
HYDRA: HYbrid Design for Remote Attestation
(Using a Formally Verified Microkernel)

Karim Eldefrawy∗

Computer Science Lab
SRI International

karim@csl.sri.com

Norrathep Rattanavipanon
Computer Science Department
University of California, Irvine

nrattana@uci.edu

Gene Tsudik
Computer Science Department
University of California, Irvine

gene.tsudik@uci.edu

ABSTRACT
Remote Attestation (RA) allows a trusted entity (verifier) to se-
curely measure internal state of a remote untrusted hardware plat-
form (prover). RA can be used to establish a static or dynamic
root of trust in embedded and cyber-physical systems. It can also
be used as a building block for other security services and prim-
itives, such as software updates and patches, verifiable deletion
and memory resetting. There are three major types of RA designs:
hardware-based, software-based, and hybrid, each with its own set
of benefits and drawbacks.

This paper presents the first hybrid RA design – called HYDRA
– that builds upon formally verified software components that en-
sure memory isolation and protection, as well as enforce access
control to memory and other resources. HYDRA obtains these
properties by using the formally verified seL4 microkernel. (Un-
til now, this was only attainable with purely hardware-based de-
signs.) Using seL4 imposes fewer hardware requirements on the
underlying microprocessor. Also, building upon a formally verified
software component increases confidence in security of the overall
design of HYDRA and its implementation. We instantiate HYDRA
on two commodity hardware platforms and assess the performance
and overhead of performing RA on such platforms via experimen-
tation; we show that HYDRA can attest 10MB of memory in less
than 250msec when using a Speck-based cryptographic checksum.

1. INTRODUCTION
In recent years, embedded systems (ES), cyber-physical systems

(CPS) and internet-of-things (IoT) devices, have percolated into
many aspects of daily life, such as: households, offices, buildings,
factories and vehicles. This trend of “smart-ification" of devices
that were previously analog (or at least not connected) brings many
obvious benefits. However, it also expands the attack surface and
turns these newly computerized gadgets into natural and attractive
attack targets.

Remote Attestation (RA) is the process whereby a trusted entity
called “verifier" securely probes internal state of a remote and un-
trusted hardware platform, called “prover.” RA can be used to es-
∗Work conducted while at HRL Laboratories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’17, July 18-20, 2017, Boston, MA, USA
c© 2017 ACM. ISBN 978-1-4503-5084-6/17/07. . . $15.00

DOI: http://dx.doi.org/10.1145/3098243.3098261

tablish a static or dynamic root of trust in ES, CPS and IoT devices.
Also, RA can be used as a foundation for constructing more spe-
cialized security services, e.g., software updates, verifiable deletion
and memory resetting. There are three main classes of RA designs:
hardware-based, software-based, and hybrid (blending hardware
and software). Each class has its own advantages and limitations.
This paper introduces the first hybrid RA design – called HYDRA –
based upon formally verified components to provide memory isola-
tion and protection guarantees. Our main rationale is that designing
RA techniques based upon such components increases confidence
in security of such designs and their implementations. Of course,
ideally, one would formally prove security of the entirety of an RA
system, as opposed to proving security separately for each compo-
nent and then proving that its composition is secure. However, we
believe that this is not yet possible given the current state of de-
velopments and capabilities in (automated) formal verification and
synthesis of hardware and software.

One recent prominent example illustrating difficulty of correctly
designing and implementing security primitives (especially, those
blending software and hardware) is the TrustZone-based Qualcomm
Secure Execution Environment (QSEE) kernel vulnerability and
exploit reported in CVE-2015-6639 [21]. ARM TrustZone [4] is a
popular System-on-Chip (SoC) and a CPU system-wide approach
to security, it is adopted in billions of processors on various plat-
forms. CVE-2015-6639 enables privilege escalation and allows ex-
ecution of code in the TrustZone kernel which can then be used to
achieve undesired outcomes and expose keying material. This vul-
nerability was used to break Android’s Full Disk Encryption (FDE)
scheme by recovering the master keys [1]. This example demon-
strates the difficulty of getting both the design and the implemen-
tation right; it also motivates the use of formally verified building
blocks, which can yield more secure RA techniques. To this end,
our RA design uses the formally verified seL4 microkernel to ob-
tain memory isolation and access control. Such features have been
previously attained with hardware in designs such as [9] and [16].
Using seL4 requires fewer hardware modifications to the under-
lying microprocessor and provides an automated formal proof of
isolation guarantees of the implementation of the microkernel. To
the best of our knowledge, this is the first attempt to design and
implement RA using a formally verified microkernel.

The main goal of this paper is to investigate a previously unex-
plored segment of the design space of hybrid RA schemes, specifi-
cally, techniques that incorporate formally verified and proven (us-
ing automated methods) components, such as the seL4 microker-
nel. Beyond using seL4 in our design, our implementation is also
based on the formally verified executable of seL4; that executable
is guaranteed to adhere to the formally verified and proven design.
Another important goal, motivation and feature of our design is the

1

http://dx.doi.org/10.1145/3098243.3098261

expanded scope of efficient hybrid RA techniques. While appli-
cability of prominent prior results (particularly, SMART [9] and
TrustLite [16]) is limited to very simple single-process low-end de-
vices, we target more capable devices that can run multiple pro-
cesses and threads. We believe that this paper represents an im-
portant and necessary step towards building efficient hybrid RA
techniques upon solid and verified foundations. Admittedly, we
do not verify our entire design and prove its security using formal
methods. However, we achieve the next best thing by taking advan-
tage of already-verified components and carefully arguing security
of the overall design, considering results on systematic analysis of
features required for securely realizing hybrid RA [10]. To achieve
our goals we make two main contributions: (1) design of HYDRA –
the first hybrid RA technique based on the formally verified seL4
microkernel which provides memory isolation and access control
guarantees, (2) implementations of HYDRA on two commercially
available development boards (Sabre Lite and ODROID-XU4) and
their analysis via experiments to demonstrate practicality of the
proposed design. We show that HYDRA can attest 10MB of mem-
ory in less than 250ms when using Speck [22] as the underlying
block-cipher to compute a cryptographic checksum (MAC).
Organization: Section 2 overviews related work, followed by Sec-
tion 3 which presents our goals and assumptions. The design of
HYDRA is presented in Section 4 and its security analysis in Sec-
tion 6. Implementation issues and performance assessment are dis-
cussed in Sections 5 and 7.

2. RELATED WORK
Prior work in remote attestation (RA) can be divided into three

classes: hardware-based, software-based, and hybrid.

2.1 Hardware-Based Remote Attestation
The hardware-based approach typically relies on the security

provided by a Trusted Platform Module (TPM) [28]. A TPM is
a secure co-processor designed to protect cryptographic keys, and
utilize them to encrypt or digitally sign data. A TPM can also pro-
duce a summary (e.g., hash) of hardware and software configura-
tions in the system. A typical TPM also contains Platform Configu-
ration Registers (PCR) that can be used as a secure storage of such
a configuration summary. The values in PCRs can then be used as
an evidence of attestation by accumulating an unforgeable chain of
values of the system’s state since the last reset. A TPM eventu-
ally signs these values with an attestation key along with a random
challenge, provided by a verifier, and submits the computed result
to the verifier. Gasmi et al. [12] presents how to link this evidence
to secure channel end-points.

In 2015, Intel introduced a new set of instructions, termed Soft-
ware Guard Extensions (SGX), that enable a hardware-enforced
isolated execution environment (enclave) for specific software. An
enclave contains only private data and code executing computations
using such data [8], this enables isolation of such data inside an en-
clave from other processes on the same platform. Thus, RA for
software inside an enclave can be performed locally without inter-
ference from other processes. Similar to TPM, attestation evidence
in SGX can be a hash of the code (or memory) to be attested, signed
by the CPU.

2.2 Software-Based Remote Attestation
Despite resisting all but physical attacks, the hardware-based ap-

proach is not suitable for embedded devices due to its additional
hardware and software complexity and expense. Therefore, many
software-only RA approaches have been proposed, specifically for
embedded devices. Pioneer [24] is among the first to study RA

without relying on any secure co-processor or CPU-architecture
extensions. The main idea behind Pioneer is to create a special
checksum function with run-time side-effects (e.g., status registers)
for attestation. Any malicious emulation of said checksum function
can be detected through additional timing overhead incurred from
the absence of those side-effects. Security of this approach became
questionable after several attacks on such schemes (i.e., [7]) were
demonstrated.

2.3 Hybrid Remote Attestation
The main shortcoming of the software-based approach is that

it makes strong assumptions about adversarial capabilities, which
may not hold in practical networked settings [2]. Thus, several
hybrid software-hardware co-designs have been proposed to over-
come this limitation. SMART [9] presents a hybrid approach for
RA with minimal hardware modifications to existing MCUs. In
addition to having uninterruptable attestation code and attestation
keys residing in ROM, this architecture utilizes a hardware-based
memory protection unit (MPU) to restrict access to secret keys
to only SMART code. The attestation is performed inside ROM-
resident attestation code by computing a cryptographic checksum
over a memory region and returning the value to the verifier. TrustLite
[16] extends [9] to enable RA while supporting an interrupt han-
dling in a secure place.

In addition to the above work designing hybrid RA schemes, [10]
provides a systematic treatment of RA by presenting a precise defi-
nition of the desired service and proceeding to its systematic decon-
struction into necessary and sufficient (security) properties. These
properties are then mapped into a minimal collection of hardware
and software components that results in secure RA. We build upon
the analysis in [10] and utilize these properties and components
(which are described in Section 3) and show how to instantiate them
in new ways to develop the new hybrid RA design – HYDRA.

3. GOALS AND ASSUMPTIONS
This section overviews HYDRA and its design rationale, dis-

cusses security objectives and features, as well as the adversarial
model. Our notation is summarized below.

Adv Adversary
Prv Prover
Vrf Verifier
PRAtt Attestation Process on Prv
BCAtt Attestation Code/Binary on Prv
K Symmetric secret key shared by Prv and Vrf

Table 1: Notation

3.1 Design Rationale
Our main objective is to explore a new segment of the overall RA

design space. The proposed hybrid RA design – HYDRA – requires
very little in terms of secure hardware and builds upon the formally
verified seL4 microkernel. As shown in Section 5, the only hard-
ware support needed by HYDRA is a hardware-enforced secure
boot feature, which is readily available on commericial off-the-
shelf development boards and processors, e.g., Sabre Lite boards.
The rationale behind our design is that seL4 offers certain guar-
antees (mainly process isolation and access control to memory and
resources) that provide RA features that were previously feasible
only using hardware components. In particular, what was earlier
attained using additional MCU controls and Read-Only Memory
(ROM) in the SMART [9] and TrustLite [16] architectures can now
be instantiated using capability controls in seL4.

2

To motivate and justify the design of HYDRA, we start with the
result of Francillon, et al. [10]. It provides a systematic treatment of
RA by developing a semi-formal definition of RA as a distinct secu-
rity service, and systematically de-constructing it into a necessary
and sufficient security objective, from which specific properties are
derived. These properties are then mapped into a collection of hard-
ware and software components that results in an overall secure RA
design. Below, we summarize the security objective in RA and its
derived security properties. Sections 4 and 5 show how the security
objective and properties are satisfied in HYDRA and instantiated
in two concrete prototypes based on Sabre Lite and ODROID-XU4
boards.

3.2 Hybrid RA Objective and Properties
According to [10], the RA security objective is to allow a (re-

mote) prover (Prv) to create an unforgeable authentication token,
that convinces a verifier (Vrf) that the former is insome well-
defined (expected) state. Whereas, if Prv has been compromised
(i.e., malware is present), the authentication token must reflect this.
[10] describes a combination of platform features that achieve afore-
mentioned security objective. and derives a set of properties both
necessary and sufficient for secure RA. The conclusion of [10] is
that the following properties collectively represent the minimal re-
quirements to achieve secure RA on any platform.

• Exclusive Access to Attestation Key (K): the attestation pro-
cess (PRAtt) must have exclusive access to K. This is the
most difficult requirement for (especially, low-end and mid-
range) embedded devices. As argued in [10], this property is
unachievable without some hardware support on low-end de-
vices. If the underlying processor supports multiple privilege
modes and a full-blown memory separation for each process,
one could use a privileged process to handle any computation
that involvesK. However, low-end and mid-range processors
generally do not offer such “luxury” features.

• No Leaks: no information related to (or derived from) K
must be accessible after execution of PRAtt. To achieve
this, all intermediate values that depend on K – except the
final attestation token to be returned to Vrf – must be se-
curely erased. This is applicable to very low-end devices,
with none (or minimal) OS support and assuming that mem-
ory is shared between processes. However, if the underlying
hardware and/or software guarantees strict memory separa-
tion among processes, this property is trivially satisfied.

• Immutability: To ensure that the attestation executable (BCAtt)
cannot be modified, SMART [9] and [10] place it in ROM,
which is available on most, even low-end, platforms. ROM
is a relatively inexpensive way to enforce BCAtt’s code im-
mutability. Whereas, if the OS guarantees: (1) run-time pro-
cess memory separation, and (2) immutability of BCAtt code
(e.g., by checking its integrity/authenticity prior to execu-
tion), then BCAtt can reside, and be executed, in RAM.

• Uninterruptability: Execution of BCAtt must be uninter-
ruptible. This is necessary to ensure that malware does not
obtain the key (or some function thereof) by interrupting BCAtt

while any key-related values remain in registers or other lo-
cations. SMART achieves this property via MCU controls.
However, if BCAtt runs with the highest possible priority,
the OS can ensure uninterruptibility.

• Controlled Invocation (aka Atomicity): BCAtt must only be
invocable from its first instruction and must exit only at one

of its legitimate last (exit) instruction. This is motivated by
the need to prevent code-reuse attacks. As before, enforcing
this property via MCU access controls can be replaced by OS
support.

[10] stipulates one extra property: Secure Reset, initiated when-
ever an attempt is detected to execute BCAtt from the middle of
its code. We argue that this is not needed if controlled invocation
is enforced. It suffices to raise an exception, as long as the memory
space of BCAtt is protected and integrity of executable is guaran-
teed.

Another important RA security feature identified in [6] is to pro-
tectPrv from Vrf impersonation as well as denial-of-service (DoS)
attacks that attempt to forge, replay, reorder or delay attestation re-
quests. All such attacks aim to maliciously invoke RA functionality
on Prv and thus deplete Prv’s resources or take them away from
its main tasks. According to [6], the following additional property
is required:

• Vrf Authentication: PRAtt on Prv must: (1) authenti-
cate Vrf and (2) detect replayed, re-ordered and delayed re-
quests. To achieve (1), the very same K can used to generate
(by Vrf) and verify (by Prv) all attestation requests. To
satisfy (2), [6] requires an additional hardware component: a
reliable real-time clock. This clock must be loosely synchro-
nized with Vrf ’s clock and must be write-protected.

3.3 Adversarial Model & Other Assumptions
Based on the recent taxonomy in [2], RA adversary (Adv) can

be categorized as follows:

• Remote: exploits vulnerabilities in Prv’s software to inject
malware, over the network.

• Local: located sufficiently near Prv in order to eavesdrop
on, and manipulate, Prv’s communication channel(s).

• Physical: has full (local) physical access toPrv and its hard-
ware; can perform physical attacks, e.g., use side channels to
derive keys, physically extract memory values, and modify
various hardware components.

[10] and [6] show that any RA that satisfies all properties described
in 3.2 always yields correct attestation tokens (i.e., no false posi-
tives and no false negatives) while achieving resilience to DoS at-
tacks even in the presence of remote and local Adv-s. HYDRA
builds on top of these properties and similarly considers remote
and local Adv-s; physical Adv is considered to be out-of-scope.

We note that, at least in a single-prover setting1, protection against
physical attacks can be attained by encasing the CPU in tamper-
resistant coating and employing standard techniques to prevent side-
channel key leakage. These include: anomaly detection, internal
power regulators and additional metal layers for tamper detection.
We consider Prv to be a (possibly) unattended remote hardware
platform running multiple processes on top of seL4. Once Prv
boots up and runs in steady state, Adv might be in complete con-
trol of all application software (including code and data) before and
after execution of PRAtt. Since physical attacks are out of scope,
Adv can not induce hardware faults or retrieve K using side chan-
nels. Adv also has no means of interrupting execution of seL4 or
PRAtt code (details discussed later in the paper). Finally, recall
that Prv and Vrf must share at least one secret key K. This key
can be pre-loaded ontoPrv at installation time and stored as part of
PRAtt binaries. We do not address the details of this procedure.
1See [14] for physical attack resilience in groups of provers.

3

Figure 1: Sample seL4 instantiation from [25].

4. HYDRA DESIGN
This section overviews seL4 and discusses its use in HYDRA. It

then describes the sequence of operations in HYDRA.

4.1 seL4 Overview
seL4 is a member of the L4 microkernel family, specifically de-

signed for high-assurance applications by providing isolation and
memory protection between different processes. These properties
are mathematically guaranteed by a full-code level functional cor-
rectness proof, using automated tools. A further correctness proof
of the C code translation is presented in [26], thus extending func-
tional correctness properties to the binary level without needing a
trusted compiler. Therefore, behavior of the seL4 binary strictly
adheres to, and is fully captured by, the abstract specifications.

Similar to other operating systems, seL4 divides the virtual mem-
ory into two separated address spaces: kernel-space and user-space.
The kernel-space is reserved for the execution of the seL4 mi-
crokernel while the application software is run in user-space. By
design, and adhering to the nature of microkernels, the seL4 mi-
crokernel provides minimal functionalities to user-space applica-
tions: thread, inter-process communication (IPC), virtual memory,
capability-based access control and interrupt control. The seL4
microkernel leaves the implementations of other traditional operat-
ing system functions – such as device drivers and file systems – to
user-space.

Figure 1 (borrowed from [25]) shows an example of seL4 in-
stantiation with two threads – sender A and receiver B – that com-
municate via an EndPoint EP. Each thread has a Thread Control
Block (TCB) that stores its context, including: stack pointer, pro-
gram counter, register values, as well as pointers to Virtual-address
Space (VSpace) and Capability Space (CSpace). VSpace repre-
sents available memory regions that the seL4 microkernel allo-
cated to each thread. The root of VSpace represents a Page Di-
rectory (PD), which contains Page Table (PT) objects. Frame ob-
ject representing a region of physical memory resides in a PT. Each
thread also has its own kernel managed CSpace used to store a Ca-
pability Node (CNode) and capabilities. CNode is a table of slots,
where each slot represents either a capability or another CNode.

A capability is an unforgeable token representing an access con-
trol authorization of each kernel object or component. A thread
cannot directly access or modify a capability since CSpace is man-
aged by, and stored inside, the kernel. Instead, a thread can invoke
an operation on a kernel object by providing a pointer to a capa-
bility that has sufficient authority for that object to the kernel. For
example, sender A in Figure 1 needs a write capability of EP for
sending a message, while receiver B needs a read capability to re-
ceive a message. Besides read and write, grant is another access
right in seL4, available only for an endpoint object. Given posses-
sion of a grant capability for an endpoint, any capability from the
possessor can be transferred across that endpoint. For instance, if
A in Figure 1 has grant access to EP, it can issue one of its capabil-

ities, say a frame, to B via EP. Also, capabilities can be statically
issued during a thread’s initialization by the initial process. The
initial process is the first executable user-space process loaded into
working memory (i.e., RAM) after the seL4 microkernel is loaded.
This special process then forks all other processes. Section 4.4 de-
scribes the role, the details and the capabilities of the initial process
in HYDRA design.

seL4’s main “claim to fame" is in being the first formally ver-
ified general-purpose operating system. Formal verification of the
seL4 microkernel is performed by interactive, machine-assisted
and machine-checked proof using a theorem prover Isabelle/HOL.
Overall functional correctness is obtained through a refinement proof
technique, which demonstrates that the binary of seL4 refines an
abstract specification through three layers of refinement. Conse-
quently (under some reasonable assumptions listed in Appendix
B) the seL4 binary is fully captured by the abstract specifications.
In particular, two important feature derived from seL4’s abstract
specifications, are that: the kernel never crashes. Another one
is that: every kernel API call always terminates and returns to
user-space. Comprehensive details of seL4’s formal verification
can be found in [15].

Another seL4 feature very relevant to our work is: correctness
of access control enforcement derived from functional correctness
proof of seL4. [25] and [17] introduce formal definitions of the ac-
cess control model and information flow in seL4 at the abstract
specifications. They demonstrate the refinement proof from these
modified abstract specifications to the C implementation using Is-
abelle/HOL theorem prover, which is later linked to the binary level
(by the same theorem prover). As a result, three properties are
guaranteed by the access control enforcement proof: (1) Authority
Confinement, (2) Integrity and (3) Confidentiality. Authority con-
finement means that authority propagates correctly with respect to
its capability. For example, a thread with a read-only capability
for an object can only read, and not write to, that object. Integrity
implies that system state cannot be modified without explicit autho-
rization. For instance, a read capability should not modify internal
system state, while write capability should only modify an object
associated with that capability. Finally, confidentiality means that
an object cannot be read or inferred without a read capability. Thus,
the proof indicates that access control in seL4, once specified at the
binary level, is correctly enforced as long as the seL4 kernel is ac-
tive.

We now show how seL4’s access control enforcement property
satisfies required RA features.

4.2 Deriving seL4 Access Controls
We now describe access control configuration of seL4 user-space

that achieves most required properties for secure RA, as described
in section 3. We examine each feature and identify the correspond-
ing access control configuration. Unlike prior hybrid designs, HY-
DRA pushes almost all of these required features into software, as
long as the seL4 microkernel boots correctly. (A comparison with
SMART and TrustLite is in Table 2.)

• Exclusive Access toK: is directly translated to an access con-
trol configuration. Similar to previous hybrid approaches,
K can be hard-coded into the BCAtt at production time.
Thus, BCAtt needs to be configured to be accessible only
to PRAtt.

• No Leaks: is achieved by the separation of virtual address
space. Specifically, the virtual memory used for K-related
computation needs to be configured to be accessible to only
PRAtt.

4

Table2:SecurityPropertiesinHybridRA

SecurityProperty SMART[9] TrustLite[16] HYDRA

ExclusiveAccesstoK HW(Mod.DataBus) SW(programmedMPU) SW(seL4)

NoLeaks SW(CQUALandDeputy) HW(CPUExceptionEngine) SW(seL4)

Immutability HW(ROM) HW(ROM)andSW(programmedMPU) HW(ROM)andSW(seL4)

Uninterruptability SW(InterruptDisabled) HW(CPUExceptionEngine) SW(seL4)

ControlledInvocation HW(ROM) HW(ROM) SW(seL4)

•Immutability:isachievedusingcombinationofverifiable
bootandruntimeisolationguaranteefromseL4. Atrun-
time,BCAtt mustbeimmutable,whichcanbeguaranteed
byrestrictingtheaccesscontroltotheexecutabletoonly
PRAtt.However,thisisnotenoughtoassureimmutability
ofBCAtt executablebecauseBCAtt canbemodifiedafter
loadedintoRAMbutbeforeexecuted. Hence,averifiable
bootofBCAttisrequired.

•Uninterruptability:isensuredbysettingtheschedulingpri-
orityofPRAtthigherthanotherprocessessincetheformal
proofofseL4schedulingmechanismguaranteesthatalower
priorityprocesscannotpreempttheexecutionofahigherpri-
orityprocess.Inaddition,seL4guaranteesthat,onceset,
theschedulingpriorityofanyprocesscannotbeincreasedat
runtime.

NotethatthisfeatureimpliesthatPRAtt needstobethe
initialuser-spaceprocesssincetheseL4microkernelalways
assignsthehighestprioritytotheinitialprocess.

•ControlledInvocation:isachievedbytheisolationofpro-
cess’execution.Inparticular,TCBofPRAttcannotbeac-
cessedormanipulatedbyotherprocesses.

•VrfAuthentication:isachievedbyconfiguringacapability
ofthereal-timeclocktoberead-onlyforotherprocesses.

Withthesefeatures,weconcludethattheaccesscontrolconfigu-
rationofseL4user-spaceneedsto(atleast)includethefollowing:

(C1):PRAtthasexclusiveaccesstoBCAtt;thisalsoincludesK
residinginBCAtt.(RecallthatPRAttistheattestationpro-
cess,whileBCAtt istheexecutablethatactuallyperforms
attestation.)

(C2):PRAtthasexclusiveaccesstoitsTCB.

(C3):PRAtthasexclusiveaccesstoitsVSpace.

(C4):PRAtthasexclusivewrite-accesstothereal-timeclock.

Eventhoughthisaccesscontrolconfigurationcanbeenforcedat
thebinarycodelevel,thisassumptionisbasedonthatseL4is
loadedintoRAMcorrectly.However,thiscanbeexploitedbyan
adversarybytrickingtheboot-loadertoboothismaliciousseL4
microkernelinsteadoftheformallyverifiedversionandinserta
newconfigurationviolatingaboveaccesscontrols.Thus,thehard-
waresignaturecheckoftheseL4microkernelcodeisrequiredat
boottime.ThesimilarargumentcanalsobemadeforPRAttcode.
Asaresult,additionalintegritycheckofPRAtt codeneedstobe
performedbyseL4beforeexecuting.

Figure2:SequenceofOperationinHYDRA

4.3 BuildingBlocks
Inordertoachieveallsecuritypropertiesdescribedabove,HY-
DRArequiresthefollowingfourcomponents.

•Read-Only Memory: regionprimarilystoringimmutable
data(e.g.hashofpublickeysorsignatureofsoftware)re-
quiredforsecurebootoftheseL4microkernel.

•MCUAccessControlEmulation:high-assurancesoftware
frameworkcapableofemulatingMCUaccesscontrolstoat-
testationkeyK.Atpresent,seL4istheonlyformallyver-
ifiedandmathematicallyprovenmicrokernelcapableofthis
task.

•AttestationAlgorithm:softwareresidinginPRAttandserv-
ingtwomainpurposes:authenticatinganattestationrequest,
andperformingattestationonmemoryregions.

•ReliableReal-TimeClock:looselysynchronized(withVrf)
real-timeclock.Thiscomponentisrequiredformitigating
denial-of-serviceattacksthatinvolveVrfimpersonation(via
replay,reorderanddelay)[6].IfPrvdoesnothaveaclock,a
securecountercanreplaceareal-timeclockwiththedown-
sideofdelayedmessagedetection.

4.4 SequenceofOperation
ThesequenceofoperationsinHYDRA,showninFigure2,has

threesteps:boot,setup,andattestation.

5

4.4.1 Boot Process
Upon a boot, Prv first executes a ROM-resident boot-loader.

The boot-loader verifies authenticity and integrity of the seL4 mi-
crokernel binary. Assuming this verification succeeds, the boot-
loader loads all executables, including kernel and user-space, into
RAM and hands over control to the seL4 microkernel. Further de-
tails of secure boot in our prototype can be found in Section 5.

4.4.2 seL4 Setup
The first task in this step is to have the seL4 microkernel setting

up the user-space and then starting PRAtt as the initial user-space
process. Once the initialization inside the kernel is over, the seL4
microkernel gathers capabilities for all available memory-mapped
locations and assigns them to PRAtt. The seL4 kernel also per-
forms an authenticity and integrity check of PRAtt to make sure
that it has not been modified. After successful authentication, the
seL4 microkernel passes control to PRAtt.

With full control over the system, PRAtt starts the rest of user-
space with a lower scheduling priority and distributes capabilities
that do not violate the configuration specified earlier. After com-
pleting configuration of memory capabilities and starting the rest
of the user-space, PRAtt initializes the network interface and waits
for an attestation request.

4.4.3 Attestation
An attestation request, sent by a verifier, consists of 4 parame-

ters: (1) TR reflecting Prv’s time when the request was generated,
(2) target process p, (3) its memory range [a, b] that needs to be at-
tested, and (4) cryptographic checksum CR of the entire attestation
request.

Similar to SMART [9], the cryptographic checksum function
used in attestation is implemented as a Message Authentication
Code (MAC), to ensure authenticity and integrity of attestation pro-
tocol messages.

Upon receiving an attestation request PRAtt checks whether TR

is within an acceptable range of the Prv’s real-time clock before
performing any cryptographic operation; this is in order to mitigate
potential DoS attacks. If TR is not fresh, PRAtt ignores the request
and returns to the waiting state. Otherwise, it verifies CR. If this
fails, PRAtt also abandons the request and returns to the waiting
state.

Once the attestation request is authenticated, PRAtt computes a
cryptographic checksum of the memory region [a, b] of process p.
Finally, PRAtt returns the output to Vrf . The pseudo-code of this
process is shown in Algorithm 1.

5. HYDRA IMPLEMENTATION
To demonstrate feasibility and practicality of HYDRA, we de-

veloped two prototypes on commercially available hardware plat-
forms: ODROID-XU4 [13] and Sabre Lite [5]. We focus on the
latter, because of lack of seL4 compatible network drivers and
programmable ROM in current ODROID-XU4 boards. Section 7
presents a detailed performance evaluation of the implementation.

5.1 seL4 User-space Implementation
Our prototype is implemented on top of version 1.3 of the seL4

microkernel [19]. The complete implementation, including helper
libraries and the networking stack, consists of 105, 360 lines of C
code (see Table 3 for a more detailed breakdown). The overall size
of executable is 817KB whereas the base seL4 microkernel size is
215KB. Excluding all helper libraries, the implementation of HY-
DRA is just 600 lines of C code. In the user-space, we base our
C code on following libraries: seL4utils, seL4vka and seL4vspace;

Algorithm 1: BCAtt Pseudo-Code
Input : TR timestamp of request

p target process for attestation
a, b start/end memory region of target process
CR cryptographic checksum of request

Output: Attestation Report
1 begin
2 /* Check freshness of timestamp and verify request */
3 if ¬ CheckFreshness(TR) then
4 exit();
5 end
6 if ¬ VerifyRequest(CR, K, TR‖p‖a‖b) then
7 exit();
8 end
9 /* Retrieve address space of process p */

10 Mem← RetrieveMemory(p);
11 /* Compute attestation report */
12 MacInit(K);
13 MacUpdate(TR‖p‖a‖b);
14 for i ∈ [a, b] do
15 MacUpdate(Mem[i]);
16 end
17 out←MacFinal();
18 return out

19 end

Table 3: Complexity of HYDRA Impl. on Our Prototype

Complexity HYDRA with HYDRA w/o HYDRA w/o seL4 Kernel
net. and libs net. stack net. and libs Only

LoC 105,360 68,490 11,938 9,142
Exec Size 574KB 476KB N/A 215KB

these libraries provide the abstraction of processes, memory man-
agement and virtual space respectively. In our prototypes, PRAtt

is the initial process in the user-space and receives capabilities to all
memory locations not used by seL4. Other processes in user-space
are spawned by this PRAtt. We also ensure that access control of
those processes does not conflict with what we specified in Section
4. The details of this access control implementation are described
below in this section.

The basic C function calls are implemented in muslc library.
seL4bench library is used to evaluate timing and performance of
our HYDRA implementation. For a timer driver, we rely on its im-
plementation in seL4platsupport. All source code for these helper
libraries can be found in [18] and these libraries contribute around
50% of the code base in our implementation. We use an open-
source implementation of a network stack and an Ethernet driver
in the user-space [20]. We argue that this component, even though
not formally verified, should not affect security objective of HY-
DRA as long as an IO-MMU is used to restrict Direct Memory Ac-
cess (DMA) of an Ethernet driver. The worst case that can happen
from not formally verified network stack is symmetrical denial-of-
service, which is out of scope of HYDRA.

5.2 Secure Boot Implementation
Here, we describe how we integrate an existing secure boot fea-

ture (in Sabre Lite) with our HYDRA implementation.

5.2.1 Secure Boot in Sabre Lite
NXP provides a secure boot feature for Sabre Lite boards, called

High Assurance Boot (HAB) [11]. HAB is implemented based on
a digital signature scheme with public and private keys. A private
key is needed to generate a signature of the software image during

6

Figure 3: Image Layout in Flash

manufacturing whereas a public key is used by ROM APIs for de-
crypting and verifying the software signature at boot time. A pub-
lic key and a signature are attached to the software image, which is
pre-installed in a flash during manufacturing. The digest of a public
key is fused into a one-time programmable ROM in order to ensure
authenticity of the public key and the booting software image. At
boot time, the ROM boot-loader first loads the software image into
RAM and then verifies the attached public key by comparing it with
the reference hash value in ROM. It then authenticates the software
image through the attached signature and the verified public key.
Execution of this image is allowed only if signature verification
succeeds. Without a private key, an adversary cannot forge a le-
gitimate digital signature and thus is unable to insert and boot his
malicious image.

5.2.2 Secure Boot of HYDRA
HAB ensures that the seL4 microkernel is the first program ini-

tialized after the ROM boot-loader. This way, the entire seL4 mi-
crokernel binary code can be covered when computing the digital
signature during manufacturing. Moreover, seL4 needs to be as-
sured that it gives control of the user-space to the verified PRAtt,
which means that seL4 has to perform an integrity check of PRAtt

before launching it. Consequently, a hash of BCAtt needs to be in-
cluded in the seL4 microkernel’s binaries during production time
and be validated upon starting the initial process.

With this procedure, a chain of trust is established in the remote
attestation system in HYDRA. This implies that no other programs,
except the seL4 microkernel can be started by the ROM boot-
loader and consequently only PRAtt is the certified initial process
in the user-space, which achieve the goal of secure boot of remote
attestation system. Figure 4 illustrates the secure boot of HYDRA
in Sabre Lite prototype.

5.3 Access Control Implementation
Here we describe how the access control configuration specified

in section 4 is implemented in our HYDRA prototype. Our goal is
to show that in the implementation of HYDRA no other user-space
processes, except PRAtt, can have any kind of access to: (1) the
binary executable code (including K), (2) the virtual address space
of PRAtt, and (3) the TCB of PRAtt. To provide those access
restrictions in the user-space, we make sure that we do not assign
capabilities associated to those memory regions to other user-space
processes. Recall that PRAtt as the initial process contains all
capabilities to every memory location not used by the seL4 micro-
kernel. And there are two ways for PRAtt to issue capabilities:
dynamically transfer via endpoint with grant access right or stati-
cally assign during bootstrapping a new process.

In our implementation, PRAtt does not create any endpoint with
grant access, which disallows any capability of PRAtt to transfer
to a new process after created. Thus, the only way that capabilities
can be assigned to a new process is before that process is spawned.
When creating a new process, PRAtt assigns only minimal amount
of capabilities required to operate that process, e.g. in our proto-
type, only the CSpace root node and fault endpoint (used for re-
ceiving IPCs when this thread faults) capabilities are assigned to
any newly created process. Limited to only those capabilities, any
other process cannot access the binary executable code as well as
existing virtual memory and TCB of PRAtt.

Moreover, during bootstrapping the new process, PRAtt creates
a new PD object serving as the root of VSpace in the new process.
This is to ensure that any new process’ virtual address space is ini-
tially empty and does not overlap with the existing virtual memory
of PRAtt. Without any further dynamic capability distribution, this
guarantees that other processes cannot access any memory page be-
ing used by PRAtt. Sample code for configuring a new process in
our prototype is provided in Appendix C.

5.4 Key Storage
Traditionally, in previous hybrid designs, a prover device re-

quires a special hardware-controlled memory location for securely
storing K and protecting it from software attacks. However, in HY-
DRA, it is possible to store K in a normal memory location (e.g.
flash) due to the formally verified access control and isolation prop-
erties of seL4. Moreover, since K is stored in a writable memory,
its update can easily happen without any secure hardware involve-
ment. Thus, in our prototypes, K is hard-coded at production time
and stored in the same region as BCAtt.

5.5 Mitigating Denial-of-Service Attacks
Our HYDRA prototype uses the same K for two purposes: (1)
Prv computing the attestation token, and (2) authenticating Vrf
attestation requests. (Recall thatK can be accessed only by PRAtt.)
Alternatively, PRAtt can derive two separate keys fromK, one for
each purpose, through a key derivation function (KDF).

[6] also shows that authenticating attestation requests is insuffi-
cient to mitigate DoS attacks since Adv can eavesdrop on genuine
attestation requests and then delay or replay them. [6] concludes
that timestamps, obtained from a reliable real-time clock (synchro-
nized with Vrf ’s clock), are required in order to handle replay,
reorder and delay attacks.

There are currently no real-time clock drivers available for seL4.
Instead, we generate a pseudo-timestamp by a timer, the driver for
which is provided by seL4platsupport, and a timestamp of the first
validated request, as follows:

When a device first wakes up and securely starts PRAtt as the
initial process, PRAtt loads a timestamp, T0, that was previously
saved (in a separated location in flash) before the last reset. When
the first attestation request arrives, PRAtt checks whether its times-
tamp, T1 > T0 and, if so, proceeds to V erifyRequest. (Else, the
request is discarded). Once the request is validated, PRAtt keeps
track of T1 and starts a counter. At any later time, a timestamp
can be constructed by combining the current counter value with T1.
Also, PRAtt periodically generates and saves this timestamp value
on flash, to be used after the next reboot. The prototype also en-
sures that the timestamp is write-protected by not assigning write
capabilities for a memory region (storing T0 and a timer device
driver) to any other processes.

6. SECURITY ANALYSIS

7

Figure4:SecureBootSequenceinSabreLitePrototype

WenowinformallyshowthatHYDRAsatisfiestheminimalset
ofrequirementstorealizesecureRA(describedinSection3).HY-
DRA’skeyfeaturesare:
(1)seL4isthefirstexecutableloadedinaHYDRA-basedsys-

temuponboot/initialization.Correctnessofthisstepisguaranteed
byaROMintegritycheckatboottime,e.g.,HABintheSabreLite
case.
(2)PRAtt

2istheinitialuser-spaceprocessloadedintomem-
oryandexecutedbyseL4.Thisisalsosupportedviaasoftware
integritycheckperformedbyseL4beforespawningtheinitialpro-
cess.
(3)PRAtt startswiththehighestschedulingpriorityandnever

decreasesitsownpriorityvalue.Thiscanbeguaranteedbycheck-
ingthatPRAttcodedoesnotcontainanysystemcallstodecrease
itspriority.
(4)AnysubsequentprocessexecutedbyseL4isspawnedby

PAttestanddoesnotgetthehighestschedulingpriority.Thiscan
beensuredbyinspectingPRAttcodetocheckthatallinvocations
ofotherprocessesarewithalowerpriorityvalue.Onceaprocessis
loadedwithacertainpriority,seL4preventsitfromincreasingits
priorityvalue;thisisformallyverifiedandguaranteedbyseL4im-
plementation.
(5)ThesoftwareexecutableandKcanonlybemappedintothe

addressspaceofPRAtt.Thisisguaranteedbyensuringthatin
thePRAtt codenootherprocessoninitialization(performedin
PRAtt)receivesthecapabilitiestoaccesssaidmemoryranges.
(6)VirtualmemoryusedbyPRAttcannotbeusedbyanyother

process;thisincludesanymemoryusedforanycomputationin-
volvingthekey,orrelatedtoothervaluescomputedusingthekey.
ThisisformallyverifiedandguaranteedintheseL4implementa-
tion.
(7)OtherprocessescannotcontrolorinferexecutionofPRAtt

(protectedbyexclusivecapabilitytoTCB’sPRAtt).
(8)Accesscontrolproperties,i.e.,authorityconfinement,in-

tegrityandconfidentiality,inseL4’sbinaryaremathematically
guaranteedbyitsformalverification.
(9)Otherprocessescannotmodifyorresetthereal-timeclock.

ThiscanbeguaranteedbyverifyingthatPRAttcodedoesnotgive
awayawritecapabilityoftheclocktootherprocesses.
Giventheabovefeatures,thesecuritypropertiesinSection3are

satisfiedbecause:

2PRAtt isdifferentfromBCAtt perFigure3.PRAtt iswhat
iscalled“initialprocess"inFigure3anditcontainsBCAtt exe-
cutableasacomponent.

ExclusiveAccesstoK:(5),(6)and(8)guaranteethatonly
PRAttcanhaveaccesstoK.
NoLeaks:(6)and(8)ensuresthatintermediatevaluescreated

bykey-relatedcomputationinsidePRAtt cannotbeleakedtoor
learnedbyotherprocesses.
Immutability:(1)and(2)impliesthatHYDRAisinitialized

intothecorrectexpectedknowninitialstatesandthatthecorrect
binaryexecutableissecurelyloadedintoRAM.(5)alsoprevents
otherprocessesfrommodifyingthatexecutable.
Uninterruptability:(3)and(4)guaranteesthatotherprocesses,

alwayshavingalowerpriorityvaluecomparedtoPRAtt,cannot
interrupttheexecutionofPRAtt.
ControlledInvocation:(7)ensuresthattheexecutionofPRAtt
cannotbemanipulatedbyotherapplications.
VrfAuthentication:(5),(6)and(8)ensuresthatKcannotbe
accessedand/orinferredbyotherprocesses.(8)and(9)ensures
thatnootherprocesscanmodifyandinfluenceatimestampvalue.

7. EXPERIMENTALEVALUATION
Ideally,wewouldhavelikedtocomparetheperformanceofHY-

DRAwiththatofprevioushybriddesignssuchasSMARTand
TrustLiteonthesamehardwareplatform. However,thisisnot
feasiblebecauseSMARTandTrustLitearedesignedforlow-end
micro-controllersanddevelopmentplatformsbasedonsuchmicro-
controllers(currently)cannotrunseL4.Inaddition,SMARTand
TrusLiterequiresomemodificationstothemicro-controller’shard-
wareandarethusnotavailableonoff-the-shelfdevelopmentplat-
forms. WeinsteadpresentperformanceevaluationofHYDRAus-
ingthecommerciallyavailableSabreLitedevelopmentplatform.
(ResultsofHYDRAonODROID-XU4areinAppendixA). We
conductexperimentstoassessspeedof,andoverheadinvolvedin,
performingattestationusingdifferenttypesofkeyedMessageAu-
thenticationCode(MAC)functions,onvariousnumbersofuser-
spaceprocessesandsizesofmemoryregionstobeattested. We
obtainthefastestperformanceusingtheSpeckMAC;HYDRAcan
attest10MBinlessthan250msecinthatcase.

7.1 BreakdownofAttestationRuntime
RecallfromSection4,thattheattestationalgorithm(Algorithm

1)iscomposedofthreeoperations.VerifyRequest(lines3to9)
isresponsibleforverifyinganattestationrequestandwhetherithas
beenrecentlygeneratedbyanauthorizedverifier.RetrieveMem
(line11)mapsmemoryregionsfromatargetprocesstoPRAtt’s
addressspaceandreturnsapointertothemappedmemory.MacMem

8

AE
S-
12
8

AE
S-
19
2

AE
S-
25
6

SH
A-
25
6

SI
MO
N-
32
-6
4

SI
MO
N-
64
-1
28

SP
EC
K-
32
-6
4

SP
EC
K-
64
-1
28

BL
AK
E2
S

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
u
n-
ti
m
e
i
n
s
e
c
o
n
d

0 2 4 6 8 10

Memory Size (in MB)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
e
m
or
y
M
a
p
pi
n
g
R
u
n-
ti
m
e
(i
n
s
e
c
o
n
d)

(a)MACImplementations (b)MemoryMappingin

0 2 4 6 8 10

Memory Size (in MB)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
et
ri
e
v
e/
M
a
c
M
e
m
R
at
i
o

SPECK-64-128-CBC

Keyed BLAKE2S

AES-128-CBC

SIMON-64-128-CBC

HMAC-SHA256

seL4

0 2 4 6 8 10

Attested Memory Size (in MB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A
C
r
u
n-
ti
m
e
(i
n
s
e
c
o
n
d
s)

HMAC-SHA-256

SIMON-64-128-CBC

AES-128-CBC

Keyed BLAKE2S

SPECK-64-128-CBC

(c)MacMemvsRetrieveMem

0 5 10 15 20

Number of Processes

0.00

0.01

0.02

0.03

0.04

0.05

M
A
C
r
u
n-
ti
m
e
(i
n
s
e
c
o
n
d
s)

HMAC-SHA-256

SIMON-64-128-CBC

AES-128-CBC

Keyed BLAKE2S

SPECK-64-128-CBC

(d)MacMemvsMemSize (e)MacMemvsNumProcesses

Figure5:EvaluationofHYDRAinSabreLiteprototype

(lines13to20)computesacryptographicchecksum(usingK)on
thememoryregions.
AsshowninTable4,theruntimeofMacMemcontributesthe

highestamountoftheoverallBCAtt runtime:89%oftotaltime
forattesting1MBofmemoryand92%forattesting20KBofmem-
oryonSabreLite;whereasRetrieveMemandVerifyRequest
togetherrequirelessthan11%oftheoveralltime.

7.2 PerformanceofRetrieveMeminseL4
AnotherimportantfactoraffectingtheperformanceofHYDRA

istheruntimeofRetrieveMem:thetimePRAtttakestomapthe
attestedmemoryregionstoitsownvirtualaddressspace.Asex-
pected,Figure5billustratesthememorymappingruntimeinseL4
islinearintermsofmappedmemorysize.Inaddition,wecompare
theruntimeofRetrieveMemandMacMemonlargermemory
sizes.Figure5cillustratesthattheruntimeratioofRetrieveMem
tovariousimplementationsofMacMemisalwayslessthan20%.
Thisconfirmsthatretrievingmemoryandmappingittothead-
dressspaceaccountforonlyasmallfractionofthetotalattestation
timeinHYDRA.ThisillustratesthatwhateveroverheadseL4in-
troduceswhenenforcingaccesscontrolonmemoryisnotsignifi-
cantanddoesnotrenderHYDRAimpractical.

7.3 PerformanceofMacMeminseL4
SinceMacMem isthebiggestcontributortotheruntimeof

ourimplementations,weexplorevarioustypesof(keyed)cryp-
tographicchecksumsandtheirperformanceontopofseL4. We
comparetheperformanceoffivedifferentMACfunctions,namely,
CBC-AES[27],HMAC-SHA-256[3],SimonandSpeck[22],and
BLAKE2S[23],on1MBofdataintheuser-spaceofseL4.The
performanceresultsinFigure5aillustratethattheruntimeofMAC
basedonSpeck-64-1283andBLAKE2SinseL4aresimilar;and
theyareatleast33%fasterthanotherMACfunctionswhenrun-
ningonSabreLite.

3Speckwith64-bitblocksizeand128-bitkeysize

Table4:PerformanceBreakdownofAlgorithm1onI.MX6-SL@
1GHz

Operations
1MBofMemory 20KBofMemory

Timeincycle Proportion Timeincycle Proportion

VerifyRequest 1,604 <0.01% 1,604 0.29%
RetrieveMem 3,221,307 10.7% 45,624 8.21%
MacMem 26,880,057 89.29% 508,334 91.5%
Overall 30,102,968 100% 555,562 100%

7.4 PerformanceofMacMemvsMemorySizes
AnotherfactorthataffectsMacMem’sperformanceisthesize

ofmemoryregionstobeattested. Weexperimentbycreatingan-
otherprocessintheuser-spaceandperformattestationonvarious
sizes(rangingfrom1MBto10MB)ofmemoryregionsinsidethat
process.Asexpected,theresultsofthisexperiment,illustratedin
Figure5d,indicatethatMacMemperformanceislinearasafunc-
tionoftheattestedmemorysizes.Thisexperimentalsoillustrates
feasibilityofperformingattestationof10MBofmemoryontopof
seL4inHYDRAusingaSpeck-basedMACinlessthan250msec.

7.5 PerformanceonMacMemvsNumbersof
Processes

Thisexperimentanswersthefollowingquestion: Howwould
anincreaseinnumberofprocessesaffecttheperformanceofHY-
DRA?Toanswerit,wehavetheinitialprocessspawnadditional
user-spaceprocesses(from2to20extraprocesses)and,then,per-
formMacMem on100KBmemoryineachprocess.Theresult
fromFigure5eindicatesthattheperformanceofMacMemislin-
earasafunctionofthenumberofprocessesonaSabreLitedevice.

8. CONCLUSIONS
ThispaperpresentedthefirsthybridRemoteAttestation(RA)

design,HYDRA,thattakesadvantageoftheformallyverifiedseL4

9

microkernel to instantiate memory and process isolation and en-
force access control to memory and other resources. HYDRA im-
poses minimal hardware requierements on the underlying micro-
processor and provides an (automated) formal proof of isolation
guarantees of the implementation of the microkernel. We imple-
mented HYDRA on two commodity hardware platforms and demon-
strated overall feasibility and practicality of hybrid RA schemes.

Acknowledgments
The authors are grateful to ACM WiSec’17 anonymous reviewers
for their helpful comments and suggestions. UCI authors were sup-
ported, in part, by funding from: (1) the National Security Agency
(NSA) under contract H98230-15-1-0276, (2) the Department of
Homeland Security, under subcontract from the HRL Laboratories,
(3) the Army Research Office (ARO) under contract W911NF-16-
1-0536, and (4) the Australian Research Council (ARC) Discovery
grant DP150100564.

9. REFERENCES
[1] Extracting qualcomm’s keymaster keys!
[2] T. Abera, N. Asokan, L. Davi, F. Koushanfar, A. Paverd, A.-R.

Sadeghi, and G. Tsudik. Invited-things, trouble, trust: on building
trust in iot systems. In Proceedings of the 53rd Annual Design
Automation Conference, page 121. ACM, 2016.

[3] Apple Computer, Inc. LibOrange, 2006.
[4] ARM Limited. Arm security technology - building a secure system

using trustzone technology, 2009.
[5] Boundary Devices. BD-SL-I.MX6.
[6] F. Brasser, K. B. Rasmussen, A.-R. Sadeghi, G. Tsudik,

I. Martinovic, K. B. Rasmussen, M. Roeschlin, G. Tsudik,
G. Revadigar, C. Javali, et al. Remote attestation for low-end
embedded devices: the proverâĂŹs perspective. In Design
Automation Conference (DAC), 2016.

[7] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the
difficulty of software-based attestation of embedded devices. In
Proceedings of the 16th ACM conference on Computer and
communications security, pages 400–409. ACM, 2009.

[8] V. Costan and S. Devadas. Intel sgx explained. Technical report,
Cryptology ePrint Archive, Report 2016/086, 2016. https://eprint.
iacr. org/2016/086.

[9] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito. SMART:
Secure and minimal architecture for (establishing a dynamic) root of
trust. In Network and Distributed System Security Symposium
(NDSS). Internet Society, 2012.

[10] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik. A
minimalist approach to remote attestation. In Proceedings of the
conference on Design, Automation & Test in Europe, page 244.
European Design and Automation Association, 2014.

[11] Freescale Semiconductor, Inc. i.MX 6 Linux High Assurance Boot
(HAB) User’s Guide. Technical report, 2013.

[12] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan.
Beyond secure channels. In Proceedings of the 2007 ACM workshop
on Scalable trusted computing, pages 30–40. ACM, 2007.

[13] Hardkernel co., Ltd. ODROID-XU4.
[14] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni. Darpa:

Device attestation resilient to physical attacks.
[15] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,

R. Kolanski, and G. Heiser. Comprehensive formal verification of an
os microkernel. ACM Transactions on Computer Systems (TOCS),
32(1):2, 2014.

[16] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite:
A security architecture for tiny embedded devices. In European
Conference on Computer Systems, 2014.

[17] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. sel4: from general
purpose to a proof of information flow enforcement. In Security and
Privacy (SP), 2013 IEEE Symposium on, pages 415–429. IEEE,
2013.

[18] National ICT Australia. seL4 Libraries, 2014.
[19] National ICT Australia. The seL4 Repository, 2014.
[20] National ICT Australia. UNSW Advanced Operating Systems, 2014.
[21] National Vulnerability Database. Vulnerability summary for

cve-2015-6639.
[22] B. Ray, S. Douglas, S. Jason, T. Stefan, W. Bryan, and W. Louis. The

simon and speck families of lightweight block ciphers. Technical
report, Cryptology ePrint Archive, Report./404, 2013.

[23] M. Saarinen and J. Aumasson. The blake2 cryptographic hash and
message authentication code (mac). Technical report, 2015.

[24] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems. In ACM Symposium on Operating
Systems Principles (SOSP), pages 1–16. ACM, 2005.

[25] T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and
G. Klein. sel4 enforces integrity. In International Conference on
Interactive Theorem Proving, pages 325–340. Springer, 2011.

[26] T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation
for a verified os kernel. In ACM SIGPLAN Notices, volume 48, pages
471–482. ACM, 2013.

[27] The OpenSSL Project. Openssl 1.1.0-pre7-dev, 2016.
[28] Trusted Computing Group. Trusted platform module (tpm).

APPENDIX
A. PERFORMANCE ON ODROID-XU4

We also evaluate performance of HYDRA on ODROID-XU4 @
2.1 GHz. Despite lacking an Ethernet driver, we evaluate the core
component of HYDRA: MacMem. Unlike results in Section 7,
BLAKE2S-based MAC achieves the best performance for attesting
10MB on ODROID-XU4 platform.

A.1 MAC Performance on Linux vs in seL4
Figure 6a illustrates the performance comparison of keyed MAC

functions on ODROID-XU4 running on Ubuntu 15.10 and seL4.
Results support feasibility of RA in seL4, since the runtime of
seL4-based RA can be as fast as that of RA running on top of
the popular Linux OS.

A.2 MAC Performance on ODROIX-XU4
As follows from the results in Section 7 and above, Speck- and

BLAKE2S-based MACs have the fastest attestation runtimes in
seL4. We conducted additional experiments with these MAC func-
tions on ODROID-XU4. Figure 6b shows the linear relationship
between the number of processes and MacMem runtime. Also,
MAC runtime in Figure 6c, is also linear in terms of the mem-
ory size to be attested. Finally, runtime of BLAKE2S-based MAC
needs under 100 milliseconds to attest 10MB of memory.

B. seL4 PROOF ASSUMPTIONS
seL4 functional correctness proof is based on the following as-

sumptions:

• Assembly - correctness of ARM assembly code mainly for
entry and exit to/from the kernel and direct hardware accesses.
• Hardware - hardware operates according to its specification

and has not been tampered with.
• Hardware Management - correctness of the underlying hard-

ware management, including a translation look-aside buffer
(TLB) and cache-flushing operations.
• Boot Code - correctness of code that boots the seL4 micro-

kernel into memory.
• Direct Memory Access (DMA) - DMA is disabled or trusted.
• Side-channels - no timing side-channels.

10

AE
S-1
28

AE
S-1
92

AE
S-2
56

SH
A-2
56

SI
MO
N-3
2-6
4

SI
MO
N-6
4-1
28

SP
EC
K-3
2-6
4

SP
EC
K-6
4-1
28

BL
AK
E2
S

0.00

0.01

0.02

0.03

0.04

0.05

0.06
R
u
n-
ti
m
e
i
n
s
e
c
o
n
d

seL4 (XU4)

Linux (XU4)

0 5 10 15 20

Number of Processes

0.000

0.005

0.010

0.015

0.020

0.025

M
A
C
r
u
n-
ti
m
e
(i
n
s
e
c
o
n
d
s)

SPECK-64-128-CBC

Keyed BLAKE2S

(a)MACImplementations

(b)MacMem

0 2 4 6 8 10

Attested Memory Size (in MB)

0.00

0.02

0.04

0.06

0.08

0.10

M
A
C
r
u
n-
ti
m
e
(i
n
s
e
c
o
n
d
s)

SPECK-64-128-CBC

Keyed BLAKE2S

vsNumProcesses

(c)MacMemvsMemSize

Figure6:EvaluationofHYDRAinODROID-XU4prototype

C. SAMPLECODEFORSTARTINGNEW
PROCESS

PRAttcreatesanewemptyprocesswiththedefaultconfigura-
tionasshownbelow:

intsel4utils_configure_process_custom(sel4utils_process_t∗process,
vka_t∗vka,vspace_t∗spawner_vspace,
sel4utils_process_config_tconfig)

{
interror;
sel4utils_alloc_data_t∗data=NULL;
memset(process,0, sizeof(sel4utils_process_t));

seL4_CapData_tcspace_root_data=seL4_CapData_Guard_new(0,
seL4_WordBits− config.one_level_cspace_size_bits);

process−>own_vspace=config.create_vspace;
error=vka_alloc_vspace_root(vka,&process−>pd);
if(error){
gotoerror;

}
if(assign_asid_pool(config.asid_pool,process−>pd.cptr)!=

seL4_NoError){
gotoerror;

}
process−>own_cspace=config.create_cspace;
if(create_cspace(vka,config.one_level_cspace_size_bits,

process,cspace_root_data)!=0){
gotoerror;

}
if(create_fault_endpoint(vka,process)!=0){
gotoerror;

}
sel4utils_get_vspace(spawner_vspace,&process−>vspace,&process

−>data,vka,process−>pd.cptr, sel4utils_allocated_object,
(void∗)process);

process−>entry_point=sel4utils_elf_load(&process−>vspace,
spawner_vspace,vka,vka,config.image_name);

if(process−>entry_point==NULL){
gotoerror;

}
error=sel4utils_configure_thread(vka,spawner_vspace,&process

−>vspace,SEL4UTILS_ENDPOINT_SLOT,config.priority,
process−>cspace.cptr,cspace_root_data,&process−>thread);

if(error){
gotoerror;

}
return0;

error:
/∗ cleanup∗/
...
return−1;

}
intsel4utils_configure_thread_config(vka_t∗vka,vspace_t∗parent,

vspace_t∗alloc, sel4utils_thread_config_tconfig,
sel4utils_thread_t∗res)

{
memset(res,0, sizeof(sel4utils_thread_t));
interror=vka_alloc_tcb(vka,&res−>tcb);
if(error==−1){
sel4utils_clean_up_thread(vka, alloc, res);
return−1;

}
res−>ipc_buffer_addr=(seL4_Word)vspace_new_ipc_buffer(alloc,

&res−>ipc_buffer);
if(res−>ipc_buffer_addr==0){
return−1;

}
if(write_ipc_buffer_user_data(vka,parent,res−>ipc_buffer,res

−>ipc_buffer_addr)){
return−1;

}
seL4_CapData_tnull_cap_data={{0}};
error=seL4_TCB_Configure(res−>tcb.cptr,config.fault_endpoint,

config.priority,config.cspace,config.cspace_root_data,
vspace_get_root(alloc),null_cap_data,res−>
ipc_buffer_addr,res−>ipc_buffer);

if(error!=seL4_NoError){
sel4utils_clean_up_thread(vka, alloc, res);
return−1;

}
res−>stack_top=vspace_new_stack(alloc);
if(res−>stack_top==NULL){
sel4utils_clean_up_thread(vka, alloc, res);
return−1;

}
return0;

}

11

	Introduction
	Related Work
	Hardware-Based Remote Attestation
	Software-Based Remote Attestation
	Hybrid Remote Attestation

	Goals and Assumptions
	Design Rationale
	Hybrid RA Objective and Properties
	Adversarial Model & Other Assumptions

	HYDRA Design
	seL4 Overview
	Deriving seL4 Access Controls
	Building Blocks
	Sequence of Operation
	Boot Process
	seL4 Setup
	Attestation

	HYDRA Implementation
	seL4 User-space Implementation
	Secure Boot Implementation
	Secure Boot in Sabre Lite
	Secure Boot of HYDRA

	Access Control Implementation
	Key Storage
	Mitigating Denial-of-Service Attacks

	Security Analysis
	Experimental Evaluation
	Breakdown of Attestation Runtime
	Performance of RetrieveMem in seL4
	Performance of MacMem in seL4
	Performance of MacMem vs Memory Sizes
	Performance on MacMem vs Numbers of Processes

	Conclusions
	References
	Performance on ODROID-XU4
	MAC Performance on Linux vs in seL4
	MAC Performance on ODROIX-XU4

	seL4 Proof Assumptions
	Sample Code for Starting New Process

