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ABSTRACT
E�ective road tra�c assessment and estimation is crucial not only
for tra�c management applications, but also for long-term trans-
portation and, more generally, urban planning. Traditionally, this
task has been achieved by using a network of stationary tra�c count
sensors. These costly and unreliable sensors have been replaced
with so-called Probe Vehicle Data (PVD), which relies on sampling
individual vehicles in tra�c using for example smartphones to
assess the overall tra�c condition.

While PVD provides uniform road network coverage, it does
not capture the actual tra�c �ow. On the other hand, stationary
sensors capture the absolute tra�c �ow only at discrete locations.
Furthermore, these sensors are often unreliable; temporary mal-
functions create gaps in their time-series of measurements. This
work bridges the gap between these two data sources by learning
the time-dependent fraction of vehicles captured by GPS-based
probe data at discrete stationary sensor locations. We can then
account for the gaps of the tra�c-loop measurements by using the
PVD data to estimate the actual total �ow.

In this work, we show that the PVD �ow capture changes sig-
ni�cantly over time in the Washington DC area. Exploiting this
information, we are able to derive tight con�dence intervals of the
tra�c volume for areas with no stationary sensor coverage.
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1 INTRODUCTION
The e�ective estimation and prediction of tra�c conditions is cru-
cial not only for short-term tra�c management, but also for long-
term transportation scheduling and, more generally, urban planning.
Traditionally, tra�c monitoring has been achieved via a network
of stationary sensors such as induction tra�c loops or microwave
sensors. These sensors are not only costly to install and to maintain,
but are also a�ected by erroneous measurements or equipment fail-
ures. With the advent of smartphones, a new and powerful tra�c
sensing technology became available. This so-called Probe Vehicle
Data (PVD) refers to using data generated by individual vehicles as
a sample to assess the overall tra�c conditions (“cork swimming
in the river”). Typically this data comprises basic vehicle telemetry
such as speed direction and most importantly the position of the
vehicle. Having large numbers of vehicles collecting such data for a
given spatial area such as a city (e.g., taxis, public transport, utility
vehicles, private vehicles, etc.) will create an accurate picture of
the tra�c speed condition in time and space [8]. Since PVD does
not require a dedicated infrastructure, this data is easy to collect
and provides ubiquitous coverage of the road network. However, as
the name suggests, probe data only samples vehicular �ow, thus an
estimate of the actual tra�c volume is not possible with this data.

In this work, we bridge this gap by joining volume information
from stationary sensors and PVD data. We use discrete stationary
sensor locations to learn the time-dependent fraction of vehicles
captured by our GPS-based probe data. We can then use the PVD
data to estimate the actual total �ow, when the real measurements
are missing due to temporary malfunctions of the sensor equip-
ment. [4] We show that the PVD �ow capture changes signi�cantly
over time in the Washington DC area. Exploiting this information,
we are able to derive tight con�dence intervals of the tra�c volume
for areas with no stationary sensor coverage.

Summary of Data
Tra�c Loops: The Virginia Department of Transportation (VDOT)
leverages their role in the maintenance of the road network and
intermediary infrastructure by heading an initiative to harvest
vehicular tra�c data. VDOT is able to measure "tra�c �ow", or total
vehicle volume, and average tra�c speed through the installation
of tra�c loop detectors below the road surface. The relayed data
is representative of all vehicles that travel over this area in the
road network per �ve minute intervals. Issues lie in the reliability
of this technology, as VDOT resorts to interpolation techniques
to generate an entire day’s, in extreme cases, worth of data to
compensate for its malfunctions. In our model, the data extracted
from the stations located at Lorton, on the I-95 highway heading
north, and at Spring�eld on the I-395 highway heading south, is
entirely authentic.
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Figure 1: Road side tra�c loops at various road segments.

PVD Data:We were also provided with proprietary PVD data,
collected from navigation devices supported by a telematics com-
pany.We retrieved the data via a private database containing speeds
mapped to individual navigation devices across the standard lat-
itude and longitude grid. Each record contains the speed of an
(anonymous) vehicle passing from a particular road segment and
the time-stamp of the measurement. We aggregated this data to
compute the average velocity and the number of vehicles (i.e., the
�ow) passing from each road segment at �ve minute intervals.
While tra�c �ow and speed data from PVD samples is accessible
at any location on the road network, it only represents a sample of
the entire vehicle population.

Consider for example the road network of Figure 1, where tra�c
loop detectors are scattered in various locations of the network and
depicted as double rounded black lines. Vehicles using navigation
devices are depicted as yellow. In the top right circle, there is a
loop detector, therefore both the time-series of the (partial) PVD
volume and of the (total) VDOT volume are known. Thus, they can
be used to learn the time-varying coverage of the PVD samples in
that area. On the other hand, there is no tra�c loop detector at the
road segment shown at the bottom circle. While the PVD �ow is
still accessible, there are no measurements of the ground-truth total
vehicular �ow. The challenge is to learn a model that can infer the
coverage and use it to predict the true total �ow of cars at di�erent
parts of the road network.

2 RELATEDWORK
Tra�c volume, congestion, and other parameters of transportation
networks are traditionally measured via static sensors such as traf-
�c loop detectors [9, 13, 21] and surveillance cameras [3, 19, 22].
These devices provide collections of accurate measurements of the
total tra�c �ow passing by the road segments that they monitor.
These measurements can be used in order to train models for the
prediction of the tra�c volume at a segment [10, 15, 21]. However,
this equipment is costly and impractical to install on every segment.

The fundamental diagram [5, 7, 13] describes the relationship
among tra�c density, speed and volume. It can be used to infer

vehicular volume from tra�c speed and density. However, learning
these relationships requires a large amount of training data, which
is not always easy to acquire. Furthermore, these quantities are not
always available together everywhere on the road network; some
devices may measure tra�c �ow but not speed.

To overcome the data sparsity issue, relevant research has re-
cently shifted its focus to the tra�c condition estimation using
probe vehicle data, collected from vehicles equipped with GPS de-
vices that transmit their geo-spatial coordinates in real time. Probe
vehicle data has been used in literature to estimate travel times
[3, 20, 23, 24] and tra�c speed [16]. [11] proposes a map matching
algorithm for low-sampling-rate GPS trajectories, considering the
spatial geometric and topological structures of the road network and
the vehicular speed constraints. Having matched the trajectories
to speci�c road segments of the road network, the average speed
[20, 24] at those segments can easily be derived. [1, 14] combine
the speed, estimated by Probe Vehicle data, with the fundamental
diagram to estimate tra�c �ow. However, directly inferring tra�c
volume from the average speed of sparse GPS samples leads to erro-
neous results, as the sample of vehicles is often a non-representative
subset of the full set of vehicles on the streets. [2] study the case
of learning a regression model from a roving sensor network of
taxi probes. They demonstrate that the probe vehicle data are a
biased sample, as using the taxi speeds leads to an underestimation
of tra�c �ow during rush hours and overestimation otherwise. [18]
adopt an unsupervised Bayesian model to learn the tra�c volume
from the PVD-estimated tra�c speed on every road segment. [12]
combines data collected by loop detectors and taxi trajectories in
a machine learning model to infer the city-wide tra�c volume.
These approaches requires large amounts of data from various
road segment locations of the city for the training phase. [17] uses
anonymous phone call data to infer the number of vehicles moving
from one cell to another. They model to the users’ calling behavior
and hourly intensity of calls and vehicles. The drawback of this
approach is that it is only applicable to speci�c road segments that
are crossing an intercell boundary.

To the best of our knowledge, this is the �rst work that uses
the time-varying �ow capture rate of probe vehicle data on road
segments, to predict the total tra�c �ow.

3 PROBLEM DEFINITION
In this section, we formalize the problem of estimating tra�c vol-
ume given only a sample of PVD observations. For this purpose,
we de�ne the challenge of estimating the �ow capture rate, i.e., the
fraction of vehicles that are captured by the PVD sample.

We assume a �nite set of locations L = {L1,L2, ...Lm } where
tra�c loop detectors are located. At these locations, the exact tra�c
volume, over time, is given. In our tra�c loop data obtained from
VDOT, this volume of vehicles passing a road segment is aggregated
at �t = 5 minute intervals. Thus, each tuple of the tra�c loop
dataset is of the form <N (L, t ), t>, where t is the time-stamp of the
measurement and N (L, t ) is the total number of vehicles observed
by a tra�c loop detector located at location L during a �ve minute
interval [t , t + �t].

The data that were collected from sparse GPS signal samples,
were aggregated at the same time intervals. Each tuple from this
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(a) Lorton (I-95)

(b) Spring�eld (I-395)

Figure 2: Hourly �ow capture rate of the proprietary PVD
data at Lorton (I-95North direction) and at Spring�eld (I-395
South direction).

aggregated dataset is of the form <NS (L, t ), t>, whereNS (L, t ) is the
number of vehicles that passed from a road segment at a location
L, during a �ve minute interval starting at time t and were using a
navigation device or service.

Since the vehicles captured by the PVD data sample are always
a subset of the total volume of cars in the streets, it holds for every
road segment L and any timestamp t that: NS (L, t )  N (L, t ).

The challenge of this work is to predict the total tra�c �ow of
vehicles using the probe vehicle data. Formally, we use the GPS
sample tra�c �ow NS (L, t ) and the past values of total volume
ND (L, t ) measured from tra�c-loop detectors, in order to predict
the future values of tra�c �ow N (L, t 0) for a future time t 0.

The main idea of our approach is to calculate to what degree
the GPS samples are representative of the total vehicle �ow at each
road segment of L and use it to estimate the total vehicular �ow
in the remaining segments of the road network. To this end, we
introduce the notion of �ow capture rate of the GPS sample, which
we de�ne below.

De�nition 3.1. (PVD �ow capture rate) We de�ne the PVD �ow
capture rateC as the fraction of vehicles that participate in the GPS
sample and are passing from a road segment location L at time t ,

over the total �ow of vehicles passing from that segment at t :

C (L, t ) =
NS (L, t )
N (L, t )

Consider Figure 2 where the �ow capture rate of sparse GPS sam-
ples is depicted for two di�erent road segments of the Washington
Metropolitan Area road network, over the course of 24 hours. Six
di�erent days were used, corresponding to the week of February 23
– March 1, 2017. Days 3 and 4 are a weekend, while the remaining
are weekdays. The �rst graph corresponds to a segment of inter-
state I-95 northbound, located at Lorton. The second is a segment
of interstate I-395 southbound, located at Spring�eld.

It can be easily observed that PVD �ow capture rate is time-
dependent. For this category of roads, it appears to vary from about
7.5% (on weekday nights) to more than 20% (on weekend evenings).
Furthermore, it appears to follow the patterns of total �ow, gaining
its highest value around rush hours when the �ow is at its peak,
while dropping at times when the road occupancy is lower. This
gives us the intuition that drivers tend to turn their navigation
systems on more frequently during congestion. A reason for this
may be to get alternative routes to avoid heavy tra�c. The �ow
capture rate also appears to depend on the type of the day, i.e.
weekday vs. weekend. On weekends, the fraction of drivers who
use their navigation devices is larger than weekdays. A possible
reason for this is that on weekdays, most of the drivers follow
well-known routes, eg. to commute to and from work, while on
weekends they may be exploring new destinations.

The problem we are approaching in this work is to estimate the
tra�c volume for a road segment for which we have no current
tra�c loop data, using PVD samples only. However, we assume,
that tra�c loop data was available at this location at a previous time
to learn the time-dependent �ow capture. This problem is formally
de�ned as follows.

De�nition 3.2. Let L be a location for which PVD sample data
NS (L, t ) is available for a time interval t 2 T . At the same location,
we assume that the exact tra�c volume N (L, t ) is available for a
smaller time interval t 2 T 0 ⇢ T . Our task is to estimate N (L, t )
during all other times t 2 T \T 0, given the PVD sample NS (L, t ).

4 METHODOLOGY
This section describes our approach to obtain a point estimate of
the tra�c volume N̂ (L, t ), and how to build a con�dence interval
around this point estimate by modeling the tra�c volume, given
the PVD sample, by a negative binomial distribution.

4.1 Tra�c Volume Point Estimates
For any time t 2 T \T 0 where we have exact tra�c volume data,
we can compute the PVD �ow capture rateC (L, t ) using De�nition
3.1. To estimate the tra�c volume at a future time T 0 of day d

at a road segment located at L, we use a set of n previous days
{d � 1,d � 2, . . . ,d � n} to calculate the mean �ow capture rate of
that time of the day for that location as the predicted �ow capture
rate of this location at time t of day d :

Ĉ (L, t ) =
1
n

nX

i=1
C (L, (t � i · 24 · h)) (1)
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where h is duration of the one hour. For example, if the measure-
ments are taken in 5-minute intervals, then h = 12.

The total �ow at time t of day d at a road segment located at L
can be predicted as:

N̂ (L, t ) =
NS (L, t )
Ĉ (L, t )

(2)

The above equation gives us a point estimate. However, during
some times of the day we may have an extremely low number of
PVD samples, either due to a low capture rate, or simply due to low
tra�c volume. During those times, our con�dence about this point
estimate will be lower than at other times where our PVD samples
may be much larger and more representative of the tra�c volume.
To capture this uncertainty, the next section shows how to obtain
con�dence intervals for the estimated tra�c volume N̂ (L, t ).

4.2 Con�dence intervals
Consider the problem of �ipping a (biased) coin, which has a known
probability ofp to yields “heads” until you observe the event “heads”
for the k’th time. The distribution of the random number of coin-
�ips n required to obtain k heads follows a negative binomial dis-
tribution [6]. In the case of k = 1, we obtain the special case of
a geometric distribution. The di�erence to the traditional bino-
mial distribution is that is describes the distribution of the number
of trials given a number of successes, rather than the number of
successes given a number of trials.

Our problem is of similar nature. At a location L and time t

We assume to know the likelihood Ĉ (L, t ) of any individual being
captured in the PVD sample (as learned from previous days in
Equation 1). Further, we observe the number of individuals NS (L, t )
that are captured in the PVD sample: The distribution of the total
volume N (L, t ), given this information follows the same negative
binomial distribution, having k = NS (L, t ) and having p = Ĉ (L, t ).

De�nition 4.1. (Negative Binomial Distribution Let L be a loca-
tion at a time t . Assume that we have observed NS (L, t ) individual
vehicles in our PVD sample. Futher, letC (L, t ) denote the likelihood
that any individual vehicle is captured in our data. The total tra�c
volume follows a negative binomial distribution, where NS (L, t ) is
the number of successes, and C (L, t ) is the hit probability.

Then, the probability mass function of the number N (L, t ) of
trials, is:

P (N (L, t ) = x ) =
 

x � 1
NS (L, t ) � 1

!
(1 �C (L, t ))x�NS (L,t )C (L, t )NS (L,t )

We note that the negative binomial distribution can be approx-
imated by a Gaussian distribution for su�ciently large NS (L, t ).
However, in our data set we have various observations having
NS (L, t ) < 10 PVD samples per �ve minute interval, particularly
during night-times. Thus, a simple normal approximation would a
highly biased distribution.

Using the probability distribution of the estimated tra�c volume
N (L, t ) at location L at time t , as obtained in De�nition 4.1 we can
now proceed to construct con�dence intervals, such that, at a given
level of signi�cance � , we expect N (L, t ) to fall into this interval.

De�nition 4.2 (Con�dence Intervals). Let P (N (L, t ) = x ) be a prob-
ability mass function, and let � be a speci�ed level of signi�cance

(for example, � 2 {0.01, 0.05}). We derive a con�dence interval
[min,max] as follows:

min = argmax
x

P (N (L, t )  x )  �

2
.

max = argmin
x

P (N (L, t ) � x )  �

2
.

Intuitively,min is the largest number of vehicles, such that less
than �

2 probability mass is to the left ofmin, andmax is de�ned
symmetrically. The resulting interval (min,max ) is guaranteed to
contain a probability mass of at least 1 � � .

5 EXPERIMENTS
In this section, we describe the data sets that we use, the baseline
solution that we employ, and the results of our experimental evalu-
ation comparing our approach against these baseline solutions.

5.1 Data
To evaluate our approach, we used real tra�c volume data from the
Virginia Department of Transportation (VDOT) and proprietary
PVD data from a telematics company, as described in Section 1.
We were provided with anonymous raw observations of vehicles
passing from two di�erent interstate road segments: (i) a segment
of I-95 located at Lorton, northbound and (ii) a segment of I-395
located at Spring�eld, southbound. These observations correspond
to the time period of the week of February 23, 5pm – March 1, 5pm
of 2017.

We then aggregate this dataset at �ve minute intervals to cal-
culate the sample volume NS (L, t ). We also collected a series of
tra�c-loop detector measurements of the total vehicular volume
N (L, t ) at the same road segments, over the course of the same
time period (week February 23, 5pm – March 1, 5pm of 2017), also
collected at �ve minute time intervals.

5.2 Approaches
PVD-based Prediction. To evaluate our approach, we compute
the PVD �ow capture values over the time series of the �rst six
days of the week and we use them to predict the total �ow on the
last day. To achieve this, we calculate the mean �ow capture of
every timestamp, for the same time of the day over the six days.
We then combine this �ow capture with the partial PVD �ow of
the last day to estimate the expected values of the time series of
total �ow for that day, using Equations 1 and 2.
PVD-basedPrediction(hourly). The previous approach estimates
the �ow capture C (L, t ) at each �ve minute interval. The resulting
model may over�t to random error due to small sampling size in
�ve minute intervals, especially at night times. Thus, we propose
to compute the �ow capture hourly.

Chourly (L, t ) =
P
t 02H NS (L, t 0)P
t 02H N (L, t 0)

,

where H is the set of all �ve minute intervals in the same hour as t .
Thus, for each �ve minute interval, this approach uses the average
�ow capture of the corresponding hour.
Baseline. As a simple baseline, we use an approach that uses a
constant �ow capture C . To obtain C , we use the average �ow
capture rate over the �rst six days.
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(a) Lorton (I-95)

(b) Spring�eld (I-395)

Figure 3: Tra�c volume prediction.

VDOT Ground Truth. We compare the predicted values to the
ground-truth total volume that was measured by tra�c-loop detec-
tors of VDOT during the seventh day of our dataset. We evaluated
our results in terms of the root mean square error (RMSE), the mean
absolute error (MAE), the mean absolute percentage error (MAPE),
and the r2 coe�cient of determination.

5.3 Tra�c Volume Prediction
Figures 3(a) and (b) show the point estimates of the tra�c volume,
i.e., the number of cars that passed from each of the two road seg-
ments, for each �ve minute interval on the seventh day of our
dataset. For the tra�c at Lorton, the baseline approach underesti-
mates the �ow when it is at its highest peak, around 5:00am, while
it overestimates �ow later in the afternoon. This underestimation
is due to a consequence of the relatively low fraction of navigation
devices used during this time. Since the baseline uses the global
average �ow capture, it overestimates this �ow capture, and thus,
underestimates the tra�c volume.

Our prediction follows the behavior of the ground-truth more
accurately. As shown in Table 1, the mean absolute percentage
error (MAPE) of our proposed approach is 21.94% vehicles, while
the baseline yields a MAPE of 23.42%. Furthermore, the coe�cient

Apporach Location RMSE MAE MAPE R2

Baseline Lorton 99.53 71.37 23.42% 0.51
Springf. 65.76 51.87 23.30% 0.80

PVD-based Lorton 74.30 59.65 21.94% 0.76
(5-min) Springf. 58.55 46.52 21.00% 0.84

PVD-based Lorton 72.27 57.57 21.11% 0.77
(hourly) Springf. 58.68 45.63 20.62% 0.85

Table 1: Tra�c Volume Prediction Error.

of determination (R2) is 0.76, which shows a higher prediction accu-
racy than the 0.51 of the baseline approach. At the Spring�eld tra�c
loop, both predictions introduce smaller errors. We still manage to
outperform the baseline with a MAPE of 21% and R2 score of 0.84,
compared to 23.3% MAPE and 0.8 R2 score of the baseline.

In addition, we employed the PVD-based Prediction(hourly), to
avoid over�tting to large sampling variance. Thus, we compute the
average �ow capture rate, at hourly intervals. Again, we compute
the mean hourly �ow capture for every hour of the previous six
days, to use as the predicted hourly �ow capture of the last day.
The results are also shown in Table 1. At Lorton, using the hourly
�ow capture rate reduces the mean absolute percentage error by 4%,
thus outperforming the baseline by 9.9%. It also raises the R2 score
to 0.77. At Spring�eld the hourly approach achieves a coe�cient of
determination of 0.85 and a a MAPE of 20.62%, which is 2% lower
than the 5 minute approach and 11.5% better than the baseline.

Next, we evaluate the quality of the employed con�dence inter-
vals as described in Section 4.2. First, Figure 4 depicts a visualization
of the 90% con�dence intervals and the ground truth VDOT mea-
surements. Table 2 shows the fraction of total �ow values N (L, t )
that were captured by the con�dence intervals. Therefore, we scale
the level of con�dence of the con�dence interval, and count the
fraction of (location, time)-pairs where this con�dence contains the
true tra�c volume N (L, t ).
We note that, if our con�dence interval model would perfectly
capture the uncertainty of the tra�c, we would expect that a level of
con�dence of x , would capture exactly a fraction of x measurements.
We observe in Table 2, that the these fractions are signi�cantly lower.
For example, at Lorton, for a level of con�dence of 90%, only 60.07%
of the observed volume values were captured within the con�dence
intervals, while for Spring�eld 70.83% of the true measurements
were inside the con�dence range, thus, leaving a large amount of
unexplained uncertainty. In contrast, the 99% con�dence are more
accurate, capture 98.6% and 97.9% of the measurements, which is
close to the expected result of 99%.

As can be observed from Figure 2, the �ow capture rate di�ers
between weekdays and weekends. Thus, we repeated the same
experiments using only the weekdays of the training set (the set
fromwhich we estimated the �ow capture rate in Equations 1 and 2).
In this case, the percentage of true values of Lorton and Spring�eld
�ow captured within the 90% con�dence intervals rises to 70.83%
and 74.31%, respectively.

6 CONCLUSIONS
Real time volume estimation allows for more comprehensive tar-
geted marketing strategies, tra�c prediction models, and infrastruc-
ture planning. Yet, obtaining tra�c volume by counting individual
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Level of con�dence 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 95.0% 99.0% 99.9%
Lorton hits 6.94% 10.76% 14.24% 17.71% 24.31% 29.51% 35.07% 44.10% 60.07% 77.08% 98.61% 99.65%

Spring�eld hits 5.21% 10.07% 14.93% 21.53% 28.47% 34.72% 45.49% 59.72% 70.83% 86.46% 97.92% 98.26%
Table 2: Percentage of the ground truth values captured within the con�dence intervals.

Figure 4: Tra�c �ow prediction with 95% con�dence intervals at Lorton (I-95) and Spring�eld (I-395) over all days.

vehicles crossing a segment is expensive. We propose a �rst ap-
proach towards estimating tra�c volume using PVD data, which is
easily and cheaply collected from mobile devices. We found that
the main challenge of estimating volume from PVD samples is the
constantly changing volume capture rate. During high tra�c, more
people employ their navigation devices, thus giving us a larger PVD
sample, whereas when the tra�c is �owing free, more people turn
o� their navigation device as they already know their way. Our
research presented in this paper shows, however, that recurring
patterns of PVD volume capture allows to obtain a fairly good traf-
�c volume estimation, without incurring the high cost of installing
road-side tra�c loops. As future work, we want to be able to use
volume information learned at one location to be applied to another
location. This step is challenging, as spatial auto-correlation (in
the Euclidean space) does not hold: In our data, two locations only
meters from each other, but measuring tra�c volume in di�erent
directions of the same road, had entirely di�erent daily patterns of
volume capture. Furthermore, in our future work we would like to
incorporate other variables, such as how the “weather” a�ects the
�ow-capture.
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