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Interfacial characteristics are critical to various properties of two-dimensional (2D) materials such as band

alignment at a heterojunction and nucleation kinetics in a 2D crystal. Despite the desire to harness these enhanced

interfacial properties for engineering new materials, unexpected phase transitions and defects, unique to the

2D morphology, have left a number of open questions. In particular, the effects of configurational anisotropy,

which are difficult to isolate experimentally, and their influence on interfacial properties are not well understood.

In this work, we begin to probe this structure-thermodynamic relationship, using a rotating magnetic field to

generate an anharmonic interaction potential in a 2D system of paramagnetic particles. At low magnetic field

strengths, weakly interacting colloidal particles form non-close-packed, fluidlike droplets, whereas, at higher

field strengths, crystallites with hexagonal ordering are observed. We examine spatial and interfacial properties

of these 2D colloidal clusters by measuring the local bond orientation order parameter and interfacial stiffness as

a function of the interaction strength. To our knowledge, this is the first study to measure the tunable interfacial

stiffness of a 2D colloidal cluster by controlling particle interactions using external fields.

DOI: 10.1103/PhysRevMaterials.2.025602

I. INTRODUCTION

Novel two-dimensional (2D) materials have garnered sig-

nificant interest due to their enhanced optical, electrical,

chemical, and mechanical properties [1–4]. On the other hand,

changes in molecular structure, chemical composition, or

concentration can lead to unexpected phase transformations,

which subsequently impact the performance of such materials.

For example, it is known that a change in the temperature

of a system results in thermal expansion; however, since this

expansion directly affects both the thermodynamics and the

kinetics of the system, it has been difficult to decouple the

influence on the material’s spatial configuration.

In an effort to investigate these phenomena, colloidal

systems have been widely proposed as appropriate models

for molecular systems. This has yielded new information

concerning the thermodynamics and phase behavior of con-

fined planar 2D systems [5–9], and more recently, newly

investigated phenomena such as interfacial premelting with

temperature-dependent colloidal particles [10] have shown the

importance of interfacial dynamics to 2D material properties.

Thus far, the majority of interfacial studies of colloidal systems

utilize interactions represented by either charged particles,

hard spheres, or depletion interactions [10–12]; however, many

of the interesting properties of 2D molecular systems are

governed by longer-range anharmonic interactions. Colloidal

systems with tunable long-range interactions can be generated

with magnetic and electric fields, but few studies have probed

the resulting interfacial properties as a function of the interac-

tion strength.

*biswal@rice.edu

Recently, magnetic Janus particles in a rotating magnetic

field have been shown to form colloidal crystals with a melted

interface induced via a shear force [13], illustrating how

dislocations in the bulk crystal migrate to the interface. In this

work, we generate 2D colloidal clusters with a tunable long-

range anharmonic interaction potential, and we characterize

their energetics as well as their interfacial properties as a

function of the interaction strength [see a video of the colloidal

cluster shown in real time in the Supplementary Material

(SM)] [14]). We find that the thermodynamic quantities are

independent of the cluster size for the ranges used in this

study (300 to 1500 particles). We begin by finding the excess

internal energy of the clusters using a modified dipole model

followed by a measurement of the interface fluctuations to

calculate the excess free energy. These values can then be

used in the Helmholtz free energy equation to obtain the

excess entropy for each cluster. The finite size of the colloidal

clusters allows us to simultaneously investigate both bulk

and interfacial 2D properties. Of particular interest is under-

standing how increasing intermolecular interactions increases

the configurational anisotropy of the interface, which in turn

leads to variability in the line tension in crystallites. This

has significant implications for highly correlated 2D materials

where interface anisotropy impacts various transport properties

within the material [15,16].

II. CLUSTER ENERGETICS

Under uniform magnetic fields, charged paramagnetic

particles interact anisotropically with long-range dipolar at-

traction and short-range Derjaguin-Landau-Verwey-Overbeek

(DLVO) repulsion. When placed in a high-frequency rotating

magnetic field, the dipolar interaction is azimuthally averaged

about each particle. This leads to a modified version of
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FIG. 1. Colloidal cluster under an externally applied magnetic field of 10 G. (a) Optical microscopy image of the colloidal cluster. Scale

bar = 10 µm. (b) Interaction energy between particle pairs in the cluster (uϵ = −8.1kbT ). (c) Potential energy distribution of particles in

the cluster. Black particles represent the lowest energy state; red particles, high energies. (d) The change in energy potential across a cluster

illustrates a concentrated bulk core and less stable interface.

the dipole model that is independent of the angle between

particle pair and magnetic field vectors [17], which we use to

characterize the internal energy of our system. This model has

also been verified through experimental measurements using

inverted Boltzmann analysis of the interparticle spacing (see

Ref. [17] and SM [14] for the equations).

A high-frequency (20-Hz) rotating magnetic field is applied

to assemble 2D colloidal clusters using a suspension of 1.1-

µm-diameter carboxyl-coated paramagnetic particles which is

placed in a flow cell between two pairs of orthogonal solenoid

coils. Under an applied magnetic field, the particles begin to

aggregate and assemble into 2D clusters that grow to be tens of

microns in diameter [Fig. 1(a)]. In order to quantify the internal

energy of each cluster, we begin by using a dipole model

to calculate the internal energy of each particle [18]. Using

this model, the net internal energy between the paramagnetic

colloids can be approximated by the anharmonic interaction

potential [Fig. 1(b)], u(r) ∼
A
r3 , where r is the center-to-center

distance between the particle pair and A is a function of

the particle size, magnetic susceptibility, and magnetic field

strength [18].

In order to compare this interaction potential to the thermal

energy of the system, we write our energies in multiples of kbT .

The magnetic field strength selected for this set of experiments

ranges from 8 to 12 G, which corresponds to pair potentials

with well depths (|uϵ |) ranging from 5.2kbT to 11.7kbT .

Note that these values are reported as the inverse of the

effective temperature, Teff = kbT/uϵ , which is typically used

in colloidal systems to more readily compare the magnitude of

the interaction energy. In this study, Teff ranges from 0.19 at 8

G to 0.085 at 11 G.

In a 2D system, the colloidal clusters prefer to form

circular shapes to minimize their line tension, analogous to

the minimization of interfacial tension in 3D. We define line

tension, γ , as the mechanical work required to increase the

interface length, which is a thermodynamic quantity that is

independent of the molecular structure [19]. The cluster is a

single-component system at quasiequilibrium with a constant

temperature, T , cluster area, A, and number of particles, N .

The configuration of a cluster at equilibrium is determined by

minimization of the Helmholtz free energy, F , at the Gibbs

interface [20]:

F σ

l
= γ +

∑

i

(µi$i). (1)

Here, F σ /l is the excess Helmholtz free energy per unit length,

l, i.e., the excess at the Gibbs dividing surface, σ , compared to

the bulk value. At the interface, the Gibbs excess adsorption,

$, is 0; thus, the line tension is equal to the Helmholtz free

energy per length. In order to compare our energy calculations

independently of the interfacial length and cluster size, we
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FIG. 2. Colloidal cluster under different magnetic field strengths. (a)–(c) Optical microscopy images of a colloidal cluster formed under

magnetic fields of 8.5 G (a), 9 G (b), and 11 G (c), corresponding to pair potentials with magnitudes of 5.8kbT , 6.6kbT , and 9.8kbT , respectively.

(d)–(f) Particle positions within the cluster for each of the three states based on their local orientation order parameter, ψ6, value. ψ6 ranges from

0 for low order (blue) to 1 for high order (red). (g)–(i) Plots of the packing density, η, and ψ6 as a function of the distance away from the center

of mass. Shaded gray areas represent the distance from the Gibbs dividing line to the bulk values of η of the two phases. Scale bar = 10 µm.

normalize our values by a unit length that divides the cluster

into sector cells where the arc length of each cell is defined by

a single particle (see SM [14]).

The second thermodynamic relationship to consider is the

Helmholtz free energy; the difference between the potential

energy of the system, U , and T S, where S is the entropy. By

writing the equation in its excess form (F σ = Uσ
− T Sσ ), and

given F σ and Uσ , we find the excess entropy of a cluster, a

parameter that is experimentally challenging to obtain. Since

the kinetic energy remains constant throughout the cluster,

the excess kinetic energy goes to 0 and Uσ becomes solely

governed by the anharmonic interaction potential between the

particles.

Cluster stability is characterized by examining the potential

energy distribution within a given cluster. Figure 1(c) shows a

potential energy landscape for a given cluster and the energies

of individual particles are illustrated using a bicolor gradient

scheme. Note that since the energy calculation depends on the

neighboring particles, any topological defects will also affect

the energy of the neighboring particles. The radial change

in the cluster’s potential energy per unit length is defined

as E:

E(R) = Uσ /l = [u(R) − ub]/l. (2)

Here, ub is the energy in the bulk averaged over particles a

distance R away from the center of the cluster. The particles in

the bulk phase have the lowest potential energy (umin), whereas

the energy of the particles increases when approaching the

interface, as they begin to experience a change in the configu-

ration of their neighboring particles as shown in Fig. 1(d).

III. CLUSTER TUNABILITY AND INTERFACIAL

STIFFNESS

A. Cluster tunability

By increasing the strength of the magnetic field, and,

by extension, the well depth of the particle pair potential,

the clusters transition from a disordered fluidlike state to

an ordered crystalline state. We quantify the change in the

energetics and spatial characteristics of single 2D colloidal

clusters using the analytical methods described in Sec. II.

Figure 2 shows a cluster containing 710 to 730 particles at
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FIG. 3. Characterization of the clusters’ interfacial fluctuation. (a) Correlation between the Fourier coefficients and the mode number

reaching the noise floor at k = 20. Inset: The same data set, but with an x axis of 1/(k2
− 1) to show that the slope is in agreement with Eq. (B2)

in Appendix B. (b) Interfacial stiffness values at different particle pair interactions. Blue circles are experimentally obtained measurements of

interfacial stiffness. Shaded blue area is the standard deviation of the data. Note that as uϵ increases anisotropy variations increase, leading to

larger deviations in the interfacial stiffness.

interaction potentials of 5.8kbT [Fig. 2(a)], 6.6kbT [Fig. 2(b)],

and 9.8kbT [Fig. 2(c)].

At the relatively low well depth of 5.8kbT , particles

throughout the entire cluster form a fluidlike disordered phase

as shown in Fig. 2(d). Upon an increase in the potential

well depth, a well-ordered microphase forms in the center

of the cluster, surrounded by a disordered exterior layer. For

clusters with more than 200 particles, the thickness of the

disordered exterior becomes independent of the cluster size

and is only dependent of the well depth. As the magnetic field is

further strengthened, the crystalline microphase begins to grow

towards the interface, resulting in a decrease in the thickness

of the disordered boundary layer until it reaches a thickness of

1–2 particle diameters as shown in Fig. 2(f). The radial change

in packing density, η, and ψ6 are also plotted for each of the

clusters [Figs. 2(g)–2(i)].

The characteristic interfacial width W10−90, which scales

with the particle diameter, D, was found using η and has also

been shown to decrease with increasing magnetic field strength

[21]. At well depths of 5.8kbT , 6.6kbT , and 9.8kbT , W10−90

is 6.55D, 6.09D, and 5D. The surface excess energy per unit

length is calculated using Eq. (3) for each of the three states,

and we find E to be 7.2 ± 0.69kbT/D, 14.2 ± 1.21kbT/D,

and 22.4 ± 1.25kbT/D, respectively. As the cluster becomes

less like a fluid and more like a crystal, it begins to deviate

away from a circular shape to a more faceted structure. Such

azimuthally anisotropic interfaces [Fig. 2(c)] lead to less

accurate calculations near that region.

B. Interfacial stiffness

As previously stated, minimization of line tension causes

the clusters to take on a circular shape. Although specific

thermodynamic values can be determined as a function of

uϵ , it is useful to generalize these interfacial energies in

terms of interfacial stiffness, γ̃ , which is the sum of line

tension and its second derivative with respect to the angle,

θ , azimuthally normal to the interface (γ̃ = γ +
d2γ

dθ2 ), where

the second term accounts for the orientation of the interface.

As shown in Fig. 2(a) the interface is isotropic at low magnetic

field strengths. However, at high magnetic fields, shown in

Fig. 2(c), the interface becomes anisotropic. Such is also the

case for crystal-liquid interfaces [11,22] and crystal-crystal

grain boundaries [23].

Interfaces corresponding to weakly associating particles

fluctuate strongly compared to particles that are strongly

associating. These radial fluctuations can be analyzed using

Fourier methods to find the line tension [12,24,25]. For a

two-dimensional system that is discrete and finite in size, one

should account for the measurement uncertainty by estimating

the modes at which we reach noise level. In order to estimate

the Fourier modes that are insensitive to noise, we plot the

Fourier coefficients (ak,bk) on a log-log scale as a function of

the Fourier mode, k, as shown in Fig. 3(a). The plot has a slope

of −2, showing an excellent agreement with the theoretical

predictions in Refs. [24] and [26]. In our system, the noise

level occurs at k higher than 15 to 20 modes.

As the interaction potential between the particles increases,

γ̃ increases and reaches a saturation value, as shown in

Fig. 3(b). Interestingly, at the lowest field strengths the standard

deviation in γ̃ is small compared to that observed with stronger

interaction potentials. At low |uϵ | where γ is the same along the

interface,
d2γ

dθ2 term becomes negligible and γ̃ ≈ γ . For higher

potential energies, however, where the cluster orientation is

anisotropic and differs from one crystallite to another,
d2γ

dθ2

becomes significant. For this reason, the variation in the

interfacial stiffness increases as the clusters become more

crystal-like as shown by the increasing scatter in Fig. 3(b). At

well depths of 5.8kbT , 6.6kbT , and 9.8kbT , γ̃ is found to be

1.6 ± 0.55kbT/D, 2.5 ± 0.66kbT/D, and 3.7 ± 1.5kbT/D,

respectively. Averaging measurements over 60 distinct clus-

ters, the interfacial stiffness ranges between 1.73 ± 0.15 and

3.76kbT/D ± 1.54kbT/D. These values correspond to (6.5 ±

0.56) × 10−15 and (1.4 ± 0.58) × 10−14 when converted to

units of J/m.

We compare our line tension measurements to other 2D

colloidal systems [27–30], which mainly involve solid in-

terfaces, and find that the values are of O(10−1kbT/D) or
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FIG. 4. Coalescence of two clusters into a large cluster under a

field frequency of 20 Hz and field strength of 10 G. Scale bar =

10 µm.

O(10−16–10−15 J/m). The line tensions were slightly lower

than our liquidlike clusters and at least an order of magnitude

less than our crystallites. We believe our system is able to

reach values greater than typical colloidal models due to

the influence of long-range interaction energy caused by the

particles near the interface. Molecular dynamics simulations

of 6-12 Lennard-Jones (LJ) systems, on the other hand,

typically show line tensions ranging from O(10−12 J/m) to

O(10−10 J/m) [31–33], which are orders of magnitude larger

than our values. This is due to a number of dissimilarities

between the two systems, such as length scale, entropic

effects, and type of interaction driving phase separation

[34].

Since γ represents F σ/l, it is interesting to note that

although we use two completely different methods to calculate

F σ /l (using Fourier expansion of the interfacial fluctuation)

and Uσ /l (using the dipole model), both excess energies per

unit length fall under the same order of magnitude.

Once we determine E and γ , we can find the excess entropy

per unit length using the following relationship:

Sσ /l = −(γ − E)/T . (3)

We find Sσ /l for each of the three states in Fig. 2 to be 5.6kb/D,

11.7kb/D, and 18.7kb/D, respectively. Note that the excess

entropy is an estimation and becomes less accurate at high

fields since the excess Helmholtz free energy per length is

equal to γ and not γ̃ . More exact calculation of thermodynamic

parameters, such as the Helmholtz free energy, requires an

accurate calculation of the spatial anisotropy of the cluster in

order to obtain a better approximation for Sσ .

IV. CLUSTER COALESCENCE

Thus far we have focused on isolated quasistable clusters.

Interesting interfacial dynamics can also be observed when

clusters are near each other and begin to coalesce as shown in

Fig. 4. Previous experiments [35,36] and simulations [37,38]

have been performed to capture the coalescence of a variety

of nanoscale and microscale systems to investigate changes

in morphology and the formation of topological defects [39].

FIG. 5. Micrographs of clusters coalescing taken over time at

three interaction potentials: (a) uϵ = −5.2kbT , (b) uϵ = −6.6kbT ,

and (c) uϵ = −9.8kbT . Images are color enhanced to indicate the

bond orientation order parameter of each particle, and thus the level

of disorder, in each of the three cases. See Supplemental Material for

videos of their coalescence. Scale bar = 10 µm.

Here, we follow the dynamics of the colloidal clusters as they

coalesce to form larger aggregates and qualitatively show the

difference in clusters coalescing at low vs high field strengths.

The coalescence mechanism can be described in four stages.

First, clusters translate towards one another, resulting in a

migration phase. Next, a neck of particles connects the clusters,

as shown in Fig. 4. The resulting neck thickens and particles

at the interface rearrange to move particles with ψ6 closer to

unity into the bulk phase while translating particles with low

ψ6 move to the interface. Finally, the merged cluster rearranges

into a larger cluster that is once again quasistable with a circular

morphology. For more crystalline clusters, grain boundaries

are observed along the contact line between two clusters as

they merge as shown in Fig. 4.

The relaxation and minimization of the potential energy

of a cluster depend largely on the mobility of the constituent

particles. As |uϵ | increases, the clusters are less mobile and

therefore require more time to reach a global minimum poten-

tial energy. In Fig. 5, the coalescence of colloidal clusters is

displayed over time at three interaction potentials. At low |uϵ |,

the larger cluster has a γ̃ similar to that of the two original

clusters. Coalescence-driven formation of topological defects

is evident at higher interactions as shown in Figs. 5(b) and

5(c), and the resulting grain boundaries can range in thickness,

depending on the strength of the interaction potential. At large

enough |uϵ |, the thickness of the disorder or grain boundary

can be as small as 1 particle diameter [Fig. 5(c)]. These grain

boundaries then migrate toward the interface and dissipate

(see SM [14] for videos of the coalescence). The presence of

topological defects in a crystalline system slows the progress

toward a minimum free-energy state [40]. The coalescence of

these crystallites therefore serves as a promising model for

expanding studies that focus on the formation and migration

of topological defects [27,41].
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V. CONCLUSION

In summary, we have varied the strength of an anhar-

monic particle-particle interaction potential to characterize

the changing interfacial properties of various 2D colloidal

clusters. Structural parameters, such as the bond order pa-

rameter, are correlated with several thermodynamic quantities

such as surface excess energy per unit length, surface excess

entropy per unit length, and line tension. The tunability of

the anharmonic potential presented here is ideal for study of

long-range attractive 2D materials. This class of collective

colloidal phenomena form the basis on which 2D interfacial

dynamics can be explored.
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APPENDIX A: EXPERIMENTAL DETAILS

The colloidal particles used in this study are 1.1 ± 0.08 µm

paramagnetic carboxylated-coated MyOne Dynabeads (Invit-

rogen). A volume magnetic susceptibility of 1.4 is acquired as a

result of iron oxide particles being embedded in a polystyrene

matrix that makes up each particle. The stock suspension is

washed and dispersed in an aqueous solution of 10 mM NaCl.

A 0.035 vol% of the suspension is injected into a glass chamber

that consists of two plasma-cleaned coverslips (Ted Pella, Inc.):

one, 22 × 22 mm, acting as the top cover; and one, 24 × 40

mm, as the bottom surface. After the coverslips are plasma-

cleaned, a 50-µm-thick Parafilm wafer is placed between the

edges of the coverslips. The Parafilm acts as a spacer and, upon

heating, as an adhesive to bind the coverslips. The suspension

of paramagnetic particles of known concentration is added to

the resulting chamber. The chamber is then sealed with epoxy

followed by NOA 81 (Norland Optical Adhesive) to prevent

the occurrence of any evaporation or capillary leakage. Since

the particles have a density of 1.8 g/cm3, they will sediment

to the bottom of the chamber with a slight elevation due to the

particles’ being negatively charged, moving freely in the XY

plane. Following the formation of the colloidal clusters, optical

microscopy images are captured using a QICAM Fast 1394

camera and SimplePCI imaging software. Particle positions are

determined using standard particle tracking algorithms [42].

APPENDIX B: INTERFACIAL STIFFNESS

MEASUREMENT

Fluctuations of the interface are examined using Fourier

analysis to quantify the interfacial stiffness as a function

of the magnetic field strength. The correlation function in

finite two dimensions entails finding the radial distance

of the interface from the center of mass as a function of the

angle θ that is normal to the interface. The fluctuations are then

represented by the Fourier coefficients [24,26],

R(θ ) = R0

[
1 + a0 +

∞∑

k=1

ak cos (kθ ) +

∞∑

k=1

bk sin (kθ )

]
,

(B1)

where R0 is the equilibrium radius of the cluster and ak and bk

are the Fourier coefficients for mode number k. The interfacial

stiffness is correlated with the Fourier coefficients as [24]

〈
a2

k

〉
+

〈
b2

k

〉
=

2kbT

πR0γ̃

(
1

k2
− 1

)
. (B2)

The first 20 modes are considered, as further modes are

indistinguishable from the noise floor as shown in Fig. 3(a).

APPENDIX C: ANALYTICAL APPROXIMATIONS

The potential energy of a colloidal cluster is determined

by calculating the potential energy between each particle pair

using a modified dipolar model [17]. The potential energy is

approximated for a given particle within the cluster by sum-

ming the particle-pair interaction energy with every particle

within 10 particle diameters. The interface is determined by

calculating the packing fraction, η, of particles as a function

of the distance from the cluster’s center of mass. In order to

generate a spatial profile of the particle density, the packing

fraction is measured using annular disks in radial increments

of one particle diameter. The position of the Gibbs dividing line

is the location at which the integral of the density (or packing

fraction) curve is equal to the spatial profile transitions from the

bulk of the cluster to the dilute phase. A nonlinear regression

is used to model the curve and find the distance at which the

value falls from 90% to 10% [43], representing the interfacial

width, W10−90 [21], and taken to be the limits of the integral.

The surface excess energy is the excess potential energy at the

Gibbs dividing line per unit length [E(RGibbs) = Uσ /l].

The local bond orientation order parameter [44], ψ6, is used

to characterize the structural order throughout each cluster,

ψ6 =

〈
1

N

∣∣∣∣∣∣

∑

i

1

Nn(i)

∑

k(i)

exp(i6θik)

∣∣∣∣∣∣

〉
, (C1)

where N is the total number of particles i in a radial region

of interest, Nn(i) is the total number of nearest neighbors for

each particle i obtained using a Voronoi diagram, and θik is the

angle of the connecting vector between particle i and particle

k relative to a reference line (positive x axis, in this case). The

spatial profile is generated utilizing the same annulus used

to calculate the packing fraction. The bond orientation order

parameter quantifies the configuration in the interior domain

of the cluster and follows the change in its crystallinity as the

interaction energy between particles changes.
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