, before any of its
fingers makes contact with the object.!

The hand configuration are thus completely character-
ized by 6; and 6s. For uniform treatment of the lower
and upper links, we introduce, for i = 1,2,

|

We place the world frame z-y at (01 + 02)/2 with its
z-axis pointing from 07 to o2. On the finger F;, we let
m,; be the unit vector normal to the link and pointing
towards the object, and l; its orthogonal unit vector such
that il x m; = 1. Thus,

i [—cosd; . _ [*£sing;
b= (:F sinqﬁi) and mi= (— cosqﬁi)’ @

where throughout the paper, an operator ‘+’ or ‘F’ has
its upper sign chosen if ¢+ = 1 and its lower sign chosen
if ¢ = 2. The finger joint j, has the location

Fcos(a + 6;)
—sin(a+6;))"

a+9ia
a+ B+ (1+¢)b;,

if upper link 4, )
if lower link £;.

g =o0i+ (™ ( 3)
The derivatives ¢}, 1,m’i and j%, all with respect to
0;, can be easily obtained from (1)—(3). In the paper
we will use < for differentiation with respect to the
(unique) underlying variable, while ‘" for differentiation
with respect to time.

III. GEOMETRY OF CONTACT

From Fig. 1, the location ¢ of the object’s center of
mass is determined by the joint angles 6; and 65 and
the object’s orientation, described by the rotation angle
1 of its body frame xz-yp at ¢ from the world frame.
Introduce two vectors:

6, p
c=1 6, and 0:(91>.
1/} 2

We would like to describe the state of the system by ¢
and its derivative.

IFor the Barrett Hand model BH262, ¢ = %. On contact, its
proximal link will be locked while its distal link will start to wrap
around the object.

A. Center of Mass

The object is in simultaneous contact with the two
fingers F; and F at the points p; and p,, respectively.
For ¢ = 1,2 define

0;
§i=14 9"
’ { .71'7

Let d; be the distance from the joint §, to p,. Then,

if p; on U,

if p, on L;. )

pP; = 51' + diii. (5)

For ¢ = 1,2 we let r; be the distances from ¢ to
p,. Depending on ¢, expressions for 7, and ry can be
derived. We have
(c—éi)-rhi:ri, 1= 1,2.. (6)
Since I; and m are orthogonal, we decompose 7722
as mgy = (M2 - 1)1y + (e - My )My, and take the dot
products of ¢ with both sides:

c-mo = (’I’hg -ll)(c . ll) + (’I’hg 'ml)(c . ’I’f’l,l)7

from which we obtain

' C'mg—(ml'mg)(C"l’hl)
C-ll = = .
l1 -’ﬁ’Lg
Hence,
(C-il)il +(C'm1)m1

(c-1h2)l; — (c-ml)(m2 x (Iy % ml))

Iy - 1y
(52 -Mmo + Tg)ll — (51 -mq + T1)l2

= - (D
b -me

where the last step utilized 7y X (21 X 1) = l,, and
then plugged in (6).
Differentiations of c yield the object’s velocity and

acceleration:
T
i = (g )b+ goiracd. ©
where
a((,¢) = WGZ + %92 + a—wwz + 231;912802 0102
RS A ()



B. Contact Location

Under the body frame at ¢, the object is bounded by
a twice differentiable curve ~(s) parametrized with arc
length s. Every point on the curve has a unit tangent
t(s) = 4'(s) and a unit normal 7(s) such that £(s) x
n(s) = 1. The contact points p, and p, are located as
~(s1) and (s2), respectively. Given 61, 0o, and 1, s;,
1 =1, 2, is determined from solving the equation below:

i(6) - (RW)E(s)) =0,

where R(t) is the rotation matrix of the body frame
relative to the world frame. The distances from ¢ to the
two links are

an

For simplicity, we write v, = v(s;), t; = i(si), i, =
n(s;), and k; = k(s;), where k is the curvature function
of the curve ~.

The nine partial derivatives of ¢ needed for evaluating
the object’s velocity (8) and acceleration (9) can be ob-
tained from differentiating (7). This requires the partial
derivatives of r; and 72, which in turn depend on those
of s; and ss by (12). Differentiating (11) with respect
to 1, 61, and 62, we obtain

Osi _ - (R'()) Lif i =,

oY Ki 90; | 0  ifi#j,
where n; = 1 if p, on UY; and 7, = 1+ ¢ if p, on L;.
The second order partial derivatives of s; are obtained
from differentiating (11) twice.

%_{i"—f

IV. CONTACT FORCE

The object with mass m is subject to two contact
forces f, = ful; + fim™; yielded by the fingers F;,
1 = 1,2. Newton’s and Euler’s equations are as follows:

fi+ fa+mg,
—Tl’ﬁll X f1 — 7’27?12 X f2,

mv =

pw =

13)
(14)

where p is the object’s moment of inertia, and w = ¢
its angular velocity. From Euler’s equation follows the
angular acceleration:
§ = = = fu+ o). (1)
Below we will apply contact mode analysis to describe
f1 and f, in terms of 6, 6,0, 1, and 1), so the forces
can be incorporated into the finger dynamics for object
control later in Section V.
Each contact p, can be viewed as two coinciding
points pz(-f ) and p(o), fixed on the finger F; and the

%

object, respectively. The velocity of pg'f ) is obtained

from differentiating (5) while treating d; as constant:

The velocity of p!® is
v\ = v — (v, - Pl (17)

A. Sliding

Both contacts p; and p, are sliding. The sign of
(vl(-o) - vl(-f)) -1; determines the direction of sliding on
F;. Introduce
o — { —1 if p, moves in the direction ii, )

! 1 if p, moves opposite the direction ;.

Under Coulomb’s law of friction, f;; = puo; fim, where p
is the coefficient of friction. Consequently, equation (15)
becomes

)= %(7’10’1f1m + 1202 fom).

Substitute the above into (9):

. dc Oc\ . poc (r101>T (f1m>
v=|—,=— | O0+—— +a. (18)
(‘391 892> p O \r202 fom
The two contact forces are represented as
Ji = fimwi, (19)
where w; = m; —|—,uaiii. In Newton’s equation (13), we
move mg to the left hand side, and then take the dot
products of both sides separately with 1, and 1ms:
Jim + famma - wa,

fimmo - w1 + fon.

m(v —g) - my
m(v—g)-my =

Solve the above two equations:

(f“”> =mA (1, m2)T (v — g), (20)

f2m
where . A
- my - Wwo
A_<rh2-w1 1 > 21
Let
mo . . Oe
L=1I,- % 1(m17m2)T%(7‘10’177a20’2)7 (22)

where I5 is the 2 x 2 identity matrix. We substitute (18)
into (20) to obtain

@:) = K(Q)8+k1(¢, ) +k2(0),  (23)
where
K(¢) = mL‘lA‘l(ml,m)T%, (24)
k1(¢,€) = mL™ A7 (1, o) a, (25)
ky(¢) = —mL YA (g, mo) g, (26)



B. Rolling

Suppose rolling happens at the contact point p,; with
the finger F;. Substitute (16) and (17) into 'U(O) vz( ),
and take separate dot products with I, and ;:

Can the object be rolling simultaneously on the other
finger F;, j # 4? Suppose this happens. Then the
four equations (27) and (28), for ¢ = 1,2, must hold
simultaneously. Substitutions of (8) into them yields four
linear equations in three indeterminates: 91, 92, and 1/)
Non-trivial values of these indeterminates satisfy the
four equations only if the coefficient matrix vanishes,
which can happen for no more than a finite number
of configurations determined by (61, 62,). Therefore,
simultaneous rolling cannot happen over a non-zero
period of time.

From (28) follows the object’s angular velocity and
acceleration:

o= (29)
Vi T
. iyt 1 . o
J = RiSis b+ _ (v.li+(v.l;)9i
Vit T Vit T

— (8! 1+ 8- 1)62 — (8- Zi)éi), (30)

For convenience, let us denote ¢ = (z;) We plug (8),

(9), and (29) into (30) to solve for 1/)

V=eC) d+e(¢ Q) 31)

oe -1 Oe , 5 Oc T
e(C)—('yz "i_%'li) (891- _éi'liaa—%) l;,

61(@0—(% STy — ((;)—Z

+a-l+(v- l)6‘

1
: ii) (His'z‘(’h- b)Y

[)62).
The acceleration (9), with (31) substituted in, becomes
v = D¢ + d, where

dc  Oc

D=_—+_—¢e' and d=
9 + P ZZ}e an e1— 90
The other contact p,; must be sliding. We have f;, =

140 fjm., and

(87 1,46, -

a2

i = fimw;,

where w; = m; —|—uajij. Euler’s equation (15) becomes
P = %(Tifil + rj,uajfjm). Equate it with (31):

. ¢+81)

(33)

7ifit + 10 fim = ple (34

Meanwhile, plug (33) into Newton’s equation (13):
fi=m(v—g)—

whose both sides are taken dot products with l; to yield
fa+(

From (34) and (36) we obtain, after plugging in (9),

[imwj, (35)

i~ w;) fim =ml; - (0 — g), (36)

fim =b(C) - p+b1(¢,¢) +b2(¢), (37
where
b(¢) = — 1 (mr;DT1; — pe), (38)
’I’ili . 'Ll)J — TjHO 5
¢, = Silid=per (39)
ril; - W, — 105
il -
ba(¢) = ——— I (40)
Till' . ’LUj — rj,uoj
Subsequently, (33) and (35) can be rewritten as
fr=Bu(Q)d+ k(¢ Q) +tu(C), k=44, (4D)
where
B;j(¢) = w;b", Bi(¢) = mD —w;b,
s](CvC) = ble; 31(C,C) = 'ITLd—bl’LUj7
t;(C) = bawy, ti(¢) = —mg — bawj.

C. Two Instances

Suppose that the object is a disk with radius r. Its
moment of inertia is p = %mrz. Its center of mass c
has the same distance to the two contacting links: r; =
ro = 1. By (7), c is independent of the disk’s rotation
angle v, leading to

de Pe e e
9 0% 0vdl;  91dbs

When both contacts are sliding, the matrix L = Io. It
is easy to verify that the contact forces f; and f; are
independent of ¢ or its derivative (both obtained from
integrations of (15)). When the contact p; is rolling, the
angular velocity Y is given in (29). It is thus independent
of 1, so are the terms D, d, b, and for k = 1,2, by,
By, sk, t, and finally, f, and fj.

Suppose that the object is polygonal with n vertices
Z1,%2,...,%n, Whose coordinates are given in its body
frame. Although the boundary is not twice differentiable,
modeling can be done with some changes. Every contact
point -y, is some vertex z; at the location R(¢)z; + ¢.
As long as the two contact vertices do not change, we
evaluate all nine first and second order partial derivatives
of ¢ with respect to 1,65, and . The tangent t; and
normal 7; at the point need to be replaced with RI;

=0. (42



and Rm; so that differentiations are with respect to the
orientation v rather than the arc length s.

Transition from a contact vertex z; to its adjacent
vertex, say, z;y1, happens at the moment when the
edge Z;z;11 is aligned with the contact link of some
finger F;. The vertex z;y; generally has a non-zero
normal contact velocity relative to the link. This will
result in an impact to cause discontinuities in the object’s
velocities v and w. To cope with this issue, we regard
the mass of the hand to be significantly greater than that
of the object, and avoid full-scale impact modeling with
friction [9]. Let the velocity component v -1; not change
during the impact but the component v - 1, change
to satisfy (27) to prevent penetration.” This determines
the change in velocity Av and the impulse mAwv on
the object. The change in the angular velocity is then
(Rz;) x (mAv) /p.

V. DYNAMICS OF MANIPULATION

We will first apply Lagrange mechanics to derive
the dynamic equation for a single finger. Then we will
combine the equations for both fingers of the hand into
one describing the joint torques.

A. Finger Dynamics

Let us go back to Fig. 1. The mass and moment of
inertia® of the upper link of a finger are denoted m(®)
and p(*), and those of the lower link are denoted m ("
and p). For i = 1,2, we let 25“) and rhl(-“) be the
vector values assumed by I, and 1h; as given by (2)

sl
for the upper link ¢/;, and lz(- ) and mgl) be their vector

values for the lower link £;. Let A(*) and h®) be the
distances respectively from o; to the center of mass of
U;, and from j, to that of £;.

Clearly, the linear and angular velocities of the links
U; and £; are v = nWhm(", ™ = §;, vV =
(D" + (1 + )hOmD)d;, and W = (1 + )6
This leads to the kinetic energy of F;:

T = . (P(“)w@Q + p(l)wgl)2 + m(“)vgu)2 + m(l)vl(-l)z)

2 1
Ll w o 2wy ) [ pw)?
=5 te 1+e)+m'™a™" +m (ﬂ

+(1+ 5)2h(l)2 +2(1 + &)thW cos(eh; + ﬁ))) 02,

2The values of d; and ~; need to be calculated using the new
contact vertex z;.

3defined relative to a frame attached at the center of mass of each
link and aligned with I; and 7n; on the link.

The potential energy of the two-link system is

Ui=—g- (m(“) R 4 ® (g<u>z§“> n h(l);?”))

= — (m(“)h(“) + m(l)ﬁ(“)) sin(f; + )
TmWgh® sin((l +¢e)0; +a+ ﬁ).

where g is the gravitational acceleration vector.

The Lagrange-d’ Alembert equation is in the form

dor, o

oU;

0, Qi (43)

Here, (Q; is the generalized force assuming the form

Qi=7—J [ (44)
where 7; is the torque provided by the actuator, — f, is
the contact force exerted by the object, and J; is the
Jacobian for the fixed point on the link coinciding with
the contact point p; given in (5):

d(8; + dily)
d0;

_0p; _

i = 00;

=6, £ dimm,

with d; treated as a constant in the above differentiation.
The Lagrange-d’ Alembert equation (43) can now be
rewritten as

M(0:)0; + C(60:)0% + N(0;) = JL (= f;) + 75, (45)

where the mass matrix and Coriolis-Centrifugal and
gravity terms are given below:

M) = p™ + pO (1 + )2 + mWp®? £ 0.
(6(“)2 +e2h0? 4 2epD g cos(eb; + ﬂ)),

C(0;) = —e(1 4 e)mO D¢ sin(eh; + B),

N(6;) = —(m™r™ + mO ) g cos(0; + a)
TA+e)mWnlyg cos((l +e)0; +a+ B).

B. Hand Dynamics
For i = 1,2 we denote M; = M(6;), C; = C(6;),

and N; = N(6;). Also, let 7 = (11, 72)". We combine
the dynamics (45) of the two fingers:

M, 0 . Ch 6‘% Ny JLf,
= 0 . .
" ( 0 M ) i (O29§ v J3 £
(46)
If both contacts are sliding, then f; and f, are

given in (19). Introduce a diagonal matrix F =



diag(J¥ w1, JTws). Apply (23) to transform (46) into

_ FK| ) 4 Fk
T {<0 A@>+ ]‘F<@% i
Ny
4 [(N2) n sz] @7

M(C)p+C(¢, ¢) +N(9),

where M,C, N are via a comparison with (47). If the
contact p; is rolling (and therefore the contact p;, j # 1,
must be sliding), we plug (41) into (46):

() = 0 )=o) ()¢
7 0 M; JI'B; 0;
C;02 JTs; N; JT't;

i i Si i ET) (49
(OJH?) " (Jij) (Nj) i (thj)] @

As the contact mode changes, the hand dynamics
switch between (47) and (49). When both contact are
sliding, check constantly if the condition 'UEO) = vg'f )
holds for either ¢+ = 1 or 2. If so, rolling starts at the
contact p,. Similarly, suppose rolling happens at the
contact p,. As soon as the contact force f, reaches the
edge of the contact friction cone, sliding starts at p;.

At the start of manipulation, we need to hypothesize
three possibilities: sliding at both p; and p,, rolling at
p, only, and rolling at p, only. Apply the corresponding
dynamics with 7 and check if the contact force or
velocity is consistent with the hypothesis.

_|_

VI. CONTROL AND PLANNING

The manipulation task is to move the object with an
initial state {; = (co,vp) to some goal state (g =
(cd,q). First, we look at how to achieve the target
position ¢4. Using inverse kinematics, we obtain the
desired values 84 of the joint angles with 6, = 0 and
éd = 0. Let 8. = 0 — 0. In the case of both contacts
sliding, we apply the following proportional-derivative
(PD) control law from [11, p. 191]:

7= M(8s— Kb, ~ K,0.) +C+ N, (50)

Substitution of the above into (48) yields

M (8o + Kb, + K,0.) =o.

which, given the positive definiteness of M, leads to the
following error dynamics:

6.+ K,0.+ K,0.=0. (51)

With K, = kI and K., = k.I> for some k,, k. > 0,
the error 8, will go down exponentially to zero as sliding
continues.

(48)

Similarly, the error dynamics for rolling at p, while
sliding at p; are derived as

b, + Ko, + Kpp, = 0. (52)

Again, the error ¢, will go down exponentially if no
contact mode changes.

Under the error dynamics (51) and (52), the targeted
joint angles 8, will be reached and the object is expected
to be at the target location, unless one of the joint
angles, velocities, or accelerations goes out of its range.
To simultaneously reach the target orientation 1y, we
need to choose proper values for K, and K,. Here is
a simple strategy. Start with some random value for the
pair (K, K,,), and use the error dynamics to compute
the deviation 1) — 1); when 0 tends to 6,. Repeat until
two values (K, K, ) and (K,/, K,/) are found to yield
negative and positive deviations, respectively. Then use
bisection with the gain A(K,, K, )+ (1= \) (K[, K})
over [0, 1] to find a value that achieves ) = 1.

VII. SIMULATION

The two fingers in the simulation use the mass and
inertia properties of those of the Barrett Hand BH8-
282 [1]. We apply the error dynamics (51) or (52)
to generate the trajectory of 6.(t). The trajectories
6(t),0(t),0(t) of the joint angles, velocities, and ac-
celerations are determined along the way. The object’s
orientation 9 is tracked via numerical integration, so are
the contact modes. The center of mass c is determined
from (7). All units are from the metric system.

Fig. 2 shows several snapshots of a hand manipu-
lating a disk of radius 0.03. The coefficient of contact

C

(b) (©

Fig. 2. Snapshots of manipulating a disk taken at the (a) start (0.0
s), (b) transition of contact on the right finger F2 (0.3727 s), and (c)
end (0.93 s). The hand parameter values are: ¢ = ¢ = 0.065,
[lo1 — 02]] = 0.05, « = 0.428, and 8 = 0.656.

friction is g = 0.2. Initially, the disk is located at
co = (—0.02,—-0.13)T at the orientation 19 = 0.
It needs to be transferred to ¢4 = (0.025,—0.1)7
while rotated through —0.151. The manipulation lasted
0.93 s using the gain values K, = 36 and K, = 12.
Fig. 3 plots the (blue) trajectory of the circle during
the manipulation. The movements by the contact points



Fig. 3. Trajectories of the circle and the two contact points during
the manipulation illustrated in Fig. 2.

p, and p, are represented by two sequences of points
(red and green, respectively). The circle’s change in
orientation is represented by the vector from the center
of mass ¢ to the point q initially with polar angle 7.
Fig. 4 displays the trajectories of the joint angles and
the object’s orientation, as well as of the applied joint
torques. We see that the object started with a clockwise
rotation (achieving a minimum of —0.519) and later
changed to a counterclockwise rotation. It reached the
target orientation very early but had to continue the
rotation in order to move to the target location.

Fig. 5 shows the manipulation of a concave 6-gon
with a duration of 1.5 s. Let S and R denote sliding
and rolling contacts, respectively. The two contacts p,
and p, have sequentially experienced six pairs of modes:
(S,8), (S,R), (S,S5), (R,S), (S,S), and (S, R) with
transitions happening at 0.010 s, 0.170 s, 0.193 s,
0.788 s, and 0.790 s, respectively. No reverse sliding
has happened to either contact. Part (a) of Fig. 6 displays
the joint angle trajectories as well as the trajectory of
the object’s orientation, and part (b) displays the torque
trajectories.

VIII. DISCUSSION

The object may be in contact with the endpoint of
a lower link. In this case, a new form of ¢ can be
derived to replace (7), and contact kinematics use the
object’s normal instead of the link normal. Add two new
hand dynamics equations like (47) and (49) (for different
combinations of contact modes).

We also need some understanding about the condi-
tions over the gains K, and K, that will result in
a successful maneuver. More importantly, we would
like to characterize the range of final poses that are
achievable under kinematic constraints and influenced
by the object geometry. The manipulation strategy then

0 0.2 0.4 06" 0.8 1.0 1.2

()
0.07
0.06
0.05 \l n
0.04
0.03
0.02
0.01
== .
0 t
0 02 0.4 0.6 08 1 12 1.4
(b)

Fig. 4. Trajectories during the manipulation in Fig. 3: (a) joint angles
and the object’s orientation, and (b) joint torques.

Fig. 5. Manipulation of a 6-gon from an initial pose (in dashed
lines) to the desired pose (in solid lines). Here, 90 = 0, co =
(0.01,-0.14383)T, and ¢4 = (—0.015,—0.12038)T. Physical
parameters: m = 0.14384 kg, p = 9.84914~5 kg m?, mass density
40 kg/mQ, and p = 0.7. Control gains: k, = 100 and k, = 20.
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Fig. 6. (a) Joint and orientation trajectories during the manipulation

of the 6-gon in Fig. 5. (b) Torque trajectories.

should be extended to include initial grasp achievement
with gravity taken into account.

The presented work does not cope with uncertain-
ties. Torque control usually has delays to make it less
effective, hand dynamics are unlikely to be accurate
sometimes due to joint friction, and contact friction with
the object may vary during sliding. The effects of these
uncertainties on the performance of the control law need
to be investigated for improvement.

The next step is experimental validation with the
Barrett Hand, to which the hand dynamics derived in
Section V carry over to only the period before contact
establishment. An extension to the period with contact
engagement needs to be done. Several other issues will
have to be addressed: finger contact modeling, contact
kinematics for three fingers with 4DOFs (including
one for palm spreading), and inverse kinematics. Our
longer term objective is to tackle challenging control
and planning issues in a grasping and/or reorienting task,
which may be dissected into a sequence of states with
transitions implemented by finger gaiting. One example
is to pick up a kitchen knife and rotate it to the vertical
position so it becomes ready for cutting.
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