ERASMUS: Efficient

Rlemote

A ttestation via

Xavier Carpent
UC Irvine
xcarpent@uci.edu

Abstract—Remote attestation (RA) is a popular means of
detecting malware in embedded and IoT devices. RA is usually
realized as a protocol via which a trusted verifier measures
software integrity of an untrusted remote device called prover. All
prior RA techniques require on-demand operation. We identify
two drawbacks of this approach in the context of unattended
devices: First, it fails to detect mobile malware that enters
and leaves the prover between successive RA instances. Second,
it requires the prover to engage in a potentially expensive
computation, which can negatively impact safety-critical or real-
time devices.

To this end, we introduce the concept of self-measurement
whereby a prover periodically (and securely) measures and
records its own software state. A verifier then collects and verifies
these measurements. We demonstrate a concrete technique called
ERASMUS, justify its features, and evaluate its performance. We
show that ERASMUS is well-suited for safety-critical applica-
tions. We also define a new metric — Quality of Attestation (QoA).

I. INTRODUCTION

In recent years, embedded and cyber-physical systems
(CPS), under the guise of Internet-of-Things (IoT), entered
many aspects of daily life, such as: homes, office buildings,
public venues, factories and vehicles. This trend of comput-
erizing previously analog devices and then inter-connecting
them brings many obvious benefits. However, it also greatly
expands the “attack surface” and turns these newly comput-
erized gadgets into natural and attractive attack targets. As
recent incidents demonstrated (e.g., Mirai [2] and Reaper!),
IoT devices can be infected with malware and used as bot-
controlled zombies in Distributed Denial-of-Service (DDoS)
attacks. Also, loT-borne malware can snoop on device own-
ers (by sensing) or maliciously control critical services (by
actuation), as happened with Stuxnet [17].

One key component in securing IoT devices is malware
detection, typically attained via Remote Attestation (RA). RA
is a distinct security service that allows a trusted party, called
verifier, to securely verify the internal state (including memory
and storage) of a remote untrusted and potentially malware-
infected device, called prover. RA is usually realized via a
protocol between prover and verifier. A typical example is
described in [5]: (1) verifier sends an attestation request to
prover, (2) prover verifies the request’ and (3) computes a

Uhttps://www.arbornetworks.com/blog/asert/reaper-madness/
2Since attestation is a potentially expensive task for prover, this verification
mitigates computational DoS attacks.

Self-M easurement for

Norrathep Rattanavipanon
UC Irvine
nrattana @uci.edu

U nattended |S ettings

Gene Tsudik
UC Irvine
gene.tsudik @uci.edu

cryptographic function of its internal state, (4) sends the result
to verifier, and finally, (5) the latter checks the result and
decides whether prover is infected.

This general approach represents on-demand attestation
and all current RA techniques adhere to it. In this paper,
we identify its two important limitations: First, it is a poor
match for unattended devices, since malware that “comes
and goes” (i.e., mobile malware [12]) can not be detected
if it leaves prover by the time attestation is performed at
verifier’s demand. Second, for a device working under time
constraints (real-time or safety-critical operation), on-demand
RA requires performing a time-consuming task while deviating
from prover’s main functions.

Motivated by this, we design ERASMUS: Efficient Remote
Attestation via Self-Measurement for Unattended Settings.
ERASMUS is based on self-measurements. In it, a device
(prover) measures its state at scheduled times. Measurements
are stored in prover’s insecure memory. Verifier occasionally
collects and validates these measurements in order to establish
the history of prover’s state. Notably, with this general ap-
proach, verifier imposes negligible real-time burden on prover.
ERASMUS also offers better quality-of-service than prior RA
techniques, since verifier obtains prover’s entire measurement
history, since the last request. In other words, ERASMUS de-
couples (1) frequency of verifier’s requests from (2) frequency
of prover’s measurements, which are equivalent in on-demand
RA. Finally, ERASMUS simplifies RA design for prover:
authentication of verifier requests is no longer needed, since
computational DoS attacks do not apply.® We also introduce
a new notion of Quality of Attestation (QoA) which captures:
(1) how a device (prover) is attested, (2) how often its state is
measured, and (3) how often these measurements are verified.
FULL PAPER: The extended version of this paper [6] contains
more detailed discussions of: self-measurement techniques,
applications to swarm/group settings, authenticated erasure, as
well as ERASMUS prototype implementations and experimen-
tal results.

NOTE: ERASMUS is not intended as a replacement for on-
demand RA, mainly because, for some devices and some set-
tings, real-time on-demand RA is mandatory, e.g., immediately
before or after a software update, or for secure erasure/reset.

3This goes counter to requirements in [5] that stipulate (potentially expen-
sive) prover authentication of verifier’s requests.

https://www.arbornetworks.com/blog/asert/reaper-madness/

These two approaches are not mutually exclusive and may be
used together to increase QoA.

II. REMOTE ATTESTATION (RA)

RA techniques fall into the three main categories: (1)
Hardware-based [16], [13] uses dedicated hardware features
such as a Trusted Platform Module (TPM) to execute at-
testation code in a secure environment. Even though such
features are currently available in personal computers and
smartphones, they are considered a relative “luxury” for very
low-end embedded devices. (2) Software-based [14], [15]
requires no hardware support and performs attestation solely
based on precise timing measures. However, it limits prover
to being one-hop away from verifier, so that round-trip time is
either negligible or fixed. It also relies on strong assumptions
about attacker behavior [1] and is typically only used for
legacy devices. (3) Finally, hybrid [8], [11], [4], based on a
software/hardware co-design, provides RA while minimizing
its impact on underlying hardware features. SMART [8] is the
first hybrid RA design with minimal hardware modifications
to existing microcontroller units (MCUs). Its key features are:

o Attestation code is immutable: it is located in, and
executed from, ROM.

« Attestation code is safe: its execution always terminates
and leaks no information other than the attestation result.

« Attestation is atomic: (1) its execution is uninterruptible,
and (2) it starts from the first instruction and exits at
the last instruction. This is realized via hard-wired MCU
access controls and disabling interrupts upon entering
attestation code.

o A secret key (K) stored in a secure memory location and
accessible only from the attestation code: K is stored in
ROM and is guarded by MCU rules.

[5] extended SMART to defend against denial-of-service (DoS)
attacks on prover. We refer to this extended design as SMART+.
[5] additionally requires prover to have a Reliable Read-Only
Clock (RROC), needed to perform verifier authentication and
prevent replay, reorder and delay attacks.

TrustLite [11] security architecture also supports RA for
low-end devices. It differs from SMART in two ways: (1) inter-
rupts are allowed and handled securely by the CPU Exception
Engine, and (2) access control rules can be programmed using
an Execution-Aware Memory Protection Unit (EA-MPU). Ty-
TAN [4] adopts a similar approach while providing additional
real-time guarantees and dynamic configuration for safety- and
security-critical applications.

HYDRA [9] is a hybrid RA design for medium-end devices
devices with a Memory Management Unit (MMU). It builds
upon a formally verified micro-kernel, sel.4 [10], to ensure
memory isolation and enforce access control to memory
regions.

In this paper, we use SMART+ and HYDRA as base se-
curity architectures for ERASMUS. However, ERASMUS is
equally applicable to other on-demand RA techniques, such
as TrustLite [11] or TyTan [4].

ITI. SELF-MEASUREMENTS

As discussed earlier, on-demand RA is a time-consuming
activity that takes prover away from its primary mission.
In contrast, ERASMUS divides RA into two phases. In the
measurement phase, prover performs self-measurements based
on a pre-established schedule and stores the results. In the
collection phase, verifier (whenever it wants) contacts prover
to fetch these measurements. This phase is very fast since it
requires practically no computation by prover. In particular,
since measurements are based on a MAC computed with a
key shared between prover and verifier, no extra protection
is needed when prover sends these measurements to verifier.
Furthermore, since there is no threat of computational DoS
on prover, there is also no need to authenticate verifier’s
requests. This is in contrast with on-demand RA. A prover’s
measurement M; computed at time ¢ is defined as:

M, =< t,H(memy), MACk (t, H(mem;)) >

where H is a suitable cryptographic hash function and mem;
represents prover’s memory at time ¢. The computation of
H(mem;) and M AC is done in the context of the security
architecture, e.g., SMART or HYDRA.

From here on, Vrf and Prv are used to denote verifier and
prover, respectively. Although ERASMUS assumes a symmetric
key K shared between Vrf and Prv, a public key signature
scheme could be used instead, with no real impact on security,
except for higher measurement cost.

A. Quality of Attestation

Quality of Attestation (QoA) is determined by two param-
eters: (1) time 7, between two successive measurements on
Prv, and (2) time T between two successive requests by Vrf
to collect measurements from Prv.

Exactly how T and T); are determined depends on Prv’s
hardware platform, mission and deployment setting. Security
impact of these parameters is intuitive. Smaller 7T, implies
smaller window of opportunity for mobile malware to escape
detection. Smaller T~ implies faster malware detection. If ei-
ther value is large, attestation becomes ineffective. Meanwhile,
though low values increase QoA, they also increase Prv’s
overall burden, in terms of computation, power consumption
and communication.

We assume that, in most cases, T¢c > Thy. If Te < Ty,
Vrf would collect same measurements more than once. Al-
ternatively, Vrf can explicitly request Prv to produce a
measurement before collection. In that case, Vrf’s request must
be authenticated and checked for freshness (as in SMART+ [5])
before on-demand measurement is computed. These activities
clearly incur additional real-time overhead and delays. We
refer to this variant as ERASMUS+OD.

Without loss of generality, we assume that measurements
and collections occur at regular intervals. However, in some
cases, it might be advantageous to take measurements at
irregular intervals, since doing so might give prover a bit of
an extra edge against mobile malware (see Section III-E).

infection 2 (detected)

infection 1 (undetected)

Tm
|[€——>

—— measurement

time

collection

Figure 1. QoA illustration: Infection 1 by mobile malware is undetected;
Infection 2 is detected. Th; - time between two measurements, T — time
between two collections, and f — measurement’s freshness.

Another ERASMUS parameter is the number of measure-
ments (denoted as k) obtained by Vrf in each collection phase.
It can range between one (latest measurement) and all. In an
ideal setting, Prv’s history size should be set such that each
measurement is collected exactly once, i.e., k = [Tc/Tar].

Finally, the collection phase involves the notion of freshness
of Prv’s latest measurement. Depending on the application,
maximal freshness might be required, e.g., right before or
after a software update. Maximal freshness is attainable via
on-demand RA. In ERASMUS, freshness of a measurement
(denoted as f) ranges between T, and 0, which correspond to
minimal and maximal freshness, respectively. We expect that
f = T /2. Figure 1 shows an example with two infections of
Prv. In the first, malware covers its tracks and leaves before
any measurement takes place. In the second, malware persists.

B. Measurements Storage & Collection

A naive way for Prv to store measurements is to keep track
of them indefinitely. However, this will eventually consume
a lot of Prv’s storage. Therefore, ERASMUS uses rolling
measurements. A fixed section of Prv’s insecure storage is
allocated as a windowed (circular) buffer for n measurements
and i-th one is stored at location L; j,0q .. However, it is
expected that Vrf collects measurements sufficiently often,
such that no location is over-written. That is, the time between
successive collections should be < T < n-T).

Interaction between Prv and Vrf is very simple: Vrf asks
for k latest measurements, which Prv simply reads from the
buffer and returns. The collection phase does not involve any
change of state on Prv and returned measurements are not
encrypted. (Though, recall that they are authenticated, since
each measurement is computed using K). It also does not
trigger any significant computation on Prv; in contrast with
on-demand RA, no cryptographic operations are required in
the collection phase.*

Self-measurements can be stored in Prv’s unprotected stor-
age. This allows malware (possibly present on Prv) to tamper
with measurements, by modifying, re-ordering and/or delet-
ing them. However, since malware (by design of underlying

4However, in the ERASMUS+OD variant mentioned in Section 1II-A,
Vrf’s request must be authenticated and checked for freshness, and a current
measurement must be computed.

collect k

ifk>n: k=n

M ={"L(;i—j) moan | 0<j <k}

foreach M; € M :
check ¢ and h
verify MACk (¢, h)

Figure 2. ERASMUS collection protocol.

SMART) can not access K, it cannot forge measurements.
Thus, it is easy to see that any tampering will be detected by
Vrf at the next collection phase and malware presence would
be immediately be noticed. For the same reasons, code that
handles request parsing as well as storage and transmission of
measurements does not need to run in a secure environment
or be stored in ROM. Whereas, code that performs self-
measurement must be protected by the underlying security
architecture, as in on-demand RA.

Scheduling in ERASMUS can be done in a very simple
and stateless manner. Let ¢ be the RROC reading at the
time of measurement N, and let T, be the time between
two successive measurements, as configured in Prv. The
windowed buffer slot L;, used to store My, is determined by:
i = |t/Th] mod n.

ERASMUS collection protocol is shown in Figure 2. Nota-
tion *L; refers to contents of location L.

C. ERASMUS+0OD.: ERASMUS with On-demand RA

As mentioned in Section III-A, ERASMUS may be combined
with on-demand RA to benefit from advantages of both
approaches. This variant, ERASMUS+OD, records Prv’s state
history to detect mobile malware, and uses on-demand RA
to obtain better freshness. Freshness is particularly relevant
whenever real-time RA is mandatory, e.g., immediately before
or after a software update.

The measurement phase is unmodified, while the collection
phase is combined with on-demand attestation request, as
follows. First, as part of each request, Vrf now computes
and includes an authentication token and specifies k. As in
SMART+ [5], Vrf authentication protects Prv against compu-
tational DoS attacks. Next, after checking that a request is
valid, Prv computes a fresh measurement which it returns to
Vrf, along with k& previous ones.

D. Security Considerations

Security of the measurement phase itself is based on the
underlying security architecture, e.g., SMART+ or HYDRA,
which: (1) provides measurements code with exclusive access
to K, (2) ensures non-malleability and non-interruptibility of
the measurement code, and (3) performs memory-cleanup after
execution.

Timestamps used in the measurement phase must be based
on the RROC which (by definition) can not be modified by

non-physical means. If RROC value could be modified, the
following attack scenario would become possible: malware
enters at time ¢y and remains active long enough so that a
measurement at time ¢y + § (with 6 < T) is taken. Before
leaving, malware discards that measurement and resets the
counter to tg. Soon after & (so that a measurement, valid
this time, has been taken for ¢ty + ¢), malware returns and
resets the counter to time elapsed since tp. Though this
example works for one T}, window, it can be extended to
arbitrarily many. It requires an additional assumption that no
collection took place during presence of malware. Fortunately,
RROC is already required in the underlying SMART+ security
architecture, for a totally different reason. In SMART+, RROC
helps prevent replay and computational DoS attacks on Prv.
Thus, ERASMUS does not require any architectural changes or
additions.

E. Irregular Intervals

A natural extension to ERASMUS is to use irregular mea-
surement intervals, instead of a fixed T;. One motivating
factor is that mobile malware aware of fixed scheduling knows
when to enter/leave Prv in order to stay undetected. One way
to implement irregular intervals is by using a cryptographically
secure Pseudo Random Number Generator (PRNG) initialized
or seeded with the secret key K. Output of PRNG can be
truncated such that Ty, is upper- and/or lower-bounded. For
example, after computing M;,, Prv can set the measurement
timer to 737" = map(PRNG(¢;)), where map is a function
that maps PRNG output to seconds, e.g., map : — x mod
(U—-L)+ L, where U and L are upper and lower bounds,
respectively. The timer itself must be read-protected to ensure
that 777" is unknown to malware potentially present on Prv.
PRNG code must be protected the same way as measurement
collection.

IV. DISCUSSION & EXTENSIONS

Due to strict size limitations, some topics could not be
discussed here. They are summarized below and discussed in
detail in the full version of this paper [6].

Implementation: We built two prototype implementations of
ERASMUS on two hybrid RA architectures: SMART+ and HY-
DRA. Experimental results show that: (1) ERASMUS does not
require extra features (or larger ROM) than that in SMART+,
and (2) Prv-Vrf interaction is appreciably faster than in on-
demand RA.

Swarm Attestation: Some applications require attesting a
group (or swarm) of interconnected embedded devices.
SEDA [3] presents the first swarm attestation scheme, which
relies on hybrid RA architectures. SEDA combines them with
a request-flooding and response-gathering protocol. SEDA was
improved and further specified in LISA [7]. ERASMUS can be
used instead of on-demand RA in swarm attestation protocols.
In particular, Prv self-measurements can be coupled with a
collection protocol, e.g., LISA-a, where the latter only relays
reports and perform no computation. This can yield a clean

and conceptually simple approach to swarm attestation that
inherits all benefits of ERASMUS.

V. CONCLUSIONS

This paper presents ERASMUS as an alternative to current
on-demand RA techniques for low-end devices. It is based
on scheduled self-measurements, which is more friendly for
time- or safety-critical applications. ERASMUS also provides
detection of mobile malware, which is not possible with on-
demand techniques. Its other major advantage is that it requires
no cryptographic computation by Prv as part of its interaction
with Vrf during the collection phase.

In addition, we defined a notion of Quality-of-Attestation
(QoA) as a measure of temporal security guarantees given by
an RA technique. We show that timing of measurements and
timing of verifications (that are conjoined in on-demand RA)
are two distinct aspects of QoA. They are treated as distinct
parameters in ERASMUS. We also discuss the possibility of
using on-demand RA as part of ERASMUS collection phase
to obtain maximal freshness. Finally, we show that ERASMUS
is a promising option for attesting groups/swarms of devices.

SUPPORT: This work was supported in part by DHS, under
subcontract from HRL Laboratories, and ARO under contract
WOI11NF-16-1-0536.

REFERENCES

[1] T. Abera et al. Invited: Things, trouble, trust: on building trust in IoT
systems. In DAC, 2016.

[2] M. Antonakakis et al. Understanding the mirai botnet. In USENIX,
2017.

[3] N. Asokan et al. SEDA: Scalable embedded device attestation. In CCS,
2015.

[4] F. Brasser et al. TyTAN: tiny trust anchor for tiny devices. In DAC,
2015.

[5] F. Brasser et al. Remote attestation for low-end embedded devices: the
prover’s perspective. In DAC, 2016.

[6] X. Carpent et al. ERASMUS: Efficient Remote Attestation
via Self-Measurement for Unattended Settings (Full Version).
arXiv:1707.09043v1, 2017.

[7]1 X. Carpent et al. Lightweigh swarm attestation: a tale of two LISA-s.

In ASIACCS, 2017.

K. Eldefrawy et al. SMART: Secure and minimal architecture for

(establishing dynamic) root of trust. In NDSS, 2012.

[9] K. Eldefrawy et al. HYDRA: Hybrid Design for Remote Attestation

(Using a Formally Verified Microkernel). In WiSec, 2017.

G. Klein et al. seL4: Formal verification of an OS kernel. In SIGOPS,

20009.

P. Koeberl et al. TrustLite: A security architecture for tiny embedded

devices. In EuroSys, 2014.

R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In

PODC, 1991.

D. Schellekens et al. Remote attestation on legacy operating systems

with trusted platform modules. Electronic Notes in Theoretical Com-

puter Science, 2008.

A. Seshadri et al. SWATT: Software-based attestation for embedded

devices. In S&P, 2004.

A. Seshadri et al. SCUBA: secure code update by attestation in sensor

networks. In WiSe, 2006.

F. Stumpf et al. A robust integrity reporting protocol for remote

attestation. In WATC, 2006.

[17] J. Vijayan. Stuxnet renews power grid security concerns.

http://www.computerworld.com/article/2519574/security0/stuxnet-
renews-power-grid-security-concerns.html, 2010.

[8

=

(10]
(11]
[12]

[13]

[14]
[15]

[16]

