Lightweight Swarm Attestation:
a Tale of Two LISA-s

Xavier Carpent

Computer Science Department
University of California, Irvine

xcarpent@uci.edu

Norrathep Rattanavipanon
Computer Science Department
University of California, Irvine
nrattana@uci.edu

ABSTRACT

In the last decade, Remote Attestation (RA) emerged as a distinct
security service for detecting attacks on embedded devices, cyber-
physical systems (CPS) and Internet of Things (IoT) devices. RA
involves verification of current internal state of an untrusted remote
hardware platform (prover) by a trusted entity (verifier). RA can
help the latter establish a static or dynamic root of trust in the
prover and can also be used to construct other security services,
such as software updates and secure deletion. Various RA tech-
niques with different assumptions, security features and complexi-
ties, have been proposed for the single-prover scenario. However,
the advent of IoT brought about the paradigm of many intercon-
nected devices, thus triggering the need for efficient collective at-
testation of a (possibly mobile) group or swarm of provers. Though
recent work has yielded some initial concepts for swarm attestation,
several key issues remain unaddressed, and practical realizations
have not been explored.

This paper’s main goal is to advance swarm attestation by bring-
ing it closer to reality. To this end, it makes two contributions:
(1) a new metric, called QoSA: Quality of Swarm Attestation, that
captures the information offered by a swarm attestation technique;
this allows comparing efficacy of multiple protocols, and (2) two
practical attestation protocols — called LISA« and LISA s — for mo-
bile swarms, with different QoSA features and communication and
computation complexities. Security of proposed protocols is ana-
lyzed and their performance is assessed based on experiments with
prototype implementations.

1. INTRODUCTION

The number of so-called Internet of Things (IoT) devices is ex-
pected to soon [8] exceed that of traditional computing devices,
i.e., PCs, laptops, tablets and smartphones. IoT can be loosely

*Work conducted while at HRL Laboratories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ASIA CCS 17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. .. $15.00
DOI: http://dx.doi.org/10.1145/3052973.3053010

Karim ElDefrawy*
Computer Science Lab
SRI International
karim@csl.sri.com

Gene Tsudik
Computer Science Department
University of California, Irvine
gene.tsudik@uci.edu

defined as a set of interconnected embedded devices, each with
a various blend of sensing, actuating and computing capabilities.
In many IoT settings and use-cases, devices operate collectively
as part of a group or swarm, in order to efficiently exchange in-
formation and/or collaborate on common tasks. Examples of IoT
swarms include multitudes of interconnected devices in smart en-
vironments, such as a smart households, factories, and buildings.
Actual devices might include home theater sound systems, home
camera and surveillance systems, electrical outlets, light fixtures,
sprinklers, smoke/CO2 detectors, faucets, appliances, assembly-
line components as well as drones. Device swarms also appear
in agriculture, e.g., livestock monitoring [16], as well as other re-
search areas, e.g., swarm robotics and swarm intelligence [19]. As
IoT swarms become increasingly realistic, their security and overall
well-being becomes both apparent and important. Specifically, it is
necessary to periodically (or on demand) ensure collective integrity
of software running on swarm devices.

The formidable impact of large-scale remote malware infesta-
tions has been initially demonstrated by the Stuxnet incident in
2011 and the most recent Dyn denial-of-service (DoS) attack in
2016. This attack type aims to compromise as many devices as
possible, without physical access, or close proximity, to any victim
device. Compromise of “smart" household devices may also have
significant privacy ramifications. In one recent incident, cameras
in compromised smart TVs were used to record private activities
of their owners [26]. It is not hard to imagine other such attacks,
e.g., malware that performs physical DoS by activating smart door
locks, sprinklers, or light-bulbs.

1.1 Remote Attestation

In the last decade, Remote Attestation (RA) emerged as a distinct
security service with the main goal of detecting malware presence
on embedded systems and IoT devices. Essentially, RA is the pro-
cess where a trusted entity (verifier or Vrf) securely verifies current
internal state of an untrusted and possibly compromised remote de-
vice (prover or Prv). RA can help establish a static or dynamic
root of trust in the prover. It can also be used as a building block
for constructing more specialized security services, such as soft-
ware updates as well as secure deletion and device resetting.

RA techniques generally fall into three categories: hardware,
software and hybrid. The first relies on secure hardware, e.g., a
Trusted Platform Module (TPM) [24, 20], often present in rela-
tively powerful devices such as desktops, laptops and smartphones.
It is impractical for medium- and low-end IoT devices due to costs

http://dx.doi.org/10.1145/3052973.3053010

and complexity. Software RA techniques [23, 21] provide secu-
rity guarantees based on strong assumptions about adversarial be-
havior. They are generally applicable only to legacy devices that
lack hardware security features, and to settings where the prover is
physically close to the verifier such that round-trip delay is fixed
and/or negligible. Finally, hybrid techniques (e.g., SMART [9] and
TrustLite [13]) are based on hardware/software co-design; they re-
quire the prover to have a minimal set of hardware features and
thus target cost-sensitive medium- and low-end devices. Hybrid
techniques include a software component implementing the attes-
tation protocol as well as hardware components that ensure certain
guarantees, e.g., non-interruptibility, memory isolation and exclu-
sive access to secret keys.

A more detailed overview of related work can be found in Ap-
pendix A.

1.2 Swarm Attestation

Both feasibility and efficacy of hybrid RA approaches' have been
demonstrated in the single-prover scenario. Nonetheless, new is-
sues emerge when it is necessary to attest a potentially large number
(group or swarm) of devices. First, it is inefficient and sometimes
impractical to naively apply single-prover RA techniques to each
device in a large swarm that might cover a large geographical area.
Second, swarm RA needs to take into account topology discov-
ery, key management and routing. This can be further complicated
by mobility (i.e., dynamic topology) and device heterogeneity, in
terms of computing and communication resources.

A recently proposed scheme, Scalable Embedded Device Attes-
tation (SEDA) [4], represents the first step towards practical swarm
RA. It builds upon aforementioned hybrid SMART and TrustLite
techniques. It combines them with a flooding-like protocol that
propagates attestation requests and gathers corresponding replies.
According to simulations in [4], SEDA performs significantly bet-
ter than individually attesting each device in a swarm. Despite its
viability as a paper design, SEDA is not a practical technique, for
several reasons. First, it is under-specified in terms of:

e Architectural Impact: What is the impact of swarm RA
on the underlying hardware and security architecture (which
suffices for single-prover settings), in terms of: (a) additional
required features, as well as (b) increased size and complex-
ity of current features?

e Timing: How to determine overall attestation timeout for the
verifier? This issue is not as trivial as it might seem, as we
discuss later in the paper.

o Initiator Selection: How to select the device(s) that start(s)
the attestation process in order to construct a spanning tree
over the swarm topology?

Second, as we discuss later, SEDA has some gratuitous (unneces-
sary) features, such as the use of public key cryptography, which
are unjustified by the assumed attack model. Third, it is unclear
whether SEDA handles device (node) mobility. This is an impor-
tant issue: some swarm settings are static in nature, while others
involve node mobility and dynamic topologies.

Finally, SEDA does not capture or specify the exact quality of the
overall attestation outcome and thus provides no means to compare
its security guarantees to other swarm RA techniques. We believe
that it is important to define a qualitative (and whenever possible,
quantitative) measure for swarm RA, i.e., Quality of Swarm Attes-
tation (QoSA). This measure should reflect verifier’s information
requirements and allow comparisons across swarm RA techniques.

" In the RA context, we use the following terms interchange-
ably throughout the paper: protocols, techniques, methods and ap-
proaches.

1.3 Contributions

In order to bring swarm attestation closer to practice, issues dis-
cussed above need to be addressed. To this end, after defining the
notion of QoSA, we design and evaluate two practical swarm RA
protocols (LISA« and LISA s, with different QoSA-s) that narrow
the gap between paper-design techniques such as SEDA and real-
istic performance assessment and practical deployment. We also
carefully investigate their impact on the underlying security archi-
tecture. Performance of proposed protocols is assessed using the
open-source Common Open Research Emulator (CORE) [2].

1.4 Outline

Section 2 describes assumptions, preliminaries and the network
model. Section 3 presents the design of the two LIghtweight Swarm
Attestation (LISA) protocols. Section 4 contains the security anal-
ysis of our protocols. Section 5 presents implementation details
and performance assessment, while Section 6 discusses additional
cryptographic considerations. Section 7 concludes the paper and
discusses future work.

2. PRELIMINARIES

We now delineate this paper’s scope and outline our assump-
tions.

2.1 Scope

This paper focuses on swarm RA in the presence of limited de-
vice mobility, which means that swarm topology is assumed to
be connected and quasi-static during each RA session. The lat-
ter means that the swarm connectivity graph can change as long as
changes do not influence message propagation during an attestation
session.

Similar to prior results in the single-prover RA setting, proposed
protocols are not resistant to physical attacks. Other than imposing
ubiquitous tamper-resistant hardware, the only practical means of
mitigating physical attacks is by heartbeat-based absence detection
[10]. We consider this to be an orthogonal direction and focus on
remote malware attacks. Also, low-level denial-of-service (DoS)
attacks that focus on preventing communication (e.g., physical-
layer jamming) are beyond the scope of this paper. However, we do
take into account DoS attacks that try to force devices to perform a
lot of computation and/or communication.

Since we build upon state-of-the-art hybrid techniques for single-
prover RA, our protocols assume that each device adheres to the
minimal requirements specified in [9] and [7]. Our protocols attest
only static or predictable segments of memory, e.g., code and data.
It is very difficult, perhaps even infeasible, to perform an integrity
check over dynamic memory segments due to the combinatorial
explosion of possible outcomes.

Even though practicality, i.e., suitability for real-world deploy-
ment, is the ultimate goal of this work, we do not actually deploy
proposed techniques in real-world swarm settings. Nevertheless,
we achieve the next best thing by implementing and evaluating
them via emulation, which effectively replicates the behaviors of
physical, link and network layers (by virtualizing them on top of
Linux) in a virtual environment which takes into account wireless
channel interference, noise and loss. Emulation allows us to eas-
ily experiment with multiple deployment configurations (varying
number of devices, their wireless capabilities and environments)
and swarm topologies — something not easily doable in an actual
deployed swarm. We claim that, though not the same as actual de-
ployment, emulation is much more realistic than simulation. Since
the latter completely abstracts away the protocol stack, it can miss
some practical performance issues and artifacts that arise in using

the actual stack, the medium access protocol (at the data link layer)
and characteristics of the wireless channel (at the physical layer).

2.2 Network & Device Assumptions

Devices: We assume that each swarm device (prover):

o Adheres to SMART+ architecture, as discussed in Section
2.3 below.

e Has at least one network interface and ability to send/receive
both unicast and broadcast packets.

e The second protocol (LISAs) in Section 3.2, requires each
device to have a clock in order to implement a timer and to
know the total number of devices in the swarm — n.

In general, devices can vary along three dimensions: (1) attestation
architecture, (2) computational power, and (3) installed code-base.
As mentioned above, we assume uniform adherence to SMART+
architecture. Our first protocol, LISA«, makes no other assump-
tions. The second, LISAs, also assumes homogeneity in terms of
computational power.

Connectivity & Topology: The verifier (Vrf) is assumed to be un-
aware of the current swarm topology. The topology (connectivity
graph) of the swarm can change arbitrarily between any two attesta-
tion instances. It might change for a number of reasons, e.g., phys-
ical movement of devices, foreign objects impeding or enabling
connections between devices, hibernating devices, or devices en-
tering or leaving the network. However, during each attestation
instance, the swarm is assumed to be: (1) connected, i.e., there is
a path between any pair of devices, and (2) quasi-static. The lat-
ter means that the swarm connectivity graph can actually change
during an attestation session, as long as changes do not influence
message propagation, e.g., if a link disappears after one device fin-
ishes sending a message, and re-appears before any other message
is exchanged between the same pair of devices. See Sections 3.1.3
and 3.2.3 for details.

If either condition does not hold, protocols discussed in Section 3
still provide best-effort attestation, i.e., if a change of connectiv-
ity occurs, some healthy devices might end up not being attested,
which would result in a false-negative outcome. Nonetheless, in-
fected devices are never positively attested, regardless of any con-
nectivity changes during attestation.

Adpversary Type: Based on the recently proposed taxonomy [1],
adversaries in the context of RA can be categorized as follows:

e Remote: exploits vulnerabilities in prover’s software to re-
motely inject malware. In particular, it can modify any exist-
ing code, introduce new malicious code, or read any unpro-
tected memory location.

e Local: located sufficiently near the prover to eavesdrop on,
and manipulate, prover’s communication channels.

e Physical Non-Intrusive: located physically near the prover;
can perform side-channel attacks in order to learn secrets.

e Stealthy Physical Intrusive: can physically compromise a
prover; however, it leaves no trace, i.e., can read any (even
protected) memory and extract secrets.

e Physical Intrusive: has full (local) physical access to the
prover; can learn or modify any state of hardware or soft-
ware components.

Our protocols take into account remote and local adversary flavors.
However, as with most prior work, all types of physical attacks are
out of scope.

Since all hybrid RA schemes involve hardware-protected key
storage, we assume (for now) a trivial master key approach, whereby
all swarm devices have the same secret, shared with Vrf. While
this might seem silly, it is sufficient in a setting without physical
attacks; see Section 3 for more details. However, for the sake of

completeness, counter-measures to physical attacks and additional
cryptographic considerations are discussed in Section 6.

2.3 Security Architecture

Architectural minimality is a key goal of this work; hence, our
protocols require minimal hardware support. Specifically, we as-
sume that each device adheres to the SMART architecture [9], aug-
mented with Vrf authentication (aka DoS mitigation) features iden-
tified in [7]. We refer to this combination as SMART+ and its key
aspects are:

e All attestation code (A##tCode) resides in ROM. AttCode is
safe, i.e., it always terminates and leaks no information be-
yond the attestation result, i.e., a token.

o Execution of A#tCode is atomic and complete, which means:
(a) it can not be interrupted, and (b) it starts and ends at offi-
cial entry and exit points, respectively.? This feature is gen-
erally enforced by a Memory Protection Unit (MPU) using a
set of static rules.

o At least one secret key stored in ROM, which can only be
read from within A#tCode. For now, we remain agnostic as
far as what type of cryptography is being used.

e A fixed-size block of secure RAM that stores the counter
and/or a timestamp of the last executed attestation instance.
(This is needed to prevent replay attacks). This memory can
only be modified from within A#tCode. [7] offers an alter-
native in the form of a reliable real-time clock that can not
be modified by non-physical means. However, we opt for a
secure counter since it is a cheaper feature.

SMART+ operates as follows:

1. Vrf generates an authenticated attestation request. Authenti-
cation is achieved either via a signature or a message authen-
tication code (MAC), depending on the type of cryptography
used.

2. On Pru, the attestation request is received by untrusted code
outside A#tCode and passed on to AttCode.

3. AttCode disables interrupts and checks whether the sequence
number of the request is greater than current counter value.
If not, request is ignored.

4. AttCode authenticates — using either symmetric or public key
— the attestation request. If authentication fails, request is
ignored.

5. AttCode computes the authenticated integrity check of its
memory (i.e., the result), stores it in a publicly accessible
location, cleans up after itself, enables interrupts and termi-
nates.

6. Untrusted code on Prv (outside of AttCode) returns the re-
sult to Vrf.

7. Vrf authenticates the result and decides whether Prv is in a
secure state.

Memory organization and memory access rules for SMART+ and
LISA are summarized in Figure 1.

2.4 Quality of Swarm Attestation (QoSA)

The main goal of swarm RA is to verify collective integrity of
the swarm, i.e., all devices at once. However, in some settings,
e.g., when a swarm covers a large physical area, the granularity of
a simple binary outcome is not enough. Instead, it might be more
useful to learn which devices are potentially infected, so that quick
action can be taken to fix them. By the same token, it could be
also useful to learn the topology. To this end, we introduce a notion
that tries to capture the information provided by swarm RA, called
Quality of Swarm Attestation (QoSA). It also enables comparing

“There might be multiple legal exit points.

User Tasks
[
User Tasks User Tasks
0s
o8 LISAs Vars
SMART+ Vars LISA« Vars
™w K ™w K N w
i ' K .
SMART+ AttCode LISAo AttCode ’ i
LISAs AttCode

Figure 1: Memory organization and access rules in SMART+ and
LISA; r denotes read, w denotes write.

multiple swarm attestation protocols. We consider the following
types of QoSA:

e Binary QoSA (B-QoSA): a single bit indicating success or
failure of attestation of the entire swarm.

o List QoSA (L-QoSA): alist of identifiers (e.g., link-layer and/or
network-layer addresses) of devices that have successfully
attested.

o Intermediate QoSA (I-QoSA): information that falls between
B-QoSA and L-QoSA, e.g., a count of successfully attested
devices.

o Full QoSA (F-QoSA): a list of attested devices along with
their connectivity, i.e., swarm topology.

This is not an exhaustive list. Although we view these four types as
fairly natural, other Q0SA-s can be envisioned. We also note that,
in a single-prover setting which applies to most prior attestation lit-
erature, QoSA is irrelevant, since Vrf communicates directly with
one Pruv, and there is no additional information beyond the attes-
tation result itself. In contrast, in a multi-prover setting, QoSA is
both natural and useful. It can be tailored to the specific applica-
tion’s needs, as described below in Section 3.

2.5 Attestation Timeouts

Since envisaged swarm attestation is mostly autonomous and Vrf
is initially unaware of the current topology, there needs to be an
overall timeout value. As in any one-to-many reliable delivery
protocol, timeouts are necessary to account for possible losses of
connectivity during attestation, caused by mobility, noisy channels,
or excessive collisions, all of which might occur naturally, or be
caused by DoS attacks. As usual, the timeout parameter must be se-
lected carefully, since an overly low value would result in frequent
false positives, while an overly high one would cause unnecessary
delays. In any case, we assume that the timeout is dependent on n
— the number of devices in the swarm.

2.6 Initiator Selection

To minimize its burden, Vrf can initiate the process by directly
sending an attestation request to one device in the swarm. We call
this device an “initiator". There are several ways to select it, e.g.,
based on physical proximity, and/or computation power. If Vrf has
no knowledge about nearby devices, it first needs to perform neigh-
bor discovery (e.g., [12] or [14]) which introduces an extra step in
the overall process. Alternatively, Vrf can use multiple initiators
and skip neighbor discovery by simply broadcasting an attestation
request to whichever device(s) can hear it. In that case, all Vrf’s
immediate neighbors become initiators, in parallel. Our protocols
are agnostic to this choice and work regardless of how initiators are
selected, as long as at least one is picked.

2.7 Verifier Assumptions

Following prior work, we assume an honest Vrf. In particular, it
is not compromised and is trusted to correctly generate all attesta-
tion requests, as well as to correctly process all received attestation
reports (replies). Also, Vrf is assumed to know n.

3. NEW SWARM RA PROTOCOLS

We now describe two lightweight swarm RA protocols, LISA«
and LISAs, including their design rationale, details and complex-
ities. Similar to SMART+, either symmetric or public key cryp-
tography can be used to provide authenticated integrity of protocol
messages. However, for the sake of simplicity and efficiency, we
describe LISA« and LISAs assuming a single swarm-wide sym-
metric master key. This master key can be pre-installed into all
swarm devices at manufacture or deployment time. Although this
might seem naive, recall that, in the absence of physical attacks,
there is no difference between having: (1) one swarm-wide master
key shared with Vrf, (2) a symmetric unique key each device shares
with Vrf, or (3) a device unique public/private key-pair for each de-
vice. This is because malware that infects any number of devices
still can not access a device’s secret key due to SMART+’s MPU
access rules. However, if physical attacks are considered, Section 6
discusses the use of device-specific symmetric keys and public key

cryptography.
3.1 Asynchronous Version: LISA«

LISA o stands for: Lightweight Swarm Attestation, asynchronous
version. Its goal is to provide efficient swarm RA while incurring
minimal changes over SMART+. Before describing LISA«, we
can imagine a very intuitive approach, whereby Vrf, relying strictly
on SMART+, runs an individual attestation protocol directly with
each swarm device. This would require no extra support in terms
of software or hardware features. Nonetheless, this naive approach
does not scale, since it requires Vrf to either: (1) attest each device
in sequence, which can be very time-consuming, or (2) broadcast
to all devices and maintain state for each, while waiting for replies.
This scalability issue motivates device collaboration for propagat-
ing attestation requests and reports. LISA« adopts this approach
and involves very low computational overhead, while being resis-
tant to computational denial-of-service (DoS) attacks. Devices act
independently and asynchronously, relying on each other only for
forwarding attestation requests and reports.

3.1.1 LISAa Protocol Details

LISA«’s pseudo-code and finite state machine (FSM) for a prover
device (Dew) are illustrated in Algorithm 1 and an upper figure of
Figure 2, respectively. LISAa’s FSM for Vrf is illustrated in a
lower figure of Figure 2 and the pseudo-code is described in Algo-
rithm 2. The protocol involves two message types:

(1) request: Attreq = [“req”’, Snd, Seq, Authyeq] and
(2) report: Attrep = [“rep”, DevID, Par, Seq, H(Mem), Authrep)
where:
e Snd — identifier of the sending device; this field is not au-
thenticated
e Seq — sequence number and/or timestamp of the present at-
testation instance; set by Vrf
o Auth,.q — authentication token for the attestation request
message; computed by Vrf as: MAC(K, “req”||Seq)
e Devl D —identifier of Dewv; stored in ROM, along with A#tCode
e Par — identifier of the reporting device’s parent in the span-
ning tree; copied from Snd field in Att,eq
o Auth,.p, —authentication token for the attestation reply mes-
sage; computed by Dev as:

Verify

Request Attest

Verify

Forward

Session

start

complete or

tAttest €Xp

Figure 2: LISA« FSM-s for Dev (top) and Vrf (bottom)

MAC(K, “rep”||DevI D||Seq||H(Mem)), where H() isa
suitable cryptographic hash function and Mem denotes de-
vice memory that is subject to attestation’.

LISA« Prover.
From the perspective of a prover Dev, LISA« has five states:

1. Wait: Dev waits for an attestation-relevant packet. In case of
Attreq, Dev proceeds to VerifyRequest and in case of Att,ep, it
jumps to VerifySession.

2. VerifyRequest: Deuv first checks validity of Seq, which must
be strictly greater than the previous stored value; otherwise, it dis-
cards Attreq and returns to Wait. Next, Dev validates Auth,eq
by recomputing MAC. If verification fails, Dev discards Att,eq
and returns to Wait. Otherwise, Dev saves Seq as the current ses-
sion number CurSegq, stores Snd as its parent device Par for this
session, and transitions to Attest.

3. Attest: Dew sets Snd field in Att,eq to DevI D and broadcasts
the modified Att,cq. Next, Dev computes Auth,e, and composes
Attrep, as defined above. Note that Auth,., authenticates Par
by virtue of covering Att,q. Finally, Dev unicasts Att,p to Par
and transitions to Wait.

4. VerifySession: Dev receives Attrep from one of its descen-
dants. If the Seq in Att,., does not match its stored counterpart
CurSeq, Dev discards Att,., and returns to Wait. Otherwise, it
proceeds to Forward.

5. Forward: Dewv unicasts Att,., received in VerifySession, to
its stored Par and returns to Wait.

*Note that H (Mem) is part of Att.ep,. We can omit it to save
space, and have Vrf keep a mapping of (DevID, H(Mem)).
However, this would take away Vrf’s ability to make decisions
based on actual device signatures.

Algorithm 1: Pseudo-code of LISA« for Dev

Write-Protected Vars: DevID —id of Dev
CurSeq - current sequence #
Par — Dev’s parent id

1 while T'rue do
2 m = RECEIVE();
3 if TYPE(m) = “req” then
4 [Snd, Authycq, Seq] < DECOMPOSE(m);
5 if Seq < CurSeq then
6 | CONTINUE();
7 end
8 if Authreq # MAC(K, “req”||Seq) then
9 | CONTINUE();
10 end
11 CurSeq < Seq; Par <+ Snd,
12 BROADCAST(“req” || DevID||CurSeq||Authyeq);
13 Authrep <+ MAC(K, “rep”||DevID||CurSeq||H(Mem));
14 Attrep <
“rep” ||DevID||Par||CurSeq||H(Mem)||Auth cp;
15 UNICAST(Par, Attrep);
16 else if TYPE(m) = “Rep” then
17 Seq < GETSEQ(m);
18 if Seq = CurSeq then
19 | uNICAST(Par, m);
20 end
21 end
22 end

LISA« Verifier.

From Vrf’s perspective, LISA« is simpler, with four states:

1. Wait: Vrf waits for external signal (e.g., from a user) to start a
new attestation session. When it arrives, Vrf moves to Initiate.

2. Initiate: Vrf sets the overall timeout and selects the initiator(s),
as discussed earlier. It then initializes Attest = Fail = (), Norep =
{all DevID}. Next, Vrf sets Snd =Vrf, composes Att,.q, sends
it (via unicast) to the initiator(s), and moves to Collect.

3. Collect: Vrf waits for Att,e, messages from the initiator(s) or
an overall timeout. If a timeout occurs, Vrf transitions to Tally.
Upon receipt of Att,ep, Vrf extracts and validates Auth,e, by
recomputing MAC. (Note that duplicate Att,.., messages are as-
sumed to be automatically detected and suppressed). There are
three possible outcomes:

i. Validation fails: Att,.p is discarded,

ii. Authyep is authentic and H(Mem) corresponds to an ex-
pected (legal) state of DevID’s attested memory: Vrf adds
DevlID to Attest, and removes it from Norep,

iil. Authyep is authentic and H (Mem) does not match any ex-
pected state of DevI D’s attested memory: Vrf adds DevI D
to F'ail and removes it from Norep

If | Attest| + | Fail| = n, Vrf moves to Tally; otherwise it remains
in Collect.

4. Tally: Vrf outputs Attest, Fail and Norep as sets of devices
that passed, failed and didn’t reply, respectively. Finally, Vrf re-
turns to Wait.

3.1.2 Vrf Timeout in LISAc

As follows from the protocol description (or, equivalently, from
FSMs and pseudocode), devices do not require a timeout. For its
part, Vrf sets the overall attestation timeout to
tattest =ta + 1 -tyac +2-n -t +1ts, where:

e t, — time for Dev to perform self-attestation*

o tyrac — time for Dev to compute a MAC (to verify or gen-
erate) over a short message

e t; —time for Dew to transmit a message to another device

“In case of heterogeneous devices, t,, represents the maximum self-
attestation time across all devices. The same applies to tyrac and
ts.

Algorithm 2: Pseudo-code of LISA« for Vrf

1 tattest < ta +tmac +2-n-t + s
2 while T'rue do

3 wait();

4 InitID <« GETINITID();

5 CurSeq + GETSEQ();

6 Attreq < “req”||Vrf||CurSeq|| Authreq;

7 UNICAST(ZnitID, Attreq);

8 Attest < 0; Fail < 0;

9 Norep < {allDevID};

10 T < GETTIMER();

11 while 7" < t Attest do

12 Attrep < RECEIVE();

13 [DevID, Par, Seq, H(Mem), Auth ep]
<— DECOMPOSE(Attrep);

14 if Seq = CurSeq AN Authyep =
MAC(K, “rep”||DevID||CurSeq||H(Mem)) then

15 if H(Mem) C EXPECTEDHASH(DevID) then

16 | Attest «— Attest U {DevID};

17 else

18 | Fail < Fail U{DevID};

19 end

20 Norep < Norep \ {DevID};

21 end

2 if |Attest| + |Fail| = n then

23 BREAK();

24 end

25 end

26 OUTPUT(Attest, Fail, Norep);

27 end

e ¢, —slack time, which accounts for variabilities, i.e., possible
deviations

t attest TEpresents the time corresponding to running LISA« over a
n-device swarm with the worst-case topology scenario, i.e., a real-
istic upper bound. The worst-case is a line topology where Att,¢q
processing is done in sequence, taking n-tas ac. Only one ¢, needs
to be included in ¢ a+tes¢ since the last device (the only leaf in the
tree) finishes its attestation after all others. Also, since there are at
most 1 hops between Vrf and the last device, it takes 7 - ¢+ to trans-
mit Att,.q to that device and the same amount of time to transmit
the last Att,.cp to Vrf.

3.1.3 Connectivity in LISA«

Let to denote the time when Dev receives Auth,eq from Par,
trep,i denote the time when Par receives the i*" Authy e, from
Dev and z denote the number of Dev’s descendants. The connec-
tivity assumption of LISA« can be formally stated as follows:

LISA« produces a correct swarm attestation result, i.e. no false
positives and no false negatives, if a link between every Dev and
its Par exists during their o, trep,1, trep,2,--strep,z41-

3.1.4 QoSA of LISAa

At the end, Vrf collects a set of Att,., messages, one from each
device. After verifying all Att,cp-s, Vrf learns the list of success-
fully attested devices, thus achieving L-QoSA. It is easy to augment
the protocol to collect topology information along with attestation
results. This can be performed by simply including Par in each
Attrep. Vrf then can thus reconstruct the topology based on veri-
fied reports. Specifically, line 15 in Algorithm 1 would become:
Authyrep <+ MAC(K, “rep”||CurSeq||DevID||Par||H(Mem));
However, topology information obtained by Vrf is not reliable,
since Par is not authenticated upon receiving Attreq. Fixing this
is not hard; it would require each device to: (1) compute and attach
an extra MAC, at least over Par and Auth,.q fields, at Att,eq
forwarding time, and (2) verify the Par’s MAC upon receiving
Attyeq.

3.1.5 Complexity of LISAa

Complexity is discussed in Appendix B.1. In brief, LISA« is
very simple in terms of software complexity and impose no addi-
tional features on the underlying attestation architecture. However,
it requires a larger ROM and additional static MPU rules. Also,
high communication overhead is LISA«’s biggest drawback, since
Dewv transmits n reports in the worst case. This motivates the de-
sign of LISA s, which aims to reduce communication overhead by
aggregating multiple Att,ep-s.

3.2 Synchronous Version: LISAs

The main idea in LISAs is to let devices authenticate and attest
each other. When one device is attested by another, only the iden-
tifier of the former needs to be securely forwarded to Vrf, instead
of the entire Att,.,. This translates into considerable bandwidth
savings and lower Vrf workload. Also, Attrep-s can be aggre-
gated, which decreases the number of packets sent and received.
It also allows more flexibility in terms of QoSA: from B-QoSA to
F-QoSA. Finally, malformed or fake Att,.p-s are detected in the
network and not propagated to Vrf, as in LISAa. However, these
benefits are traded off for increased protocol (and code) complex-
ity, as described below.

LISAs’s main distinctive feature is that each Dev waits for all
of its children’ Att,c,-s before submitting its own. This makes the
protocol synchronous. Each Dewv keeps track of its parent and chil-
dren during an attestation session. Once Att,.q is processed and
propagated, Dev waits for each child to complete attestation by
submitting a Att,ep. Then, Dev verifies each Att,.p, aggregates
a list of children as well as descendants they attested, attests itself,
and finally sends its authenticated Att,., (Which contains the list
of attested descendants) to its Par.

3.2.1 LISAs Protocol Details

The FSM and pseudo-code for Dev are shown in an upper part
of Figure 3 and Algorithm 3, respectively. Design choices are dis-
cussed in Appendix C. LISAs is constructed such that Dev can
receive a new Att,.q in any state, even while waiting for children’s
Attrep-s. Besides Attreq and Attrep, LISAs involves one extra
message type:

(1) request: Attreq = [“req”, Snd, Seq, Depth, Authyeq],
(2) report: Attrep = [“rep”,Seq, DevID, Desc, Authrep|, and
(3) acknowledgment: Attqcr = [“ack”,Seq, DevI D, Par], where:
e Snd- identifier of the sending device; this field is not au-
thenticated
e Seq- sequence number and/or timestamp of the present at-
testation instance; set by Vrf
e Depth— depth of the sending device in the spanning tree
o Auth,.q— authentication token for the attestation request mes-
sage; computed by Vrf as: MAC(K, “req”||Seq)
e Devl D—identifier of Dev (stored in ROM, along with A##Code)
e Desc- list of Dev’s descendants; populated when Dev re-
ceives an authentic report
o Auth,.p,— authentication token for the attestation reply mes-
sage; computed by Dew as:
MAC(K, “rep”||Seq||DevID||Desc)
e Par—identifier of reporting device’s parent in the spanning
tree; copied from Snd field in Att,cq

Prover in LISAs .

From the perspective of a prover Dev, LISAs consists of eight
states:
1. Wait: the initial state where Dev waits for an attestation-relevant
packet. Dew transitions to VerifyRequest if it is Attreq, Veri-

Algorithm 3: Dev pseudo-code in LISAs.

Write-Protected Vars: CurSeg — current sequence number
DevID -id of Device Dev
Par —id of current Dev’s parent
C — pre-installed hash of Dev’s memory
Desc - list of id-s of Dev’s descendants
1 tack < tmac + 2ty +ts;
2 while T'rue do

3 m <— NONBLOCKRECEIVE();

4 T <+ GETTIME();

5 if TYPE(m) = “req” then

6 [Authyeq, Seq, Snd, Depth] <— DECOMPOSE(m, “req”);

7 if Seq < CurSeq then

8 | CONTINUE();

9 end

10 if Authyeq # MACKk (“req”||Seq) then

1 | CONTINUE();

12 end

13 CurSeq <+ Seq; Par < Snd;

14 Attgcr “ack”||CurSeq||DevID||Par;

15 UNICAST(Par, Attgck);

16 trep < (n — Depth)(tack +ta +tmac +te + ts);

17 Attreq < “req”||CurSeq||DevID||(Depth+1)||Authyeq;

18 BROADCAST(Attreq);

19 Desc + 0

20 Children + 0;

21 T < RESTARTTIMER();

2 else if TYPE(m) = “ack” then

23 if I" > tack then

24 | CONTINUE();

25 end

26 [Seq, Snd, SndPar] + DECOMPOSE(m, “ack”);

27 if Seq = CurSeq then

28 | Children = Children U {Snd};

29 end

30 else if TYPE(m) = “rep” then

31 if7 <tacx VT > trep then

32 | CONTINUE();

33 end

34 [Seq, Snd, SndDesc, Authycp | < DECOMPOSE(m, “rep”);

35 if Seq # CurSeq then

36 | CONTINUE();

37 end

38 if Authyep = MAC(K, “rep”||CurSeq||Snd||SndDesc)
then

39 Desc < Desc U {Snd} U SndDesc;

40 Children < Children \ {Snd};

41 end

42 end

43 if(ChildT€7li®/\TZtACK)\/(TZtREp)then

44 if H(Mem) # C then

45 | ABORT();

46 end

47 Authrep <+ MAC(K, “rep”||CurSeq||DevID||Desc);

48 Attrep < “rep”||CurSeq||DevID||Desc||Authyep;

49 UNICAST(Par, Attrep):

50 T < RESETANDSTOPTIMER();

51 end

52 end

Answer
+ Broadcast
+Reset

tREP eXp

complete

start

AcceptChild

tack exp

= N "
) “rep

tREP €Xp

Figure 3: FSM of LISAs: Dev (top) and Vrf (bottom)

fySession if it is Att,ep and VerifyTimer+Ack if it is Attqck.
Also, if a timeout occurs during this state, Dev transitions to At-
test+Answer. This timeout is set in Answer+Broadcast+Reset
below.

2. VerifyRequest: This state is similar to VerifyRequest in LISA s.
If verification of Att,.4 fails, Dev discards Att,., and goes back
to Wait. Otherwise, Dev realizes its depth in the spanning tree
through Depth field in Att,.q and saves Seq as CurSeq and Snd
as Par. Finally, Dev transitions to Answer+Broadcast+Reset.
3. Answer+Broadcast+Reset: Dev sends Attqcr back to Par,
copies its DevID into Snd field of Att,eq and broadcasts the
modified Att,.q. Next, Dev computes a timeout ¢ gz p. This time-
out is used to determine when to stop receiving Att,.p during Wait.
Dew then initializes a list of its children (Children) and a list of
its descendants (Desc) to empty sets, starts a timer, and returns to
Wait.

4. VerifyTimer+Ack: Dev receives Att,cr, from a device that wants
to be its child. First, Dev checks with an acknowledgment time-
out (tack), which is a global constant. If the current time is later
than t acxk, Dev discards Att,.r and returns to Wait. If the Seq
in Attqcr does not match CurSeq, Dev also discards Attqc, and
goes back to Wait. Otherwise, Dev transitions to AcceptChild.

5. AcceptChild: Dev accepts Attqcr, and stores Snd into Children.
Then, Dew returns to Wait.

6. VerifySession: This state is also similar to VerifySession in
LISA«. Dev discards Att,ep and return to Wait if Seq in Att,ep
does not match CurSeq. Otherwise, it transitions to AggregateRe-
port

7. AggregateReport: Dev accepts Att,ep and aggregates it with
other received reports in the same session. The aggregation is done
by adding Snd and Desc fields in Att,., into its Desc and re-
moving Snd from Children since Snd has replied. If all of its

children have already replied (or Children = @), Dev transitions
to Attest+Answer. Otherwise, Dev returns to Wait.

8. Attest+Answer: Dev computes a hash of its attestable mem-
ory. If the resulting digest does not match with the pre-installed
hash value (C), Dev outputs an error and acts accordingly (e.g.,
hardware reset and memory wipe-out). Otherwise, Dev constructs
Authyep and Attyep as defined earlier and unicasts Att,.p, to Par.
Finally, the timer is reset and stopped and Dev returns to Wait.

Verifier in LISAs .

The Vrf in LISAs has one additional state — AcceptChild —
while the rest of the states remain similar or the same as the ones in
LISAa. Vrf’s pseudo-code is illustrated below and its finite state
machine is in the lower part of Figure 3.

Algorithm 4: Vrf pseudo-code in LISAs.

1 tack < tmac + 2t +ts;
2 tAttest < N (tack +ta +tamac +te +ts):
3 while T'rue do

4 wait();
5 InitID <« GETINITID();
6 CurSeq < GETSEQ();
7 Attreq < “req”||Vrf||CurSeq||Authyeq;
8 UNICAST(ZnitI D, Attreq):
9 Attest + 0; Children + 0;
10 Norep < {allDevID};
u T < GETTIMER();
12 while " < t 4cx do
13 Attgcr < RECEIVE();
14 [Seq, DevID, Par] < DECOMPOSE(Attqyck);
15 if Seq = CurSegq then
16 | Children < Children U {DevID};
17 end
18 end
19 while I’ < trgp do
20 Attrep < RECEIVE();
21 [Snd, Par, Seq, SndDesc, Auth,cpl

<— DECOMPOSE(Attrep);
22 if Seq = CurSeq A Authyep =

MAC(K, “rep”||Seq||DevID||SndDesc) then
23 Attest + (Attest U SndDesc) U {Snd};
2 Norep < (Norep \ SndDesc) \ {Snd};
25 Children < Children \ {Snd};
26 end
27 if Children = () V |Attest| = n then
28 \ BREAK();
29 end
30 end
31 OUTPUT(Attest, Norep);
32 end

1&2. Wait and Initiate: These two state are identical to their coun-
terparts in LISAc.

3. AcceptChild: Vrf waits for Att,cx-s from the initiator(s), which
are used to determine the completion of Collect. After a timeout
occurs, Vrf stops receiving Attqcx-s and transitions to Collect.

4. Collect: This state is also similar to Collect in LISA« except
the following three behaviors: One is Vrf does not need to check
H(Mem) since it is not include in Att,cp. Secondly, Vrf does
not need to maintain a list of unsuccessfully attested devices (F'ail)

since software-infected devices cannot output an authentic Authyep.

Lastly, Vrf transitions to Tally if the initiator(s) (realized in Ac-
ceptChild) has sent its reports. The rest of its behaviors remains
the same as in LISAc.

5. Tally: Vrf outputs Attest and Norep and returns to Wait.

3.2.2 Timeouts in LISAs

Dev requires two timeouts: an acknowledgment timeout (t ac k)
and a report timeout (trEp).

tack is the amount of time that Dev waits after having broad-
cast a request for children acknowledgments. It is set to the con-
stant value of ¢y ac +2t: +1t5, that is time for the broadcast to reach
a neighbor (¢), for the neighbor to verify the request ({arac), and
then for the answer to be received by Dew (another t;), plus some
slack ¢, (global parameter). This gives all neighbors an opportunity
to send Attack.

trep is the amount of time, after the children have been deter-
mined, that Dev will wait for reports before performing its own at-
testation. It is set to the value (n — Depth)(tack +ta +trmac +
t: + ts). This represents the time the descendants would take to
answer back to Dev in the absolute worst scenario. This scenario
is when the descendants are in a line topology and each has only
one child (except the last one). It is indeed the worst case because
no work can be done in parallel. Each node in the line (except the
leaf) will perform the following: forward a request to and wait for
the answer from its (only) child (t4c k), and then, after receiving
the answer, verify its child’s report (taac), attest itself (¢,), and
finally answer back to the parent (¢+) and some slack ¢ for variabil-
ity considerations. In this scenario, all of Dev’s descendants will
take this time (except the leaf which takes slightly less). If Dev has
Depth ancestors, it has at most (n — Depth) descendants. Hence,
time for attestation of descendants is bounded, even in the worst-
case scenario, by: (n — Depth)(tack + ta + tmac + te + ts).
Note that the timeouts are needed to detect errors and DoS attacks.
In most topologies, the delay in gathering reports will be much
shorter. Finally, Depth is important: without it, if a node times
out, its parent (and all ancestors) will also time out. Then, Vrf
would have no idea about what happened. Instead, if a node times
out, it sends what it has thus far to its parent, which does not time
out itself.

Since Vrf can be viewed as the root of the spanning tree, tacx
and trep are applicable to it. Vrf’s trep = n - (tack + ta +
tamac +te +ts).

3.2.3 Connectivity in LISAs

Let ¢o denote the time that Dev receives Authycq from Par,
t1 denote the time that Par receives Attqcr from Dev and 2 de-
note the time that Par receives Authyep from Dev. Then, we can
formally state the connectivity assumption in LISA s as follows:

LISAs provides correct swarm attestation result, i.e. no false-
positive and false-negative, if a link between every Dev and its
‘Par exists during their to, t1 and 2.

Note that this assumption is more relaxed than the one in LISA«
since each link has to appear during those three times while in
LISA«, Dev and Par have to be connected for transmitting z 4 1
messages where z is a number of Dev’s descendants. The down-
side, however, is that when the assumption does not hold, Vrf will
lose all Authyrep-s of Dev and its descendants while in LISA«,
some of those Authr.p-s could still arrive to Vrf.

3.2.4 (QoSA of LISAs

As presented in Algorithm 3, LISAs offers L-QoSA. By chang-
ing information contained in the reports (line 48), QoSA can be
amended to:

e Binary: Instead of Desc, Attr., contains a single bit in-
dicating whether all descendants have been successfully at-
tested. This saves bandwidth over L-QoSA since reports are
smaller (the MAC is also faster to compute). The obvious
downside is that Vrf is only learns the result of swarm attes-
tation as a whole, and can not identify missing devices. One
option is to use LISA s with B-QoSA until failure is encoun-

tered and then re-run LISAs with higher QoSA to identify
devices that failed attestation.

e Counter: Using a counter allows Vrf to learn how many de-

vices failed attestation. This comes at a marginal increase is

bandwidth consumption.

List Complement: Instead of composing a list of attested de-

scendants, each device can build a list of unattested ones. In a

mostly healthy swarm, this is cheaper in terms of bandwidth

than list QoSA.

e Topology: By representing the list of descendants as a tree in-
stead of a set in the report, LISA s can provide topology infor-
mation to Vrf. Specifically, line 39 is replaced by: Desc <
DescU(Snd : SndDesc). This recursively creates a subtree
rooted at each node. The only drawback is a small increase
in bandwidth usage.

4. SECURITY ANALYSIS

We now describe possible attacks and then (informally) assess
security of LISA« and LISAs.

4.1 Attack Vectors

Recall that our adversarial model only considers remote and lo-
cal adversaries, while physical attacks are out of scope. An ad-
versary Adv can remotely modify the software and/or the state of
any device. It also has full control of all communication channels,
i.e., can eavesdrop on, inject, delete, delay or modify any messages
between devices, as well as between any device and Vrf. In the
context of LISA, the following attacks are possible:

1. Report Forgery: Forging a Att,., would allow a device to
evade detection of malware, or allow .Adv to impersonate a
device.

2. Request Forgery: Forging a Att,.q would trigger unneces-
sary swarm attestation and result in denial-of-service (DoS)
for the entire swarm.

3. Application Layer DoS: Adv can launch a DoS attack abus-
ing the attestation protocol itself. This type of attack can
vary, depending on the protocol version. One example is
flooding the swarm with fake Attrep-s.

4. DoS on Network Layer and Lower Layers: Adv can launch
a DoS attacks that target network, link and physical layers of
devices. This includes radio jamming, random packet flood-
ing, packet dropping, etc. We do not consider such attacks
since they are not specific to swarm attestation.

4.2 Security of LisAa

Report Forgery: Recall that Att,., in LISA« is [“rep”, DevI D,
Par,Seq, H(Mem), Authcp] where Auth,ep, = MAC(K, “rep”
||DevID||Seq||H (Mem)). If Adv produces an authentic Att,ep
for some device then one of the following must hold:

o Adv forges Authy.p without knowing K: this requires Adv
to succeed in a MAC forgery, which is infeasible, with over-
whelming probability, given a secure MAC function.

o Adv knows K and constructs its own Auth,cp: this is not
possible, since only A#fCode can read K, AttCode leaks no
information about K beyond Auth,ep, and Adv can not
tamper with hardware.

e Adv modifies a compromised device’s DevI D which results
in producing Auth,ep for another DevID: since DevlD
“lives” in ROM, it can not be modified.

We note that replay attacks are trivially detected by Vrf since each
Alttreq includes a unique monotonically increasing Seq, which is
authenticated by every Dev and included in Attep.

Request Forgery: Recall that Att,eq in LISAc is [“req”, Snd,
Seq, Authyeq] where Auth,.q = MAC(K, “req”||Seq). An Adv
that fakes an Att,.q must either create a forged Auth,.q without
K or somehow know K. Similar to report forgery above, neither
case is possible due to our assumptions about the MAC function
and inaccessibility of K.

Application Layer DoS: An Adv flooding the swarm with fake
Attrep-s and/or Att,eq-s can result in an effective attack if it trig-
gers a lot of computation on, and/or communication between, de-
vices. Fake Att,.q flooding to a device is not very effective since
it causes DoS for only that device which authenticates an Attreq
before doing further work and forwarding it. On the other hand,
a fake Att,.p sent to a single device can result in several devices
forwarding garbage. This is because a device forwards a report to
its parent (and further up the spanning tree) without any authenti-
cation. We consider this attack not to be severe because it does not
trigger any other computation (only communication).

4.3 Security Analysis of LisAs

Report Forgery: Analysis of this attack in LISA s is similar to that
in LISAcv. Attrep in LISAs is [“rep”, DevI D, CurSeq, Desc,
Authrep|, where Authrep = MAC(K, “rep”||DevID||CurSeq
|| Desc). If Adv successfully forges a Att,.p for one of the swarm
devices such that Vrf accepts it, then one of the following must
have occurred: (1) Adv forged Auth. ., violating security of the
underlying MAC; (2) Adv learned K which is in ROM and only ac-
cessible from A##Code which is leak-proof; or (3) Adv was able to
modify variables that “live" in write-protected memory (i.e., CurSegq,
DevID, Par, Desc and Children). This is also not possible
due to the guaranteed write-protection from MPU access rules and
ROM.

Request Forgery: Att,c, in LISAs is similar to Att,eq in LISAx
except the additional field — Depth. This field is, however, not
utilized when checking integrity of Att,.q. Thus, the analysis of
this attack is similar to that in the LISA« case above.
Application-Layer DoS: Fake request flooding in LISAs has the
same effect as that in LISA« since the request of both protocols
has similar format and is handled similarly. Fake report flood-
ing, nonetheless, does not result in significant communication over-
head since a device in LISA s verifies all reports before aggregating
them. In addition, LISA s involves one additional type of message:
Attqcr. Recall that Dev in LISAs constructs Children based on
Attacr-s and then waits for reports until Children is empty or a
timeout ¢t R p occurs. A fake Attqcr causes devices to wait longer
than necessary. However, such waiting time is still bounded by
trep and thus in the worst case this attack will result in timeout of
all of its ancestor devices. This attack is not severe since it does not
incur extra computation on any devices, and produces effects sim-
ilar to DoS attacks on lower layers. Fake Att,., flooding is also
possible in LISA s, though it results in DoS for targeted devices and
not the entire swarm.

5. EXPERIMENTAL ASSESSMENT

We implemented LISAa and LISAs in Python, and assessed
their performance by emulating device swarms using the open-
source Common Open Research Emulator (CORE) [2].

5.1 Experimental Setup and Parameters

CORE Emulator: CORE is a framework for emulating networks.
It allows defining network topologies with lightweight virtual ma-
chines (VMs). CORE contains Python modules for scripting net-
work emulations at different layers of the TCP/IP stack and al-
lows defining mobility scenario for nodes, configuring routing and

switching, network traffic and applications running inside emulated
VMs. One key advantage of CORE over other simulation frame-
works, such as ns2 or ns3, is that it utilizes the actual network stack
in Linux and instantiates each emulated node using a lightweight
VM with its own file system running its own processes. Using the
actual networking stack results in performance estimates very close
to reality, since it does not abstract away any implementation de-
tails or issues at the data link, network and transport layers.
Experimental Setup & Scenarios: We generated several CORE
scenarios with n nodes each. In every scenario, the positions of the
n nodes are chosen uniformly at random in an area of 1, 500 x 800
units, e.g., meters. A pair of nodes is connected if the distance be-
tween them is smaller then a threshold of 200 units, correspond-
ing roughly to the coverage range of 802.11/WiFi. If the result-
ing network is not connected, the above process is repeated until a
connected network is generated. Vrf is also randomly positioned
within the area, and connected to the generated network. Figure 4
in shows a sample configuration.

Figure 4: Example scenario generated in CORE (40 nodes). Vrf is
highlighted.

The link-layer medium access control protocol running between
neighboring nodes is 802.11. Network layer (IP) routing tables
are automatically populated via the Optimized Link State Rout-
ing (OLSR) protocol, an IP-based routing protocol optimized for
MANETSs. OLSR uses proactive link-state routing with “Hello"
and “Topology Control" messages that discover and disseminate
link state information throughout the network. Each node uses
topology information to compute next-hop destinations for all other
nodes using the shortest path algorithm. Each node then runs our
swarm attestation protocol, though instead of actually performing
cryptographic operations, we insert delays (specified below) corre-
sponding to time to perform such operations on low-end devices.
At the beginning of each experiment, Vrf broadcasts a new Att,eq
that is propagated throughout the network according to LISA« or
LISAs.

Timings of Cryptographic Operations: Delays used to mimic
cryptographic operations on low-end devices are as follows:

e Vrf signature computation/verification: 0.0001s

e Node signature computation/verification: 0.001s

e Node hash speed (for attestation): 0.0429s/MB
The scheme used to sign messages can be implemented by a MAC
or a public key signature scheme such as ECDSA (see Section 6).
These timings are based on using ECDSA-160 and SHA-256. Us-
ing a MAC would reduce the time for small memory sizes. How-
ever, as discussed in Sections 5.2 and 6, computation is generally
dominated by hashing. Numbers for Vrf are derived from a typical
laptop, and those for Dev nodes come from a Raspberry Pi-2.

5.2 Experimental Results

In each experiment, we measured: (a) total time to perform swarm
attestation: from Vrf sending Att,..q, until Vrf finishes verification
of the last Att,ep; (b) average CPU time for Dew to performing at-
testation; and (c) average number of bytes transmitted per Dev.
Figure 5 shows the results for both protocols with various amounts
of attested memory and different swarm sizes. Each data point is
obtained as an average over 30 randomly generated scenarios for
that setup.

Total time (Figure 5a) varies significantly between LISA« and
LISAs. This is because in LISA s nodes spend a lot of time waiting
for external input, without computing anything. In these results, the
factor varies between 2 (for IMB) to 8 (for 100MB). This time is
also heavily influenced by the size of the attested memory, as shown
in Figure 5b. Finally, total attestation time depends (roughly log-
arithmically) on n, since nodes are explored in a tree fashion. Al-
though random, the tree is expected to be relatively well-balanced;
see Figure 4.

Average CPU time (Figure 5b) for Dev is roughly equivalent in
both protocols. This might seem counterintuitive, since in LISA s
nodes verify Att,.p-s of their children. However, verification is
much cheaper than attestation, in particular, if attested memory
size is large. This is discussed in Section 6. The number of de-
vices (n) also has little effect on computation costs. On the other
hand, the amount of attested memory has a strong impact on Dev’s
CPU usage. This shows that both protocols impose negligible extra
overhead (over single-prover attestation) in terms of CPU usage.

Bandwidth usage (Figure 5c) is, as expected, higher in LISA«
than in LISAs. The exact difference factor depends on n, rang-
ing from negligible (5 nodes) to 3 (40 nodes). This only represents
payloads size. Nodes in LISA« also send more packets®, compared
to only 3 in LISAs: Attreq, Attack, and Att,.p,. Bandwidth us-
age is also roughly linear in terms of n. The size of the memory
does not affect bandwidth usage, since data transmitted by nodes is
independent to it.

6. CRYPTOGRAPHIC CHOICES

As described above, both LISA« and LISA s assume that sym-
metric cryptography is used for constructing the MAC primitive,
i.e., a keyed cryptographic hash function [5] or a CBC-based MAC
[11]. Key management is trivial: a single master key shared be-
tween Vrf and all devices is used for computing and verifying all
attestation reports. However, under some conditions, it might be
desirable or even preferable to apply less naive key management
techniques and/or take advantage of public-key cryptography.
Physical Attacks: As stated earlier, LISAa and LISAs consider
physical attacks to be out of scope, following most prior literature
on this topic. Thus, SMART+ architecture, coupled with a single
shared symmetric master key, is sufficient for attesting the entire
swarm in the presence of Remote and Local adversaries, as defined
in Section 2.2. However, in the presence of physical adversaries,
neither scheme is secure. A physical attack on a single device ex-
poses the master key, which allows the adversary to impersonate all
other devices as well as Vrf.

Device-Specific Keying: One natural mitigation approach is to im-
pose a unique key that each device shares with Vrf. That way, the
adversary learns only one key upon compromising a single device.
Although this approach would work well with LISA«, it requires
changes to LISA s to support key establishment among neighboring

5 The number of packets sent by both protocols, not depicted here,
follows a behavior very similar to Figure Sc.

10

oo LISAa, IMB
e e LISAa, 10MB [P
e-e LISAa, 100MB |7

%% LISAs, IMB
t» =« LisAs, 10MB
F[%% LISAs, 100MB

=
(=]

Total time [s]

=
(=]
=

1 L L L L L L
10 5 10 15 20 25 30 35 40

(a) Total time [s] for swarm attestation in LISA o and LISA s, for different
memory sizes, as a function of n (log y-scale).

1

10

e—e LISAa, 1MB
§ &= LISAa, 10MB ™ = - ™
e-e LISAa, 100MB
»—x LISAs, IMB
* % LISAs, 10MB
F| *-= LISAs, 100MB

=
(=]
=
L

Avg CPU time [s]

10} E

10

5 10 15 20 25 30 35 40

(b) Average CPU time [s] per device for LISAc and LISA s, for different
memory sizes, as a function of n (log y-scale).

240

e—e ||SAa, 1IMB
2201 = - LISAa, 10MB
e-o LISAa, 100MB
200l ¥ LISAs, IMB

» -« LISAs, 10MB
LISAs, 100MB

Avg Tx bytes [B]
I &5
o o

-
M
(=]

100} N . VR 7 N—
B0g 10 15 20 25 30 35 20

(c) Average # bytes transmitted per device for LISA « and LISA s, for dif-
ferent memory sizes, as a function of n (linear y-scale).

Figure 5: Experimental Results for LISA« and LISA s

devices; this would likely entail the use of public key cryptography,
e.g., using the Diffie-Hellman key establishment protocol.

Attreq Authentication: Device-specific symmetric keying also does
not address the issue of Vrf impersonation. To allow devices to au-
thenticate each Attreq individually, Vrf would need to compute
n distinct Awuth,.q tags, one for each device. This might incur
significant computational and bandwidth overheads, if n is large.
For small swarms, the tradeoff could be acceptable. Regardless of
whether a single master key or device-specific keys are used, one
simple step towards preventing Vrf impersonation and consequent
DoS attacks is to impose a public key on Vrf only. In other words,
Vrf would sign each Attreq, thus changing the format of Authreq
to: SIGN (SKyy, “req” ||Seq) where SKy, is Vrf’s private key
and PKyys is its public counterpart, assumed to be known to all
devices. One obvious downside of this simple method is the extra
computational overhead of verifying Authr.q. We note that the
combination of: (1) public key-based .Att,eq authentication, and
(2) per device symmetric keys, is both appropriate and efficient for
LISA o, which does not require devices to authenticate each other’s
Attrep-s. It makes less sense for LISA s, due to the need for a
means to authenticate one’s neighbors’ Att,ep-s.

Public Keys for All: Predictably, we now consider imposing a unique
public/private key-pair for each device. Admittedly, this only mit-
igates the effects of physical attacks and clearly does not prevent
them. However, a successful physical attack on a single device
yields knowledge of that device’s secret key and does not lead to
impersonation, or easier compromise, of other devices. For LISA o,
there is almost no difference between the full-blown public key ap-
proach and device-specific symmetric keying, as long as either is
coupled with public key-based .Att,., authentication. The only
issue arises if Vrf is not fully trusted; in that case, the former is
preferable since Vrf would not be able to create fake Att,.,-s. For
LISA s, using device-specific public keys is conceptually simpler as
there would be no need to establish pairwise keys between neigh-
bors.

Attested Memory Size: An orthogonal (non-security) issue influ-
encing cryptographic choices is the size of attested memory. Con-
sidering relatively weak low-end embedded devices, the cost of
computing a symmetric MAC (dominated by computing a hash)
over a large segment of memory might exceed that of computing a
single public key signature. In that case, it makes sense to employ a
digital signature in both LISA« and LISA s. To illustrate this point,
Figure 6 compares performance of SHA-256 with several signature
algorithms on Raspberry Pi-2. When attested memory size reaches
45KB, the run-time of Elliptic Curve Digital Signature Algorithm
(ECDSA) with a 256-bit public key catches up to that of SHA-256.
Hence, at least with Raspberry Pi-2, it makes sense to switch to
ECDSA-256 for memory sizes exceeding 4.5MB — at that point,
ECDSA-256 consumes less than 1% of total attestation runtime.

7. CONCLUSIONS & FUTURE WORK

This paper brings swarm RA closer to reality by designing two
simple and practical protocols: LISAa and LISA s. To analyze and
compare across protocols we introduced a new metric: Quality of
Swarm Attestation (QoSA) which captures the information offered
by a specific swarm RA protocol. Issues for future work include:
(i) formally proving security for swarm protocols, and (ii) trial de-
ployment of proposed protocols on device swarms.

Acknowledgments

The authors are grateful to AsiaCCS’17 anonymous reviewers for
helpful comments and improvement suggestions. UCI authors were

-- SHA-1

— S5HA-256
[|e-» rsalo24
= -8 r532048
107 k| + + rsad096 E

He® ecdsapl60|4---- —— -——- 4
1t [|®® ecdsap224]
w | ¢--¢ ecdsap256| g ___ _ gt ___ [- F
o
g 2
B
L S - ———- el - ———— . ————- *————- B
107 H [- H °
,
-~
-7
10 i J
-~
k-
10% L L L L L
10° 10° 10° 10° 10’ 10° 10°

data [bytes]

Figure 6: Performance Comparison: Hash & Signature on Rasp-
berry Pi-2@9%900MHz [17].

supported, in part, by funding from: (1) the National Security Agency
(NSA) under contract H98230-15-1-0276, (2) the Department of
Homeland Security, under subcontract from the HRL Laboratories,
(3) the Army Research Office (ARO) under contract W911NF-16-
1-0536, and (4) a fellowship of the Belgian American Educational
Foundation.

8. REFERENCES

[1] T. Abera, N. Asokan, L. Davi, E Koushanfar, A. Paverd, A.-R.
Sadeghi, and G. Tsudik. Invited: Things, trouble, trust: on building
trust in IoT systems. In ACM/IEEE Design Automation Conference
(DAC), 2016.

[2] 1. Ahrenholz. Comparison of CORE network emulation platforms. In
IEEE Military Communications Conference (MILCOM), 2010.

[3] Apple Computer, Inc. LibOrange, 2006.

[4] N. Asokan, F. Brasser, A. Ibrahim, A.-R. Sadeghi, M. Schunter,

G. Tsudik, and C. Wachsmann. SEDA: Scalable embedded device
attestation. In ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In JACR Crypto, 1996.

[6] E. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl. TyTAN: tiny trust anchor for tiny devices. In ACM/IEEE
Design Automation Conference (DAC), 2015.

[7] E. Brasser, A.-R. Sadeghi, and G. Tsudik. Remote attestation for
low-end embedded devices: the prover’s perspective. In ACMAEEE
Design Automation Conference (DAC), 2016.

[8] 1. Camhi. BI Intelligence projects 34 billion devices will be
connected by 2020.

[9] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART:
Secure and minimal architecture for (establishing dynamic) root of
trust. In Network and Distributed System Security Symposium
(NDSS), 2012.

[10] A.Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni. DARPA:
Device attestation resilient to physical attacks. In ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec),
2016.

[11] Information technology — Security techniques — Message
Authentication Codes (MACs) — Part 1: Mechanisms using a block
cipher. Standard, ISO.

[12] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar. U-connect: a
low-latency energy-efficient asynchronous neighbor discovery
protocol. In ACM/IEEE Conference on Information Processing in
Sensor Networks (IPSN), 2010.

[13] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite:
A security architecture for tiny embedded devices. In ACM European
Conference on Computer Systems (EuroSys), 2014.

[14] M. Kohvakka, J. Suhonen, M. Kuorilehto, V. Kaseva,

M. Hénnikiinen, and T. D. Haméldinen. Energy-efficient neighbor
discovery protocol for mobile wireless sensor networks. Ad Hoc
Networks, 7(1):24-41, 2009.

[15] B. Parno. Bootstrapping trust in a Trusted Platform. In 3rd USENIX
Conference on Hot Topics in Security (HotSec), 2008.

[16] D. Puri. Got milk? IoT and LoRaWAN modernize livestock
monitoring.

[17] RASPBERRY PI FOUNDATION. RASPBERRY PI 2 MODEL B,
2015.

[18] A.-R. Sadeghi, M. Schunter, A. Ibrahim, M. Conti, and G. Neven.
SANA: Secure and scalable aggregate network attestation. In ACM
Conference on Computer and Communications Security (CCS), 2016.

[19] E. Sahin. Swarm robotics: From sources of inspiration to domains of
application. In International workshop on swarm robotics, pages
10-20. Springer, 2004.

[20] D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on
legacy operating systems with trusted platform modules. Science of
Computer Programming, 74(1):13 — 22, 2008.

[21] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba:
Secure code update by attestation in sensor networks. In ACM
Workshop on Wireless Security (WiSe), 2006.

[22] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems. ACM SIGOPS Operating Systems
Review, December 2005.

[23] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. SWATT:
Software-based attestation for embedded devices. In JEEE
Symposium on Research in Security and Privacy (S&P), 2004.

[24] F. Stumpf, O. Tafreschi, P. Réder, and C. Eckert. A robust integrity
reporting protocol for remote attestation. In Workshop on Advances
in Trusted Computing (WATC), 2006.

[25] Trusted Computing Group. Trusted platform module (tpm).

[26] R. Waugh. Smart TV hackers are filming people having sex on their
sofas.

APPENDIX
A. RELATED WORK

Initial RA efforts relied on secure hardware exemplified by the
Trusted Platform Module (TPM) [25]. (A TPM is a secure co-
processor, designed for protecting a secret key as well as perform-
ing cryptographic operations using that key. Attestation evidence
can be securely created inside a TPM by computing an unforgeable
keyed hash over the hardware and software states.) Such techniques
assume existence of a TPM on Prv. However, medium- and low-
end (as well as legacy) devices generally can not accommodate a
TPM. This motivated the development of software-only (i.e., no
hardware support) RA techniques, such as [23] and [22]. The main
idea is that, for each attestation instance, Vrf sends Prv a cus-
tom and randomized checksum function with run-time side-effects
that the latter uses to compute the attestation token. Any attempt
by Pro-resident malware to evade the checksum (e.g., by copying
memory during attestation) will result in a noticeable delay which
is then detected by Vrf. However, this approach makes a strong as-
sumption that Vrf and Pro are one hop apart, i.e., a round-trip de-
lay is either negligible or fixed. While this works in some scenarios
(notably, attestation of peripherals or legacy devices), it is not suit-
able for RA performed over a network. The previous assumption
is sufficient for mitigating a remote adversary. To protect against a
local adversary, an additional assumption is needed: any message
sent or received by Prv during attestation must be overhear-able
by Vrf. This is needed to protect against a cuckoo attack [15].

A.1 Hybrid Single-Prover RA

Hybrid techniques provide RA while aiming to minimize hard-
ware features. This approach was first explored in SMART [9],
where attestation software (ROM code) resides in immutable stor-
age to prevent it from being modified by malware. SMART also
requires a hard-wired MPU to ensure exclusive access (by ROM
code) to the attestation key. Furthermore, all interrupts are disabled
during execution of ROM code in order to ensure atomicity. Plus,
MPU controls assure that ROM code starts execution only at its
legal entry point and similarly exits only at legal exit point(s).

TrustLite [13] extends SMART by supporting isolation of soft-
ware modules, called trustlets. One of its distinguishing features
is that an interrupts do not need to be disabled during attestation.
TrustLite modifies the CPU Exception Engine to support interrupt
handling in a special trustlet. Similar to SMART, access to the at-
testation key is guarded by hardware-enforced MPU in ROM. Ty-
TAN [6] adopts a similar RA technique by combining hardware-
assisted isolation of software components with real-time execution.

SMART, TrustLite and TyTAN assume that Vrf is always trusted.
However, in practice, an adversary can launch DoS attacks by im-
personating Vrf and deluging Prov with with fake requests. To
remedy this issue, [7] focused on Prv’s perspective and concluded
that an attestation request must have authenticated integrity (via
symmetric MAC or a public-key signature) provided by Vrf and
checked by Prv. Also, to protect against replay and re-ordering
attacks, Prov needs either: (1) a secure writeable memory location
to store a counter, or (2) a reliable read-only clock.

A.2 Swarm RA

Although much research effort has been invested into single-
prover RA techniques, RA of swarms or networks of intercon-
nected devices is a relatively new topic.

SEDA [4] is one of the few concrete and relevant results. In it,
Vrf starts the swarm attestation protocol by sending a request to an
initiator device, selection of which is flexible. Having received a

request, a device accepts the sender as its parent and forwards that
request to its neighbors. An attestation report of any device is cre-
ated — and protected using a secret key (distributed as part of the
off-line phase) shared between that device and its parent — and sent
to its parent device. Once it receives all of its children’s reports,
a device aggregates them into a single report. This process is re-
cursive until the initiator receives all reports from its children. The
initiator then combines those reports, signs them using its private
key and returns the final result to Vrf.

Secure and Scalable Aggregate Network Attestation (SANA) [18]
extends SEDA [4] by providing a more efficient and scalable swarm
attestation scheme based upon Optimistic Aggregate Signatures.
OAS allows many individual signatures to be efficiently combined
into a single aggregated signature, which can be verified much
faster than all individual signatures. SANA’s scalability is demon-
strated via simulation showing that it can attest a million devices in
2.5 seconds.

Device Attestation Resilient to Physical Attacks (DARPA) [10]
provides a way to mitigate physical attacks in a network of devices.
The rationale behind DARPA is that, an adversary that performs a
physical attack on a single device needs to spend a non-negligible
amount of time to physically compromise that device. Hence, in
order to detect device absence, DARPA requires each device to pe-
riodically monitor other devices by recording their heartbeat, at
regular time intervals. Vrf can then detect any absent device when
collecting these heartbeats. DARPA can also be used in a con-
junction with any swarm attestation scheme (e.g. LISA, SEDA or
SANA) to provide protection in the presence of a physical adver-

sary.
B. COMPLEXITY CONSIDERATIONS

B.1 Complexity of LisA«

Architectural Impact: Roughly speaking, the LISA« protocol ad-
heres to SMART+ security architecture, i.e., it does not impose any
additional features. However, it clearly requires a larger ROM to
house additional code, and a more complex MPU to implement ac-
cess rules. Compared to SMART+, ROM size is expected to grow
by just 30 bytes, as shown in Table 1. Also, LISA« introduces
two extra write-protected variables: Seq and Par. We assume
that each can be a 32-bit value, i.e., only 8 extra bytes need to be
write-protected. Finally, MPU needs to support two additional ac-
cess rules to protect these two variables. The resulting increase in
hardware complexity is shown in Figure 1 and Table 1.

Table 1: Estimated code complexity; all code in "C".

METHOD:
SMART+
SMART LISA LISA
w/o MAC? * o s
Lines of Code 43 262 269 321
Executable Size (bytes) 8,565 17,896 17,928 18,128
Write-Protected
Memory Size (bytes) wa 4 12 40+4n

Software Complexity: LISAca needs only one simple extra op-
eration: message (Attreq) broadcast. This operation is usually
straight-forward in practice if a device is already capable of unicas-
ting. Moreover, LISA« is nearly stateless: only Seq and Par need
to persist between attestation sessions. Table 1 shows that LISA«
is only about 2% higher than single-prover SMART+ in terms of
lines-of-code (LoC-s).

MAC is implemented as HMAC-SHA-256 from [3]

Communication Overhead: We assume an SHA-256-based hash
and MAC constructs, each yielding a 32-byte output. Overall size
of Attreq is thus 43 bytes: 3 — message tag, 4 — Snd, 4 — Seq, and
32 — Authyeq. Meanwhile, Att,., is 79 bytes: 3 — message tag, 4
—~DevID, 4 -"Par, 4 - Seq, 32 — Authyep, and 32 — H(Mem).
We also assume that Dew has z descendants and w neighbors in the
swarm spanning tree, and there are n devices total.

In each session, Dev receives up to w Att,eq-s and exactly z
Attrep-s. Thus, depending on topology, Dev might receive any-
where between (43 4 79z) and (43w + 79z) bytes. Also, Dev
broadcasts one Att,.q to neighbors and unicasts (z + 1) Attyep-
s to Par. Thus, overall transmission cost for each Dewv is: 43 +
79(z + 1).

Clearly, potentially high communication overhead is LISAa’s
biggest drawback, since a device — in the worst case — transmits n
reports. This motivated us to design LISA s which reduces commu-
nication overhead by aggregating Att,ep-s.

B.2 Complexity of L1sas

Architectural Impact: LISAs does not require any additional se-
cure hardware features, and, in coarse terms, adheres to SMART+.
However, ROM needs to be expanded by around 200 bytes to sup-
port larger code. Also, LISAs has 5 write-protected values (while
SMART+ has one): Seq, Par, C and Desc. To guard them, MPU
needs to include at least as many memory access control rules.
Each of the first two is a 4-byte integer, while C is 32 bytes, while
the size of Desc is proportional to n. In total, Dev needs 40 + 4n
bytes of write-protected memory, which is O(n). Protecting a
fixed-size value is clearly easier than a variable-size one. How-
ever, Appendix E illustrates a simple mechanism that accommo-
dates variable-size data with implicit write-protection with minimal
(constant) added space complexity for write-protected memory.
Software Complexity: LISAs’s software is much more complex
than that of SMART+ or LISAc.. Compared to LISA«, LISAs
has three extra states, needed to: (1) determine timeouts, (2) es-
tablish parent-child relationship, and (3) handle report aggregation.
For that, Dev needs to store additional variables(two of which are
arrays): Depth, Par, Desc and Children, in each attestation ses-
sion. This makes LISAs a stateful protocol. In terms of LoC-s,
LISAs is approximately 22% and 19% over SMART+ and LISAc,
respectively.

Bandwidth Usage: Suppose Dev has ¢ children, z descendants
and w neighbors. Compared to LISA«, Att,.q includes one extra
field: Depth— 4 bytes. Thus, the size of Att,eq in LISAs is 47
bytes. Attrep does not include H(Mem) and Par. However, it
contains additional variable-size data, Desc, which can be as long
as 4z. Thus, the size of Att,., is 47 + 4z bytes. Finally, Attqck
size is 15 bytes: 3 — message tag, 4 — Seq, 4 — DevI D field and 4

—Par.

In each session, Dev broadcasts one Att,.q to its neighbors,
plus unicasts one Att,., and one Attqcr to Par. Thus, the overall
transmission cost for Dev is 47+ 47+ 4z + 15 = 109+ 4z. In the
same session, Dev receives up to w Attreq-s, exactly ¢ Attrep-s
and g Att,ck-s. Hence, in the worst case, Dev receives (in bytes):

q
4w+ (47+42;)+15q = 4Tw+47q+4(2 —q) +15q = 47w +58¢+42

i=1

where z; is the number of descendants of 5" child of Dewv.
Overall, LISAs reduces the number of messages, compared to

LISA«. Each Dev transmits a fixed number of messages while, in

LISA ., this depends on the number of descendants and neighbors.

C. LISAs: DESIGN CHOICES

We now consider some details of Algorithm 3.

e Line 3: Reception of messages should be non-blocking, such
that the timer can be checked even when no message is re-
ceived’.

e Line 7: Freshness of Seq in Att,q is established by com-
paring it to CurSeq, as in LISA«. During any given session,
a node acknowledges to the first neighbor that broadcasts an
attestation request with Cur Seq. Subsequent broadcasts with
the same CurSeq are ignored.

e Line 14: Attqcr to Par is constructed, consisting of: Segq,
DevID and Par. These values are not authenticated since
Attqcr, is only used for determining timeouts. An adver-
sary can send fake Att,c,-s to Dev which would only cause
longer timeouts.

e Line 17: The request contains: Seq, Snd and Depth. Au-
thentication of Seq is required to prevent replay attacks while
Snd and Depth do not need to be authenticated. If either or
both of the latter are modified by a local adversary, the result
would be a DoS attack.

e Lines 19 and 20: The sets Desc and Children are re-initialized,
i.e., set to empty. The former represents Devl D’s of Dev’s
descendants, which is populated when reports from children
are verified (line 39). The latter represents the set of Dev’s
children. It is populated whenever a neighbor acknowledg-
ment is verified (line 28) and de-populated when a child’s re-
port is verified (line 40). If Children is empty at any time af-
ter t ac i , it means all the reports of Dew’s children have been
attested and Dev may proceed with self-attestation (line 43).

e Line 21: The timer is reset whenever a request is verified and
re-broadcast.

e Lines 27 and 35: The received sequence number Seq is com-
pared to the one stored for the last accepted request — CurSegq.
If they differ, the message (acknowledgment or report) is dis-
carded. This comparison incurs a negligible cost while pre-
venting acknowledgments and reports from older sessions be-
ing verified when a new attestation session has started. It also
mitigates DoS attacks whereby a remote adversary (unaware
of the current Seq) sends fake acknowledgments or reports.

e Lines 44 and 45: A hash of specified memory range of Dev is
computed and compared to its reference value — C. If they do
not match, LISA s returns an error, performs a hardware re-set
and cleans up its memory. C needs to be write-protected. This
can be enforced by a static MPU rule.

e Line 48: Auth,ep contains authenticated fields: Seq, Snd
and SndDesc. Seq and Snd need to be validated to en-
sure authenticity and prevent replay attacks. SndDesc is
also authenticated to prevent a man-in-the-middle attacks that
might overwrite attestation status of some descendants. Self-
attestation must be performed last — after verifying reports
of all children. If performed earlier, the protocol becomes
vulnerable to a sort of a time-of-check-to-time-of-use (TOC-
TOU) attack where Dev gets corrupted after performing self-
attestation and before sending out the aggregated report.

e Line 50: The timer is reset and stopped when attestation is
completed. It is stopped so the condition at line 43 does not
hold until a new Auth,.cq is received.

D. LISAs: IMPLICIT ACKS

"Note that, in loops with only non-blocking operations, it is neces-
sary to avoid busy waiting; this is usually done by adding a short
sleep timer at each iteration.

All Attqcr-s in LISAs are immediately followed by an attesta-
tion request broadcast. This means that Att,.-s are, in principle,
redundant, since an attestation request broadcast received from a
neighbor can be viewed as an implicit acknowledgment. For that,
the Par has to be added in the request broadcast (Att,q on line 17
becomes “req” || Authyep||CurSeq||DevID||Par||(Depth+1)),
since a device must be able to distinguish between a broadcast of a
child (implicit acknowledgment) and that of a non-child neighbor
(concurrent broadcast) which should be ignored. This would make
the protocol slightly more efficient since one less message has to
be computed and transmitted, though less intuitive.

E. IMPLICIT WRITE PROTECTION FOR
VARIABLE-SIZE DATA

Let x be a variable-sized data that needs to be write-protected.
Let h, be a fixed-size memory location that stores H(x). Instead
of enforcing access rules for z, the MPU ensures that only A, is
write-protected. Whenever x is modified to ', MPU stores H (z")
at hy. Whenever x (as a whole or any part thereof) needs to be
read, MPU first checks whether h; = H (z). This does not prevent
malware from modifying . However, any unauthorized change is
detected upon the next read, which is sufficient for our purposes.

We note that SEDA already implicitly requires write-protected
variable-sized data even though [4] does not discuss how this can
be achieved in practice.

	Introduction
	Remote Attestation
	Swarm Attestation
	Contributions
	Outline

	Preliminaries
	Scope
	Network & Device Assumptions
	Security Architecture
	Quality of Swarm Attestation (QoSA)
	Attestation Timeouts
	Initiator Selection
	Verifier Assumptions

	New Swarm RA Protocols
	Asynchronous Version: LISA
	LISA Protocol Details
	Vrf Timeout in LISA
	Connectivity in LISA
	QoSA of LISA
	Complexity of LISA

	Synchronous Version: LISAs
	LISAs Protocol Details
	Timeouts in LISAs
	Connectivity in LISAs
	QoSA of LISAs

	Security Analysis
	Attack Vectors
	Security of LISA
	Security Analysis of LISAs

	Experimental Assessment
	Experimental Setup and Parameters
	Experimental Results

	Cryptographic Choices
	Conclusions & Future Work
	References
	Related Work
	Hybrid Single-Prover RA
	Swarm RA

	Complexity Considerations
	Complexity of LISA
	Complexity of LISAs

	LISAs: Design Choices
	LISAs: Implicit Acks
	Implicit Write Protection for Variable-Size Data

